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Generalized constraints and mass spectra in classical spin theory
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The classical theory of a relativistic spinning point particle is reexamined and reformu-
lated from a new perspective. We introduce a class of generalized constraints on the spin
angular momentum tensor, whose imposition has not been previously considered. A con-
straint-dependent functional relationship between the observable rest mass and spin is de-
duced, and the implied trajectories analyzed.

I. INTRODUCTION

The purpose of this paper is to introduce a gen-
eralized version of the classical relativistic the-
ory of a free spinning point particle originally
formulated by Thomas' and Frenkel' (T-F). Let
us review briefly some aspects of that original
formulation. The instantaneous four-vector posi-
tion of the particle is denoted by x„, p„denotes
the conserved four-momentum conjugate to x„,
and S„„denotes the antisymmetric spin angular
momentum tensor. The total angular momentum
tensor, M„„, is given by

M~v = xq Pv
- xvP~ + 8~v,

whose conservation yields

S„„=P„v„-P„v„. (2)

In our notation x„=(x,ict), the dot denotes differ-
entiation with respect to the pxopex time e, and
v„=x„ is the instantaneous four-velocity of the
particle, with v„=y(v/c, i) and n„v„=-l. Since
v„need not be collinear with p„, 5„, need not be
separately conserved. ' '

In this T-F theory 9&, is subject to the constraint

~pv Vv

which ensures that

S„„S„.= —(-,S„„S„,) =0 .

is the Lorentz-invariant conserved-spin magnitude
in a frame defined to be at rest with respect to the
particle, i.e., v =0. We refer to this frame as the
intrinsic rest frame (IRF).' Thus S, is properly
termed an intrinsic particle parameter. The other
intrinsic parameter is the rest mass mo defined by

vga = -mop

where S,.& =q, ~P» and i7, =S,.„with
gg=vx 8 . (s)

The constraint (3) then implies that r-0 as v-0.
It has been shown previously' that in the momen-

tum rest frame (MRF), defined by p&
= (0, f(@'c)),v

need not vanish, and that

q = -cr/E

is the spatial separation of the particle from its
mass center. Therefore 7 is real and it follows
from ('I) that in the MRF

S'& S,'.
The fact that the spin magnitude in the MRF is
larger than the intrinsic rest spin is due to the in-
ternal orbital angular momentum contributions
which accompany the particle gyrations about the
stationary center of mass.

The T-F theory was proposed before there was
much interest in hadron spectroscopy. Not sur-
prisingly then, it was much later that the spectxal
content of their theory was sought. The result was
disappointing but instructive. Before simply stat-
ing the result we must specify what is meant by
the spectral content of a particle theory, A pri-
mary concern in any particle theory, proposed as
an aid to understanding elementary particle prop-
erties, is the ability of the theory to predict rela-
tionships between the observable values of the rest
energy and spin which even resemble the gross be-
havior of the hadron spectrum. If the theory is a
classical theory of a free spinning point particle,
then the spectral content, or predicted mass-spin
relationship, is a trajectory, i.e., a plot of the
observable mass-spin dependence. The terms
"observable rest mass" and "spin values" refer,
as always, to these values evaluated in the MRF.

since then mop is the energy when v =O. In an ar-
bitrary Lorentz frame, i.e., vw0, we have

S„„S„„=2(S'-r') =2S,',
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Defining the observable rest mass, m, through
the relation

p~p~= m c

the T-F spectral content was shown by several
authors to be given by descending trajectory"'

m =m, (s,/s),
where S is the spin magnitude in the MRF. This
trajectory clearly has little in common with par-
ticle data.

We can generalize the T-F formulation without
giving up the notion of an IRF, with respect to
which intrinsic mass and spin parameters may be
simultaneously assigned, by replacing (3) with

(13)

where

(14)

S~.S.~P~P~ =P~P~~u ~~ — S 8S 8P.P~

where

(24)

(25)

is the Pauli-Lubanski four -vector for which W = 0,
W„P„=O. Thus (23) may be equivalently written as

--,'(S„ss 8)s»„(„=[(1+gm,c) +g(gm'c'+ m, c)]

xS S,„P„. (21)
»

Substituting for S „$, its equivalent on the right-
hand side of (19) gives

,'—(S—~asks)[(I +g m»c)p» -(gm'c'+m, c)v, ]
= (1+2gm»c+g'm'c'}S, s, p„. (22)

Multiplying through by P gives

,'(S-s-S 8)( m'c-'+m, 'c')

= (I +2gm»c+g'm'c') S»,S,„P»P„. (23)

Notice that

with g an as yet unspecified Lorentz-invariant con-
stant of the motion. This class of constraints pre-
serves Eqs. (4}and (5), and hence ensures the ex-
istence of a specifiable IRF. Now, however, So is
the Lorentz-invariant conserved spin magnitude in
the frame defined by

+m c (W»W»+2gm»cW»W» -gm»cs»„s»„)

-~;c'S„,s„„=o. (26)

Further notice that

v/c+gp = 0, (15)
WqS"~ = ~S~v SP„, (27)

which frame is the new IRF. The T-F formulation
corresponds to the special case, g=0.

Let us now deduce the functional relationship be-
tween the observable rest mass and spin implied
by this class of constraints. Multiplying (2}by v„
gives

8~v Vv = -P~ + 2%0&'Up (16)

From (13) and (14) we get

Sp = E„A„S
with

pp pv
]IV PV p p

(29)

Thus for S~„we have S~„=Oi Spvpv =0. Hence Spv
is the antisymmetrical tensor equivalent of K.
Equation (26) may therefore be equivalently written
as

S„,v„-gS„,P„.
Using (2) in the last term of (17) gives

(17) (m'c')'[-,' g'(s'„, s'„„-s„,s„„)]

S~ '0 = -S~„( +gogo+ —g v (16)

Eliminating S„,v, between (16) and (18) gives
If we now write

S„'„S„' =2S

--,'m, 'c'S„„S„,= O . (3O)

(31)
S»»$» = (1 +gm»c)p~ —(gm c + m»c)U»'

If we now multiply (19) through by S S „and use
the identity'

(20)

and then use the constraint equations to eliminate
the explicit appearance of v„, we obtain

where S is the spin magnitude in the MRF, i.e.,
the observable spin, then (30}assumes the rela-
tively simple form

(m'c')'g'(S —S,') +m'c'[2gm, c(S' —S,') +S']

-m, c'S»' ——0 . (32)

Equation (32) constitutes the generalized constraint-
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dependent functional relationship between the ob-
servable rest mass and spin.

f(r)=r". Solving the quadratic equation, (35), for
h yields

III. MASS SPECTRA h=x " -1+,1- (36)

mpC
~P P m'g'PP (34)

Thus the choice $„=j„specifies g=-m, c/m c .
This is the one constraint which forces p and v to
vanish simultaneously, i.e., the frame defined by
&7=0 is the frame in which the particle is at rest
with respect to the center of mass. Thus with this
constraint the model reduces to one in which there
is no internal motion in the MRF, hence no contri-
bution to the observable spin from such motion.

Equation (32}may be reduced to the form

h'f (r}(r 1}+f(r)[2—h(r —1)+r]j-1 = 0, (35)

where S'/S, '=r, g=h/m, c, m'c'=m, 'c f(r). For
r=1, we see that f(r) =1, so that m'=m, ' if S'

$p Therefore since |S' ' ) S,' we may restrict the
analysis of (35) to the region r) 1. The form of
(35) then permits a simple classification of trajec-
tories. It is sufficient to seek the form of h for

For a prescribed choice of g Eq. (32) will yield
a solution, m =m(S). Each solution is equivalent
to a trajectory. The special case g=0 yields the
relation (12), as expected. An interesting case a-
rises when g= -m, c/m'c'; this particular choice
fixes m=mp for all spins and has a well-defined
physical interpretation. The covariant generaliza-
tion of (9)"

pu PvS

~a~a

is the covariant coordinatization of the center of
mass of the spinning particle. Differentiating (33)
with respect to the proper time gives

The solution, (36), clearly distinguishes three
cases:

(a) For n = 0 Eq. (36) gives h = -1, which is the
special case already considered, i.e., m' mp'
for all spins.

(b) For all q (0 the equation yields a real value
of h. Thus there exist any number of descending
trajectories, distinguished by their rate of descent.
To each trajectory there corresponds a physically
realizable constraint of the form (13), (14).

(c) For all n) 0, h is complex. Thus, while it is
mathematically possible to obtain rising trajec-
tories, it would appear that no physically realiz-
able constraints of the form (13), (14) exist which
will admit these rising trajectories.

IV. CONCLUSION

We have presented a generalization of the T-F
theory for a classical relativistic spinning point
particle. The generalization consists of the intro-
duction of a new class of constraints which broaden
the class of physical particle motions but which
still allow the assignment of intrinsic particle pa-
rameters. The T-F theory then becomes a special
case. Some implications of this generalization are
currently under investigation. However, since
rising trajectories appear to be ruled out, it is
doubtful that the theory presented can aid in under-
standing hadron resonance properties.
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