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The shape of the tide raised on a rotating black hole by an exterior perturbation is investigated. An

expression is given for the perturbed curvature of the two-surface formed by the intersection of the

event horizon and a surface of constant time. The result involves only the perturbation in the 4'eyl
tensor component $0 which solves the Teukolsky equation. An application is made to the tide raised by

an exterior moon outside a.slowly rotating black hole. In this case the position of the tidal bulge is

shifted away from the position of the moon in a way analogous to the lag of the tide in the

earth-moon system.

I. INTRODUCTION

A black hole perturbed by the gravitational field
of exterior matter will evolve toward a state in
which either the black hole and matter are co-
rotating or the matter is symmetric about the
black hole's axis of rotation. ' 4 This effect is
closely analogous to the process of tidal friction
in a planet-satellite system. ' ' For example, the
rate of decrease in total angular momentum J -of a
slowly rotating black hole of mass M perturbed by
a moon of mass p. which is at rest with respect to
infinity and located a large distance g away from
the black hole is

dJ 8 JpM
dt 5

The angle 0 is the angle between the moon and the
rotation axis of the black hole. This expression
displays the characteristic dependence on masses,
angles, and radius of the Newtonian tidal friction
process. It is of interest to pursue this analogy
further to see whether other aspects of the tidal-
friction problem are reflected in the black-hole
case. This would not only provide a more com-
plete analogy with which to picture the interaction
of a black hole with exterior matter but would also
perhaps suggest answers to some of the as-yet-
unresolved issues in the black-hole case.

one of the most characteristic features of the
Newtonian tidal-friction process in a planet-satel-
lite system is the lag of the peak of the tidal bulge
behind the position of the perturbing moon as seen
by an observer on the rotating planet (see Fig. 1).
In Newtonian physics the lag is the mechanism for
producing the torque on the moon necessary to in-
crease its angular momentum to compensate for
the decrease in the planet's angular momentum in
the way required by over-all angular momentum
conservation. It would seem reasonable to expect
a shift in the position of the tidal bulge also in the
black-hole-satellite case for a similar reason.

In this paper we will investigate the existence of
a tidal shift in a rotating black hole perturbed by
an exterior distribution of masses. This question
is part of a mox e general one, namely, the in-
vestigation of the shape of the event horizon of a
black hole acted upon by exterior perturbations.
In Sec. II we resolve this more general question
in principle by relating the intrinsic curvature of
a slice of the horizon to the perturbations in a
component of the Weyl tensor called g, in Newman-
Penrose' notation. This component in turn can
be calculated in terms of the perturbing mass dis-
tribution by solving the Teukolsky equation. ' In
Sec. III the Newtonian theory of tidal lag is re-
viewed. In Sec. EV the question of tidal lag in
black holes is considered. %e find that in general
it is difficult to give precise meaning to the con-
cept because the horizon of a rapidly rotating
black hole in the presence of perturbations will
suffer a considerable distortion over the nonro-
tating horizon, and this distortion cannot be char-
acterized as a simple, angular shift. The net ef-
fect of a slow rotation, however, is to preserve
the shape of the tide raised on the horizon of a
nonrotating black hole but cause it to be rotated
about the axis of rotation by a certain shift angle.
In Sec. IV we calculate that angle. The magnitude
of the shift corresponds to what would be expected
from Newtonian theory on the basis of the tidal
friction analogy. The sign of the angle, however,
is opposite to one's Newtonian expectations. In a
black hole the tidal bulge leads rather than lags
the perturbation. The origin of this result is dis-
cussed in Sec. Pf.

II. THE CURVATURE OF THE
INSTANTANEOUS HORIZON

%'e consider a rotating Kerr black hole with
mass M and specific angular momentum a per-
turbed by exterior matter. %e will investigate the
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S =g +g"'+o ~ ~ (2.1)

geometry of a two-surface formed from the inter-
section of the perturbed horizon with a spacelike
hypersurface. This hypersurface will always be
chosen so that in the unperturbed limit it coincides
with a surface of constant time t such that 8/&t is
a Killing vector of the Kerr geometry which is
timelike at infinity. We will refer to this two-
surface as the instantaneous horizon.

All the information on the shape of the instanta-
neous horizon is contained in the two-dimensional
intrinsic scalar curvature which we denote here
by S. Expanded in powers of the perturbation, S
will have the form

Here g is the unperturbed curvature, g"' the first-
order perturbation, etc. Smarr ' has calculated g
and discussed the shape of the unperturbed hori-
zon in considerable detail. Here, we will calcu-
late R"'.

The Newman-Penrose formalism ' provides a
simple and compact way to calculate p"'. To use
this technique one sets up at each point in space-
time a tetrad consisting of two real null vectors
l ~ and n~ and two complex null vectors m~ and m~

(where the overbar denotes complex conjugation).
They are normalized so that L„n"=1 and m„m~ = -1
with all other inner products vanishing. ' The
Bianchi identities and the Ricci rotation equations
are then expressed in terms of the various spin
coefficients and the components of the Weyl tensor
C 8 ~ projected onto the tetrad. The quantities
which will be relevant for us are the spin coef-
ficients

M m=~ malPt V

p = l „.,m~m",

FIG. 1. Tidal lag. The presence of a stationary moon
(M) outside a viscous fluid body will raise a tide on the
body's surface. If the Quid does not rotate the tidal
bulge (dashed surface) will point at the moon. If the
body does rotate then its ar~ular momentum (J) will
decrease due to viscous dissipation. The surface will
now (solid line) have the same shape as before but will
be rotated by an angle 5 in a positive direction about
the rotation axis. The new position is such that the torque
now exerted by the moon on the body equals the rate
of decrease of angular momentum. The torque exerted
by the body on the moon increases the moon's angular
momentum thus alldwing for over-all angular momentum
conservation. As a consequence of the rotated position
of the tidal bulge an observer riding on the fluid mass
would find high tide arriving after the moon passed
directly overhead. For this reason the effect is referred
to as a tidal lag. The picture for Plack holes is exactly
the same except now the solid and dashed surfaces are
the instantaneous horizon of the black hole and the bulge
on the future horizon leads the position of the moon.

For black holes it is not difficult using Newtonian
theory to estimate the magnitude of & from this picture
and from the spin-down rate in Eq. {1.1). The torque
exerted by a moon of mass p in the equatorial plane
a distance R away from a fluid mass of radius R,
for small 6 is -p(effective mass of tidal bulge)R ~

~ (R, /R) 6R, . The effective mass of the tidal bulge is
the mass of the fluid M times the ratio A,/R, where h

is the height of the tide. In turn, h is determined by the
requirement hM/R, -(perturbing potential) -p R, /R .
Putting these together one arrives at a torque-p, 5R~ /R . For a black hole put R, -M and equate this
to the spin-down rate in Eq. (1.1) to find 6 -J/M2 inde-
pendent of the parameters of the perturbation and in
agreement with Eq. (4.33).

v = l „.„rem', (2.2)

o. =~ (l „.„n"m"-m„.„m~m"),

P =~ (l„.„n"m"-m„.„m&m")

and the Weyl tensor components

g, = -C S„~l mal &m~,

g, =-C„8„&l n l &m

g, = =~C
&

z(l"n l&n~+I "n m&m~) .

(2.3)

K =0, p=p,

m =e+P . (2.5)

The above choice of tetrad is convenient because
by using it, the two-curvature S may be expressed
as a simple combination of g, and the spin coef-
ficients. To do this we employ Gauss's relation
connecting the intrinsic curvature of a two-surface
embedded in a four-dimensional space with its

Qn the horizon we choose the tetrad so that l"
lies along the null-geodesic generators and m~ and
m~ lie in the instantaneous horizon. The vector l ~

is normalized so that l&t
&
=1. By a rotation m"- exp(i0)rrP we can enforce

(2.4)

This choice implies that on the horizon'
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extrinsic curvature and the curvature of the em-
bedding space. A brief derivation of this relation
in Newman-Penrose form is given in the Appendix.
One finds that in the vacuum when &„„=0

6t=4Re(pt2-A. o-(}&2). (2.6)

8 {~)
2~ p{~)

at
= (2.8)

where e is the unperturbed spin-coefficient having
on the horizon the constant value

(M2 &&2)l/2

4M I+(m2-a2)'/2 '

The only periodic solution of Eq. (2.8) is p"' =0.
As a consequence of the vanishing of p, p"', and

a, g") has the form

It &1& 4 Re(q (I& +&&o((&) (2.10)

We must now calculate o(» and (}&2(". Our goal will
be to express these two quantities in terms of gQ'".

This is because Teukolsky' has shown that the
perturbation gQ") may be calculated in a remark-
ably simple way. It obeys a wave equation which
can be separated into radial and angular equations
each solvable by straightforward numerical tech-
niques. An expression for&"' in terms of gQ"'

may thus be regarded as essentially the solution

Equation (2.6} for 6I may now be expanded in
powers of the perturbation. To simplify the nota-
tion, henceforth quantities which are first order
in the perturbation will be denoted by a super-
script (1}, viz. $2u, p, 2&&hits &f(&(2&2tit288 tv2N02&t

suPerscripts soil/ denote the unperturbed values.
It will be sufficient to consider perturbations
which are periodic in t, because a general first-
order perturbation may be decomposed into a lin-
ear superposition of harmonically varying com-
ponents,

h) G e-f ~t
a pv pv

Indeed, in the interesting case when the perturba-
tions arise from matter in stationary periodic
orbits, the perturbations will already be in this
form. In the following, therefore, we restrict at-
tention to perturbations of definite frequency v.
All the first-ol der perturbed quantities, g"), p"',
etc. , then have the time dependence exp(-i&dt).

On the horizon the unperturbed convergence p
and shear o vanish. Furthermore, p"', the first-
order perturbation in the convergence, also van-
ishes. An argument for this was given in Ref. 2
but is simple enough to recall here: Choose a co-
ordinate frame corotating with the horizon so that
D = I "(8/Bx") has the unperturbed value 8/Bt. The
Newman-Penrose equation for the first-order
perturbation in the convergence then reads

of the problem.
In expressing c(» and p2(» in terms of I(&,

(» we
will always use coordinates in which 6 =/2(8/Bx2)
is 8/Bt on the horizon to both zeroth and first or-
ders. Such a choice of gauge is clearly possible
since it amounts to specifying the four-components
l ~ to these orders and there are four gauge func-
tions to accomplish this. Using this choice of co-
ordinates, the above specified tetrad and the fact
that p"' vanishes, the Newman-Penrose equation
for o"' on the horizon reads

~&{a)
= 260'"'+ I ~' .TQ (2.11)

The solution of this for perturbations varying as
exp(-i&dt} is

OO) 1 6)
2&d +26 (2.12)

Since e is constant, o "' is a simple multiple of

y
{1)

An expression for (}I2(» in terms of g,"' can be
found from two of the Bianchi identities [ the first
two equations of (4.5) in Ref. 5]. In writing out the
perturbed versions of these equations, the above
coordinates and tetrad are used as is the fact that
the unperturbed quantities &}&, and (}&, vanish. (The
latter is guaranteed in our tetrad by the Goldberg-
Sachs theorem. ') One has on the horizon

at
=2e(}l"&+(5+w -4a)(}&&»

Q

() {1)
= (5 + 2w —2 a)g,

" —A.g ",

(2.13a}

(2.12b)

where 8 = m2(8/Bx2). For periodic perturbations
the solution to these equations is

(8+2w —2a)(5+w —4a)+A. (1&&I" ~

{/L) g(d +26

(2.14)

Equation (2.12}for (2(» in terms of &}&,
"& and Eq.

(2.14) for g2(2& in terms of f2&(& may now be com-
bined in Eq. (2.10}to give an expression for It "'
in terms of (}&2((&. The result is

41m
I

(d(2(d +2E)
(2.15)

where S is the operator

D= (8+2w —2a)(8+w —4a)+2@&(. (2.16)

The result may be simplifiM by expressing the
operator I) in terms of the Newman-Penrose" "op-
erator it. The operator )( is essentially a covariant
derivative in the two-surface spanned by m" and
m~. For example, from a quantity g of spin-.
weight 1 we can form a vector qm" in the two-
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surface. The operator )i is then defined by

}(()I= ()7m„).„m)'m ", (2.17)

which can be rewritten in terms of the spin-co-
efficients as

Ãn = [5 (&—P)-]n.

Following this procedure we define }f acting on a
general quantity g of spin-weight s by

}f))= [5 —s(n —p)])) .

(2.18)

(2.19)

These definitions, the relations in Eq. (2.5) and
the Newman-Penrose equation for m on the horizon
[Eq. (4.2g) of Ref. 5]

6s = -7f (IT + ()( —p ) + 2E A,
& (2.20)

are enough to show that the operator S is f(}f. The
equation for g "' thus becomes

(2.21}

III. NEWTONIAN EXPECTATIONS

In the remaining two sections we apply Eq. (2.21)
to calculating the shift in the tide on a black hole
expected on the basis of the analogy with a viscous
Quid planet. The Newtonian theory of the tides in
a viscous fluid mass goes back nearly a century to
the work of Darwin. " In this section me review
briefly and qualitatively this work as a guide to
what may be expected in the relativistic ease. For
details the reader should consult the original
papers.

The operator )( here is the unperturbed operator
constructed from the Kerr metric. It is under-
stood to be the operator in Eq. (2.19) appropriate
for the spin-weight of the quantity mhich stands to
the right of it. Each time }f acts it lowers the spin-
weight by one. Thus we pass from g,"', a spin-
weight-two quantity, to g "' a spin-weight-zero
quantity.

Equation (2.21) appears to have a divergence
where ~ =0, i.e., when the perturbation is co-
rotating with the black hole. This is not the ease,
however, because (),")vanishes on the horizon
mhen ~ =0 in order that the tidal-friction spin-
domn rate may do So.

Equation (2.21) determines the shape of the tide
raised on the event horizon by an exterior per-
turbation having frequency (d with respect to the
horizon. One could go on to calculate the form of
the two-surface when embedded in a three-dimen-
sional flat space, but this will not be necessary in
order to calculate the tidal shift. In the next sec-
tions we will apply this formula to calculating the
shift of the tide in a slowly rotating black hole.

Bv ~ ~ 2~ p—+(v V}v=t&V v —V —+4+4,
Bt p

0

g'4 =4mp,

(3.1a)

(3.1b)

(3.1c)

where v is the velocity, 4 the gravitational poten-
tial, 4, the centrifugal potential, and p the pres-
sure. These equations are to be solved for v, p,
4 and for the shape of the surface, under the
boundary condition that the stress on the surface
vanish. If n' is the normal to the surface, this
latter condition is

8gg) 8gg
-p5) +pv g

+
g n =0y

Bx Bx (3.2)

at the surface.
Let 4',"be the gravitational potential from the

external tide-producing masses. It is sufficient to
consider only a particular multipole in which

C(1) g(1)(f) LYm(g y) (3.3)

and 8") has the time dependence exp(-i&et). If we
work to linear order in this perturbation, all other
quantities will contain only angular harmonics of
order (L, m). For example, the equation of the
surface to first order can be written

r =R +R "(i)Y1(8& P). (3 4)

(Quantities such as S(1) and R "' clearly depend on
L and m, but we do not indicate this dependence
explicitly. )

The total perturbation in the gravitational po-
tential, 4 "', will be the sum of 4,"' and the change
in the potential of the fluid mass due to the tide.
Inside the radius g this change is proportional to

We consider a sphere of radius" g made from
an incompressible viscous fluid having density p
and kinematic viscosity v. The sphere is per-
turbed by the gravitational field of an external dis-
tribution of masses and by a slow and rigid rota-
tion of angular velocity A. Ne work in a frame
rotating with angular velocity Q in mhich the per-
turbations due to the tide producing masses vary
harmonically with frequency (d. Thus, for exam-
ple, if the problem under consideration is a slowly
rotating sphere being perturbed by stationary ex-
terior masses, ~ would be -0 in this frame. The
frequency + will be assumed to be slow and quan-
tities of second order in it, such as the accelera-
tion of the fluid in the rotating frame, will be ne-
glected. This assumption is not essential to the
analysis but reduces the complexity of the calcula-
tion considerably and is sufficient for the relativis-
tic eases to be considered in Sec. IV.

The equations of motion and structure for the
fluid in the rotating frame are
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y and is linear in the shape of the surface, R "',
and the mass of the fluid. Simple dimensional
considerations then allow 4 "' to be written

@&'& = [ g(gg&'&/g~)+$&'&]& ~y'~(e y) (3.5)

where g is the unperturbed surface gravity and C
is a dimensionless geometrical factor depending
on L.

When terms quadratic in ~ or quadratic in the
perturbation are omitted, Eq. (3.1a) and (3.1b) for
the perturbations in velocity and pressure read

*0.)
pV(l) V

P +C(l) +C,
P

C

V ov(l) 0

(3.6a)

(3.6b)

R(l ) RL+I
V„= —H g +pS(1) ym 8 (3.7)

where n and P are geometrical factors depending
on L. Darwin finds for n and P

L
2(L+1)'+1

The solution for v"' will contain the appropriate
scalar and vector spherical harmonics of order
(L, m). Because of the linearity of Eqs. (3.6) and

(3.2) and the form of Eq. (3.5), there will be a part
of v"' proportional to R"' and a part proportional
to S"'. For example, the radial component of the
velocity at the surface will have the form

ones attention on the tide raised on a slowly ro-
tating fluid mass by a single stationary moon lo-
cated a large distance away. In the absence of any
dissipation the tide would have the familiar sphe-
roidal shape with the bulge pointing at the moon.
In the presence of dissipation Eq. (3.11) shows
that the tidal bulge keeps the same angle with the
direction of rotation but leads (in space) by an
azimuthal angle 5. (See Fig. 2.) In the case of
stationary perturbations & is -0 so that 5 is posi-
tive and truly represents a lag. The angle 6 is in-
dependent of the moon's mass, angular location,
and distance away, as Eq. (3.12) shows. This
seemingly surprising result can be readily under-
stood from the magnitude of the torque necessary
to reproduce the slowdown rate (cf. caption to Fig.
2) once the angle that the bulge makes with the ro-
tation axis is understood.

IV. TIDAL SHIFTS FROM STATIONARY
PERTURBATIONS OF SLOWLY

ROTATING BLACK HOLES

A. The shift in the tide

In Newtonian theory tidal shifts arise in situa-
tions in which the angular momentum of a tidally
dissorted body is being dissipated. The shape of
the tide must adjust itself to provide the requisite
torques for this dissipation and for over-all angu-
lar momentum conservation. A similar adjustment

L(2L+1)
(L —1)[2(L + 1)2+1j

(3.8)

The radial velocity at the surface, however, is
also (dR«&/dt)Yg(e, Q) and so

yRC ) gR PS(l )RL+ I
+a

dt v v
(3 8)

If v vanishes, the shape of the tide is given by

It&1&(f) P
S&&&(f)I'LL

Qg
(3.10)

and the tide is in phase with the perturbation. In
the presence of dissipation, however, the solution
is

R &&)=
(&

— R.' &&)
&gR

(3.11)

Viscous dissipation, therefore, causes the tide to
shift behind the position of the perturbation by a
phase angle 6 which for small ~ is

(3.12)

There are several characteristic features of this
result which are perhaps best illustrated by fixing

FIG. 2. Geometry of tidal lag. Shown here is the
geometry of tidal lag when the perturbing moon is not in
the equatorial plane. The vector J points along the
direction of rotation of the black hole or fluid mass.
The direction M points to the position of the moon and
the direction T to the position of the tidal bulge. The
direction T is simply the direction M rotated around J
by the azimuthal shift angle 6. It continues to make an
angle & with J. For the black-hole case 6 is negative.
In Newtonian physics the torque d J/dt would point in a
direction perpendicular to both T and M.
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in shape should take place in the instantaneous
horizon of a black hole perturbed by a nonaxisym-
metric distribution of exterior matter since there
also the angular momentum of the black hole is
changing.

In Newtonian theory the existence of tidal shifts
can be demonstrated by comparing a perturbed
system with dissipation to an identically structured
system without dissipation. For example, in the
theory of tidally distorted viscous fluid masses
given in Sec. IV one compares the shape of the tide
with viscosity to the shape when the viscosity has
been set equal to zero.

In relativity there is no parameter like the vis-
cosity which determines the amount of gravitation-
al dissipation. Like gravitational radiation, gravi-
tational tidal friction in black holes is part and
parcel of the theory and there is no natural way of
separating it out. In general, therefore, there is
no natural configuration with which to compare a
tidally distorted black hole in order to define the
lag. One might consider comparing the configura-
tion in which the black hole and the perturbation
are co-rotating since the tidal friction vanishes in
the latter case. However, the shapes of the in-
stantaneous horizon in these two cases will not
differ by a simple angular shift but by more com-
plicated rotational distortions. In general cases,
therefore, there seems to be no reasonable way
to define tidal lag in black holes. In at least one
limiting case, however, it is possible to exhibit
the effect.

dt '=dt dr(r-'+a')/A,

dQ' = dP —dra/6,
r'=r 8'= 8

(4.1)

and let constant t define the instantaneous horizon.
Here

6 = r ' —2Mr + a' = (r —r+)(r —r ).

It is then not difficult to verify that tetrad vectors
I," and m" which meet our requirements on the
horizon are related to the corresponding Kinners-
ley tetrad vectors l ~ and m E used by Teukolsky
through the relations

~P ~P
2(r 2+ P)» (4.2a)

quantity p,
' will be related to a stationary solu-

tion of the Teukolsky equation. To find the precise
relation we need to know the connection between
the unperturbed tetrad employed in deriving Eq.
(2.21) and the Kinnersley tetrad used by Teukolsky
in his paper. In the tetrad used here, on the hori-
zon I," lies along the null geodesic generators and
is normalized by l "t &=1, while m" lies in the in-
stantaneous horizon. Since the Boyer- Lindquist
coordinates t ', r', 8', g' used by Teukolsky are
singular on the horizon the time t ' cannot be taken
to be theKilling time t which defines the instan-
taneous horizon. Rather, we introduce a nonsingu-
lar coordinate system on the future horizon by the
standard transformation

$Q sln8
vY(r+fa coss) (4.2b)

B. Stationary perturbations of slowly rotating black holes

Two facts make it plausible that stationary per-
turbations of slowly rotating black holes should
exhibit the phenomenon of an angular tidal shift in
a pure form. (1) To linear order in the specific
angular momentum, a, the instantaneous horizon
of a Kerr black hole has the same spherical shape
as the horizon of a nonrotating black hole of the
same mass. (2) A stationary perturbation of a
nonrotating black hole induces a stationary tide with
no dissipation. A comparison of a nonrotating
black hole with a stationary perturbation and a
slowly rotating black hole with the same perturba-
tion is therefore a comparison of a situation with
no tidal friction and a corresponding situation with
tidal friction but no rotational distortion of the
horizon. Here, then, we may expect to find a pure
angular tidal shift. In the following we show this
to be so.

To investigate the existence of a tidal shift it is
necessary to evaluate Eq. (2.21) for Ri" to linear
order in the specific angular momentum a. The

On the horizon then, if a" = (a ', a', a, a ~), one
has

l" =(1,0, 0, (u ), (4.3a)

2
(x) + (x)

40 2( 2+ 2) 40» (4.4)

For stationary perturbations of the Kerr geome-
try P~& may be expanded in spherical harmonics of
spin-weight 2.

y,"»= QRI(r), Yz(e', 4') . (4.5)

The radial functions R~(r) satisfy the radial
Teukolsky equation and are not coupled to each

1 1 g
0, 0, 1, . —iaur+ sin8

v'z r+iacos8 ' ' ' sin8

(4.3b)

where ~+ = a/2Mr, is the angular velocity of the
horizon. If we denote by p~o~»i the Weyl tensor com-
ponent in the Kinnersley tetrad [Eq. (2.3)], then



TIDAL SHAPES AND SHIFTS ON ROTATING BLACK HOLES 2755

(4.6)

where

other. From the solutions, Pi, ') may be evaluated
on the horizon r =r, . One finds

r (e()

perturbation and linear in a, must be formed from
products of terms like W~ with the parts of the
Kerr metric linear in a. Since S~ ' transfox'ms
under rotations like a mult', ipole (I,, m), then angu-
lar momentum composition dictates that it is of
the form"

S~= lim R~ z (4.7) S 15[1] g WIS
-m om (4.12)

y=inuz/(r, —r ). (4.6)

All the information about the exteriox' perturbation
relevant to the shape of the instantaneous horizon
is contained in the horizon multipole moments S~.

In the following R ' will be evaluated to linear
order in a in terms of the S~ appropriate to a
stationary exterior source. If S~ is expanded in
powers of a,

S fff SNI fol+ ~nafj. l+ 2S&fg l+ ~ ~ ~ (4.9)

this evaluation will need only the constant linear
and quadratic terms in a [cf. Eq. (2.21)j.

Certain general symmetry properties of these
coefficients are useful in calculating R~' . For
stationary perturbations, the constant term S~ ~'

must vanish identically in order that there is no
tidal friction in a static Schwarzschild black hole
acted on by a stationary perturbation and also so
that R ' remains finite in the limit of a tending to
zero. Let us now consider the angular momentum
and parity coupling involved in the remaining co-
efficients.

In the limit that a is zero, a perturbation having
only a particular multipole (L,m) will become a
perturbation of the Schwarzschild geometry of that
multipole order. By appropx iate choice of gauge'
stationary perturbations of the Schwarzschild
metric may be assumed to have parity (-1)~ and
to be perturbations in rotational scalars. If the
Kerr geometxy is expanded in powers of a, then
the linear order considered as a perturbation of
the Schwarzschild geometry will be a (1,0) multi-
pole having parity + while the quadratic order may
be written'4 as (0, 0) and (2, 0) multipoles both
having parity +.

Suppose that W~ is the coefficient of a typical
term in the perturbation of the Schwarzschild met-
ric of multipole order (L,m). If we let P denote
the parity operation, then

pw, =(-i)'w, , (4.10)

while the reality of the metric and the convention"
Y I =(-1) y I require

( i)I, +m S III (4.14)

The 3-j symbol in Eq. (4.12) is linear in m. There-
fore, in order that S~i'~ have parity (-l)~, the
coefficient 4 must be pure imaginary. One then
concludes that S~ f'l has the general form

S, 'l=smU, , (4.15)

V;=(-I) U; . (4.16)

An exactly analogous argument can be made for
S~ f'l, although it is slightly more complex. One
finds

S "'=(a+Cm')W, , (4.iv)

where J3 and C are real and are independent of m.
Since tidal friction is absent in cases of pure axial
symmetry (m = 0) the coefficient I3 must vanish.
Thus we can wirte

2M
(4.18)

where F~ is a real constant independent of m.
In the following we calculate the tidal shift in

terms of U~ and t~. To do this, Eq. (2.21) for B(')
must be first written in a frame which is not rotat-
ing with respect to infinity. For stationary per-
turbations this simply amounts to replacing cu by
-m(d, . The result must be expanded to linear or-
der in c. In particular this involves the operator
@on the horizon. A simple but tedious calculation
shows that, when applied to a spin-weight-2 quan-
tity on the horizon,

Here, A is a constant linear in a and independent
of m, and we have used the familiar 3-j symbol. "

The parity of S~ must be (-1) since the Kerr
metric parity is always +. To see how to enforce
this, we first note that I' sends 8- m —8 and p
-(()+v. It follows from the form of the Kinnersley
tetrad that I l" =l" and Pm" =vs", whence

I y', "(r, e, y) =
g ',"(r, v —0, y + ))) . (4.12)

Translating this into a statement about the S~ we
find

W =(-1) W™ (4.11)

Quantities such as S~ i'l which are linear in the ()() =&~,)((((1+~t:ose) o, (a, ') . (4.19)
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Here P, is av 2M times g evaluated at a = 0 and is
the lowering operator of Ref. 11 with the property

p'„r,"= [(I+s)(i —s+ 1)]",,r", . (4.20)

Expanding the expression for Bi 'i using Eqs. (4.15),
(4.18), (2.9), (4.19), and (4.20), one finds

R =8 + QR ~+ ~ ~ ~

where

R~ ~ =8M g~Re U~ P~ g,

and

(4.21)

(4.22)

(4.22)aRI'& =6M+1m ql U~($1-2)m Y'~(8, (((()- g()l70cos8~YI(8, Q)

with q~ = [(I,+2)(I,+ 1)L(L-1)]' '. The angular combination in the last term in Eq. (4.23) may be expanded
in ordinary spherical harmonics. The relevant integral is

dQ I ~g, P Ocos,8 y(~,8$)=7i, dQ, F, cos8, Y'~(8, P) . (4.24)

Since the, F, are" [(al+ I)/4w] ' ' times the irreducible representation of the rotation group D', (p, 8, 0)
this integral is simply an integral over three such functions. One finds finally

oR"i=sMimg "'
(~ 2)U-ml (8 y)

Lq, [(21 ~ ()(2(~ ())'('(-(( ( &) ( o ) F, (e, ) (4.25)

aRi'i=8M+ -f~ @~Re(U~—F~), (4.26)
~m

0 4
2M L(L+1) (4.27)

This relation simply says that to first order in g
each multipole leads in space (lags in time) by a
coordinate angular shift &~ the corresponding
multipole for a nonrotating black hole.

By itself a coordinate shift has no invariant sig-
nificance. It could always be eliminated by a co-
ordinate change of the form (t p+ af(~). To give
the shift an invariant significance an invariant con-
nection must be given in the Kerr geometry be-
tween angular positions on the instantaneous hori-
zon and angular positions at the source or angular
positions at infinity. In order to keep the discus-
sion general we will consider only the latter type
of connection, and this will suffice for the ex-
ample to be considered later where the source is
near infinity. A natural way of making a connec-
tion between angular positions on the future hori-
zon and angular positions at infinity is to say that
two positions in the Kerr geometry correspond if

It follows from the symmetry of U~ [Eqs. (4.16)
and (4.19)] and the parity of the 2-j symbols under
change in sign of m, that the imaginary part of the
second sum in Eq. (4.25) vanishes except when I
=I.. Evaluating the remaining 3-j symbols one has

a ' 4
2M L(L+ 1)

(4.28)

Thus in each multipole order the shape of the in-
stantaneous horizon is the same for the slowly
rotating black hole as for the nonrotating black
hole, but the orientation is rotated about the axis
of rotation by an azimuthal shift angle 61,. If 5~ is
positive, this corresponds to a positive angular
shift or a tidal lag. The change in orientation is
thus essentially the same as in the Newtonian the-
ory illustrated in Fig. 2. The only dependence on
the perturbation comes from the parameter $~
which is independent of m. The tidal shift there-
fore does not depend on the relative orientation of
the perturbation and the black hole, exactly as is
the case in Newtonian theory.

they are connected by a zero angular momentum
light ray. Such a light ray has momentum com-
ponents pe=0 and p&=0 both of which are conserved
to first order in g. A zero angular momentum
light ray is therefore normal to the instantaneous
horizon and radially directed at infinity. In the co-
ordinate system used here [cf. Eq. (4.1) and the
discussion before it] the net change in azimuthal
angle p of a light ray as it proceeds from infinity
to the horizon is a/2M. This change is in the pos-
itive direction reflecting the rotational dragging.
An invariant definition of tidal shift can therefore
be considered to be the difference 5~ = g~ —a/2M,
and we have
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C. Tidal lead from a distant moon

qp I'(L —1)I'(1+L + 2y)
R +' I'(2 L+ 2)I (-1+L+ 2y)

Lt2
x

(
—„Y~(6, 4),Y~(0, Q),2 My'+)

(4.29)

as the leading term in an expansion in powers of
1/R for each multipole order The .parameter y
is defined in Eq. (4.8). As might be expected, the
quadrupole order (L =2) gives the dominant contri-
bution to the tide at large R. Since r, and r de-
pend quadratically on a the only difference between
the linear and quadratic terms in S,"comes from
the factorial in Eq. (4.29). One easily finds

m &0 —m

5&6MR' (4.3o)

and

(4.31)

For a nonrotating black hole the curvature of the
instantaneous horizon becomes [Eqs. (4.22) and
(2 1)]

6i =
2

——
~ P2(cosg), (4.32)

where y is the angle between the point of interest
and the direction to the moon. A surface in a
three-dimensional flat space which has this curva-
ture to first order in the perturbation is, in polar
coordinates,

pM'r =2M 1+2, P,(cosy) (4.33)

Having established the existence of an angular
shift in the tide raised on the instantaneous horizon
of a slowly rotating black hole, it seems worth-
while to evaluate the shift angle [Eq. (4.28)] in one
simple case —when the perturbation arises from
a distant stationary moon of mass p. . This situa-
tion will also be a good approximation to the case
of a distant moon in Keplerian orbit since the peri-
od of the orbit becomes arbitrarily long as the dis-
tance away from the black hole becomes large.
Since the two situations are essentially indistin-
guishable if the moon is far away, the contribution
to $~ of any stresses necessary to support a
strictly stationary perturbation must be negligible
in the large separation limit.

Teukolsky" has found the general stationary solu-
tions to his equation and used them to evaluate g~,

'~

for just this problem. Let the moon be located at
Kerr coordinates R, Q, 4. When Teukolsky's re-
sult is translated into our tetrad one has on the
horizon

This result, already established in Ref. 3, shows
how the moon distorts the instantaneous horizon
of a nonrotating black hole into the characteristic
spheroidal shape (Fig. 1) with the tidal bulge
pointing directly at the moon. The effect of a slow
rotation is to preserve the shape of the instanta-
neous horizon but to rotate its orientation about the
black hole's rotation axis by an angle [Eqs. (4.31)
and (4.28)]

a
3M (4.34)

The geometry of the reorientation is precisely that
of Newtonian theory as shown in Fig. 2, but the
tide lags in space rather than leads, i.e., it leads
in time. As in Newtonian theory, the shift angle
is independent of the parameters of the perturba-
tion. Indeed, the relativistic shift angle has the
same magnitude and form as that for a viscous
Quid mass provided one takes the radius of the
mass of order of magnitude of its mass and takes
for the dimensionless measure of viscosity, v/M,
a number of order of magnitude unity.

The most striking departure from Newtonian the-
ory is that the tide on the instantaneous horizon
leads rather than lags. In Newtonian theory the
orientation of the tidal bulge is directly connected
to the sign of the torque exerted on the moon. A
temporal lag is required if the torque is to have the
sign required by over-all angular momentum con-
servation. In general relativity the connection be-
tween the orientation of the tidal bulge and the sign
of the torque at infinity is much less direct. In-
deed, our results show that even with an invariant-
ly defined connection between the horizon and in-
finity as given here the relation between the sign of
the torque and the orientation of the tidal bulge can
be opposite to what might be intuitively expected
from the Newtonian analogy.

The origin of the tidal lead in the black hole
problem is not difficult to discover. It comes
ultimately from the structure of Eq. (2.11) giving
the time development of the shear. The term
2eo ' enters as an antidamping term in the equa-
tion not present in Newtonian theory [cf. Eq. (3.9)].
The growth of the shear which this antidamping
would produce if the time evolution calculation
were treated as an initial-value problem is not
present in the black-hole case because the defining
boundary condition is imposed at future infinity.
The antidamping does show. up in a contribution to
shift angle of opposite sign to that of the damping
terms present in Newtonian theory. Thus, in the
case of slow rotation the analogy between a black
hole acted upon by a stationary perturbation and
the tidal friction effects in a rotating viscous fluid
mass is close but not complete. Once v/M -1 both
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problems have the same form for the spin-down
rate and both exhibit a tidal shift of the same order
of magnitude. The shifts have opposite signs,
however, because of the presence of antidamping
in the black hole case and the different ways in
which the temporal boundary conditions are de-
fined. This analogy is complete enough, however,
that by using it one can conjecture the answer to an
as yet unsolved problem in the black-hole case.
This is the problem of computing the rate of change
of the dh~ection of the angular momentum of a
slowly rotating black hole acted upon by, say a
distant moon. (Only the change in the magnitude
of J was treated in Ref. 2.) From Fig. 2 one sees
that in Newtonian theory whether the shift angle ia
positive or negative the ratio of J((, the component
of the angular momentum parallel to the rotation
axis, to Ji, the component perpendicular to the
rotation axis, is

where

~(x) 1 ~(2) (A2)

Here A, B, C, D range over 1, 2 and h„~ is the ex-
trinsic curvature

~LB +4; B
(~) (c) (A4)

To form the contraction, 8, we use the fact that
since m" and m" are linearly independent vectors
lying in the two-surface, the induced metric 'I "~
can be expressed as

If (R»~~ is the intrinsic curvature of the two-sur-
face and B»~~ the curvature of space-time,
Gauss's relation becomes

@gaea =&Jaea+ & [&wc&aa- &ca&ac ] ~
(&) (&} (&) (~) (t) I

&)

(A3)

—= tane, (4.35) 'g "a=-(m "ma+ m "ma) . (A5)

Here 8 is the angle between the moon and the rota-
tion axis. On the basis of the analogy with Newton-
ian theory one would expect essentially the same
result to hold in the black-hole case.

Contracting Eq. (A3) one finds

ACKNOWLEDGMENTS

Special thanks are due to D. C. Wilkina for a
critical reading of the manuscript and for checking
the equations. The author is indebted to S. Teu-
kolsky for helpful discussions and for providing
his results in advance of publication, to S. W.
Hawking, S. J. Peale, and W. Press for enlighten-
ing conversations and to F. C. Michel for a stim-
ulating correspondence.

APPENDIX: GAUSS'S RELATION IN
NEWMAN -PENROSE NOTATION

In this appendix we express in Newman-Penrose
notation Gauss's relation" connecting the intrinsic
scalar curvature of a spacelike two-surface with
its extrinsic curvature and the four-dimensional
curvature of space-time. To do this, we introduce
two coordinates ~" (A = 1, 2) which range over the
two-surface and two orthogonal unit vectors N„"
(i =1, 2) normal to the two-surface. Since the sur
face is spacelike one normal can be chosen space-
like and the other timelike, viz.

P 1/~( 3) ~(g) ~ ( i) g( t)( g) (Al)P 1/

x'm "m am)'m ',
where the definition of the Jg(„'~) has been extended
in the obvious way. Now, in the vacuum case of
interest it is easy to verify [cf. Eq. (2.3)]

ft „,m m'm&m'=-2Re(y, ) . (A7)

Further, since the normals may be expressed in
terms of /" and n" by

X'" =2-'"(i +n )P

N(2) 2-x/2(f )

(ASa)

(ABb)

h"„)m" m" = c- A. ,

h ' m "m" =ppv

h(') m "m" =v+Xpv

h( )m" m" =p+ p, .P 1/

(A9a)

(A9b)

(A9c)

(A9d)

Combining Eq. (A9) with Eq. (AV) in Eq. (A6) we
have the desired result

61=4Re(pp —Xc —y, ) . (A10)

the components of the extrinsic curvatures may be
expressed in terms of p, cr, p, and X.



TIDAL SHAPES AND SHIFTS ON ROTATING BLACK HOLES

*Work supported in part by the National Science Founda-
tion.

~S. W. Hawking, Commun. Math. Phys. 25, 152 (1972).
2S. W. Ha~king and J. B. Hartle, Commun. Math. Phys.

27, 283 (1972).
3J. B. Hartle, Phys. Rev. D 8, 1010 (1973). Equation

(7.12) of this paper should be multiplied by a factor of
four to be correct. This means that all the spin-down
rates calculated are too small by a factor of four. In
particular Eqs. (8.14), (8.16), (8.17), (8.18) should be
multiplied by four.

4W. Press, Astrophys. J. 175, 243 (1972).
~E. Newman and R. Penrose, J. Math. Phys. 3, 566

(1962).
6S. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972);

Astrophys. J. 185, 635 (1973).
YL. Smarr, Phys. Rev. D 7, 289 (1973).
80ur conventions are basically the same as those of

Ref. 2 except that our Ricci tensor and scalar curvatures
have the opposite sign to theirs. In particular we
use signature +——;define the Riemann tensor so that
for any vector A", A&. ~8-A&. 8~= 8"

& ~8A~ and define
the Ricci tensor by 8&„=8 &~~. The two-dimensional
scalar curvature of a sphere of radius a is thus 2/a2.

9See, S. Hawking, J. Math. Phys. 9, 598 (1968), ox' J. B.
Hartle and D. C. Wilkins (unpublished) for a deriva-
tion.

~OE. Newman and R. Penrose, J. Math. Phys. 7, 863
(1966).
J. Goldberg, A. Macfarlane, E. Newman, F. Rohrlich,

and E. Sudarshan, J. Math. Phys. 8, 2155 (1967).
'2G. H. Darwin, Philos. Trans. R. Soc. (Pt. I) 170, 1

(1879). Reprinted with other papers on the subject in
G. H. Darwin, Scientific Papers (Cambridge Univ.
Press, Cambridge, England, 1908), Vol. II.
Notation in this section on Newtonian physics is not to
be confused with that used in previous and subsequent
sections on relativity.

~4See, e.g. , the appendix to J. B. Hartle and K. S. Thorne,
Astrophys. J. 153, 807 (1968).
Our notation for angular momentum algebra and
spherical harmonics follows A. R. Edmonds, Angular
Momentum in Quantum Mechanics (Princeton Univ.
Press, Princeton, N. J., 1953).

~6Arguments like those used in this paragraph may
look unfamiliar but are really no different from ones
of the form: "Given two vectors a",b", then the most
general second-rank tensor constructed froxn them is of
the form Aa "b" + Ba~b" . ." For expositions of these
methods see E. P. Wigner, inQuantum Theory of
Angular Momentum, edited by L. Biedenharn and
H. van Dam (Academic, New York, 1965), and U. Fano
and G. Racah, Irreducible Tensorial Sets (Academic,
New York, 1959).

~VS. Teukolsky, Ph. D. thesis, California Institute of
Technology, 1973 (unpubI, ished) .
S. Kobayashi and K. Nomizu, foundations of Differential
Geometry (Interscience, New York, 1963), Vol. II. The
theorem as quoted hex e has been modified to take
account of the indefinite metric of space-time.


