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Based on the static spherically symmetric solutions of the generalized theory of gravitation
it is found that electric and magnetic charges are two fundamentaI constants of integration
and that the corresponding electric, magnetic, and gravitational fields are regular everywhere
only if the magnetic charge p & 0 (- 10 e). The magnetic charge tt assumes an infinite spec-
trum of values and is an invertible function of mass. For magnetic charge g =0, the solu-
tions reduce to the Nordstrom solution of general relativity in the limit of large r. The

theory leads to elementary particles of finite self-energy [6(+E) =mc2- (2 go) /l 0] and binding

energy. The structure of an elementary particle which is due to the existence of finite + g

consists of a magnetically neutral core of matter containing a distribution of magnetic charge
density in stratified layers of sharply decreasing magnitude and alternating signs so that
magnetic monopoles associated with a long-range field do not exist. As a consequence of
the genera1 covariance of the theory the surfaces of zero magnetic charge density in the
particle core have an indeterminacy. These facts lead to a mass spectrum for elementary
particles. In addition to charged electric and magnetic currents, the theory yields an elec-
trically neutral current and the corresponding fields. The neutral current and the eorre~
sponding neutral field are the classical counterparts of the vacuum polarization in quantum

eleetrodynamies. For every positive-energy solution there exists also a negative-energy
solution with the corresponding electric charge. For &=0, the volume integral of the neutral
current density diverges. The asymmetry of Maxwell's equations with regard to the absence
of a magnetic current can be understood because the neutral and charged magnetic currents
and the neutral part of the electric current are localized in the core of the elementary parti-
cle. Furthermore, the theory yields two lengths of the dimensions of 10 ~5 and 10 ~5 cm
which could serve to differentiate between leptonic and hadronic processes. The presence of
negative-energy solutions along with positive-energy solutions points to a large-scale sym-
metry with respect to a distribution of matter and antimatter in the universe.

I. INTRODUCTION

Gravitational and electromagnetic interactions,
except in general relativity, where the electro-
magnetic field is incorporated into the field equa-
tions, are treated independently from one another.
Despite the apparent unification of electromagnetic
and gravitational fields (i.e., general relativity
plus Maxwell's equations) the particles are still
described as singularities of the field, and there-
fore the theory inherits all the major difficulties
(infinite self-energy and other divergences) of
classical electrodynamics. One does, of course,
obtain from the field equations the mechanical law

of motion of these singularities in the form of the
Lorentz equations of motion. These equations of
motion in electrodynamics proper have to be pos-
tulated independently from the equations of the
electromagnetic field. However, the derivation of
the law of motion from general relativity does not
even circumvent the difficulty that the field is-
sumes infinite values along the trajectories. Fur-
thermore, just as in classical electrodynamics,
the theory does not provide a prescription for the
distribution of charge. There is no new idea for

the removal of the difficulty associated with the
action of the particle's own field on itself, which
results in another infinity. Hence the problem of
self-energy, even at the classical level, remains
one of the most important unsolved problems of
theoretical physics.

Einstein's general relativity accounts for the
gravitational field in terms of the curvature of
space. Electrodynamics, another example of a
long-range field, has so far not been formulated
on a geometrical basis. One of the motivating
ideas in the geometrization of the gravitational
forces was Mach's principle according to which

the inertial properties of a particle (or more gen-
erally of energy) depend on the distribution of mat-
ter in the rest of the universe. A further profound
observation was the formulation of the principle of
equivalence (the equality between inertial and
gravitational mass). The principle of equivalence
does not apply directly to the electromagnetic field
except through the gravitational field it produces
as a result of its energy density in space. This is
the extent of the electromagnetic field's involve-
ment with the principle of equivalence. However,
it is necessary to account fully for the action of
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the gravitational field on the electromagnetic field
itself. The latter plays an important role in en-
suring the regularity of the field everywhere. Be-
cause of the correspondence principle of the gen-
eralized theory of gravitation with respect to gen-
eral relativity the principle of equivalence and
Mach's principle are incorporated into the general
framework of the theory in a natural way.

In the presence of the electromagnetic field the
general theory of relativity is based on 10+6 field
equations which determine the field variables g„,
and F„„(the electromagnetic field). We may if
we wish neglect the gravitational field and solve
what is left (Maxwell's equations) for E„„. In the
generalized theory of gravitation the 16field equa-
tions contain the sources of the fields, and in turn
these sources can only be determined through the
knowledge of the fields The ba. sic Physical reality
in this theory is the field itseLf; all other observ
able quantities are derivable either as functions of
these fields or as constants of integration (=con-
stants of the motion) of the fieLd equations.

The fundamental premises of a theory sketched
above can only be found in the unification of the
forces that are well understood with respect to
their over-all behavior in the asymptotic region
where the origin or the structure of the particle
is not included. The correct way to incorporate
the structure of the elementary particle entails
not only restoring a basic symmetry into the de-
scription of the electromagnetic field by introduc-
ing the axial magnetic current density, but using
one that is associated only with a short-range
magnetic field. Furthermore, the compatibility
of the general covariance of the theory with an ex-
tended structure is made possible through anin-
detexminacy in the distribution of the magnetic
charge density in the magnetically neutral core of
an elementary particle. All of these, inte~ a/ia,
will result from the unification of the two most
fundamental theories of classical electromagnetic
field and the general relativistic theory of gravi-
tation.

One of the basic difficulties facing the nonsym-
metric generalization of general relativity was its
physical interpretation in terms of the familiar
concepts of physics. This paper contains some
progress on the physical implications of the theory
and is the first of a series of papers which the
author hopes to present on this subject. In See. II
the author's version of the generalized theory of
gravitation is summarized in the light of its newly
established physical interpretation. In particular,
the identification of the various quantities and the
corresponding physical interpretation of the theory
differ entirely from those contained in the earlier
papers. ' 3 We present a direct assessment of its

physical meaning in Secs. III and IV, where we de-
rive the static spherically symmetric forms of the
16 field equations. The first two constants of inte-
gration, the electric and magnetic charges, play
fundamental roles in the classification of the long-
and short-range forces, in describing electrically
neutral matter, and in ensuring the regularity of
the solutions everywhere. These results and sym-
metries of the field are discussed in Secs. IV and
V. The electrically charged and neutral currents
(or polarization currents) and the corresponding
fields together with their asymptotic behavior at
and near the origin are discussed in Sec. VI. In
Sec. VII we give an exact solution for the special
case of a spherically symmetric and static field of
zero magnetic charge which in the asymptotic limit
of large distances reduces to the Nordstrdm solu-
tion of general relativity. The same section con-
tains the proof of a theorem on the absence of reg-
ular solutions for zero magnetic charge. Section
VIII pertains to the neutral magnetic charge distri-
bution in the case of an elementary particle and
concludes with the "magnetic theorem" which re-
lates the magnetic charge, the regularity of the
field, the structure of the elementary particles,
and the indeterminacy of the surfaces of zero mag-
netic charge in the particle core, and gives its
basic role in the correspondence principle of the
theory. In Sec. IX the finite self-energy and bind-
ing energy of an elementary particle are calcu-
lated. This section contains some remarks on the
possible cosmological implications of the theory.
The paper concludes with See. X, where a general
discussion of the results and also a list of relevant
problems for further work have been included. The
same section contains a suggestion for the quanti-
zation of the theory and for the physical interpre-
tation of the negative-energy solutions of the field
equations.

II ~ GENERALIZED THEORY OF GRAVITATION

The theory is based on the nonsymmetric gener-
alization of the symmetric theory (general relativ-
ity). The fundamental field variables are the com-
ponents of the nonsymmetric tensor

A A ~g A

ggLI =g(PLI) + 0 g'[PLI] ~

where the constant q is introduced in order to in-
terpret the antisymmetric part gf „„&as a general-
ized electromagnetic field and the symmetric part
g~„„~ as the gravitational field. Thus the constant
q has the dimensions of an electric field and will
be calculated from the solutions of the field equa-
tions for g„„. For convenience we shall introduce
the tensors g„, and 4„, by
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A

v} g(vp} gpv ~

g[pv) g[vp] 4'pv ~

(2.2)
gP Pg —g]1 b PPb

Det(b„„}=Det(g„,) =g =b .
(2.11)

(2.12)

gP Pg @Ping (2.3)

where the contractions of indices are correlated,
the symmetric and antisymmetric parts of g"' are
given by

g2 "(1+n) c "2c—",
(2 4)

where g„v will assume the role of a metric tensor
in space-time .

The tensor g& is reducible with respect to a
transformation of the coordinates since the sym-
metric and antisymmetric parts of g„, transform
separately. This approach of Einstein's was crit-
icized by many physicists on the basis that the
generalized tensor g„, was reducible and there-
fore gravitation and electromagnetism were not
unified. , However, these objections had no physi-
cal motivation. If we were to introduce some ir-
reducible quantity to describe both fields as insep-
arable from one another then we would have to
abandon the principle of equivalence and thereby
destroy the fundamental premises of general rela-
tivity. Thus the reducibility of the generalized
quantity g„v is a physical necessity in order to
preserve the basic differences between the two

long-range forces of nature, gravitation and elec-
tromagnetism. Furthermore, besides the reduc-
ible tensor g„, the generalized theory employs its
inverse g"', viz. ,

B =K' 'K, (2.13)

where the matrices Oc, B, and K are defined by

@=[g„.l,
(N '=[g""]

B =[b„,],
K = [K„,],
K„„=g„„(1+n—A') "4

Hence

DetB =(DetK)'Det(Q ') =g.

From the above relations we see that the sym-
metric and antisymmetric parts of g"' mix the
gravitational field tensor g„, with the generalized
electromagnetic field tensor 4 „,. The g"' is, of
course, a reducible tensor and will be used in the
action principle of the theory.

The action principle of the theory can be corre-
lated with that of general relativity. In order to
achieve this we shall reformulate the action prin-
ciple of general relativity by writing

The tensor indices will be raised and lowered with

the aid of the metric tensor g„,. Thus

gp pgv&@,

The result (2.12) can be obtained from

1I -pv vga " [pv) 4' &LJ

z(g g ) =g (2 5)

3C P 4Sg= )6 (
Z~d x, (2.14)

0 =24""4„,, 1 pv pv pvpae,4f 2UI f 2( )1/2 Pat

(2 6)

where the Lagrangian ~ is given by

& =(-g)"'g""G„.+ —.(-g)"'C ""(@„.—»„.)

g2P ( g)1/2gJLP (2.8)

g = Det(g„„), g =Det(g„„)=g(1+n —A'), (2.7)

and the associated constant q has been suppressed
for economy of notation. We may also define a
tensor density by

(2.15)

and G is the gravitational constant. The second
term in the Lagrangian contains the coupling, with
the strength G/c', of the electromagnetic field to
the gravitational field. The extra variables A „ in

and a fundamental symmetric tensor F&v=8&Av- BvA& (2.16)
b2v (fl-1)2u

-(~ }
( g}1/2 8

g2'(1+ n) c»c ', —
(1+n —A')"'

ggv+@'0 94'v
2U (1 ~n A2)1/2 7

where

(2.9)

(2.10)
OS' =0 (2.17)

applied with respect to the variation of the 20 in-

are introduced in order to incorporate the special
nature (derivability from a potential) of the elec-
tromagnetic tensor 4 „, into a variational princi-
ple. This is a very useful device for the physical
interpretation of the various quantities in the gen-
eralized theory of gravitation. The action princi-
ple of general relativity
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2G
C4 ~pv ~ (2.18)

dependent variables g„„, 4 „„andA „ leads to the
field equations

above correspondence, can be expressed as

2r 2

8 = ' Zd4X,
ewe

where the Lagrangian g is given by

(2.26)

(2.19)

7~v —4g„v4 4pa-C qpC,
pa p (2.21)

Equation (2.20) implies that the electromagnetic
field 4 „v satisfies also the remaining Maxwell's
equations,

@~v. p+@vp. a+@pa, v=o' (2.22}

Hence the extra field I'„„ is eliminated. %e must
observe that the use of the tensor 4„, for the elec-
tromagnetic field in (2.14) must not be confused
with its interpretation as a generalized electro-
magnetic field" in the generalized theory of gravi-
tation, where the tensor 4„„refers to the anti-
symmetric part of g„, and is no longer derivable
from a potential.

Ln order to construct the action principle of the
generalized theory in accordance with a corre-
spondence principle we shall rewrite (2.15) in the
form

& =(-g)"'(g""+q 'c'" )(G„u- r& q '~„v)

+ ~'[-,'q 'n(-g}"'], (2.23}

where the constants a and q are related by

(2.24)

We have thus factorized the coupling constant G/c'
in the Lagrangian (2.15), where the universal con-
stant

r, =W2z ' (2.25)

has the dimensions of a length. Because of the re-
lation (2.24) between ~ and q, the Lagrangians
(2.23) and (2.15) are equal.

The Lagrangian (2.23) can now be generalized by
using a one-to-one correspondence of the form

(-g)'"(g"'+q 'C "')-9"',

&pv ~pv&

kq '&(-g)"*-(-g)'" —(-gP',
where the expressions on the right-hand sides, on
expanding and neglecting terms containing powers
of q

' higher than 2, reduce to the expressions on
the Left-hand sides. Hence the action function for
the generalized theory of gravitation, based on the

(2.20)

where the energy-momentum tensor T„, of the
electromagnetic field is given by

R„,(r) =R„„(r}, (2.31)

implying the correlation of the tensor indices p,

and v appearing in the definition (2.28) as first and
second indices, respectively. The extra variables
A „, besides maintaining the correspondence with
general relativity, play an important role in the
transposition invarianee of the theory. This role
of A„will be used more explicitly in the derivation
of the field equations from the action principle

(2.32)

& =9"'(&„,- k~'q '~„.)+&'[(-g)"' —(-g)'"],
(2.27)

and where

ft„,=-r&, , +r&, , +r&.r,', —r„'.r,. (2.28)

is a "transposition-symmetric" curvature tensor.
Using the relation

r' =r' =s [In(-g)'~']

the curvature tensor R„, of the generalized theory
can be written as

B„,=-r~, p+S„S„[ln(-g)'"]+r~,r",
—r~„sp[ ln(-g)'"] (2.29)

The transposition symmetry in this theory corre-
sponds to the charge-conjugation invariance of the
quantum theory. Thus we may write

g» =transpose of (g)„„.
In a similar way, for the nonsymmetric displace-
ment field rP, we have

I'„,=(F ),„,
where

(fP} —I P q IFP- (2.30)

where the tilde represents transposition. A vector
V can be displaced parallel to itself by an infini-
tesimal distance dx", and the resulting change in
its components is given by

OV P = -rP„„dx~V"

or by its dual displacement

5v' = -(r)'„„ch"v".
Thus the requirement of transposition invariance
of the theory is a necessity to remove this arbi-
trariness of duality. For the curvature tensor R„„,
as seen from its definition (2.28), we have
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The variation of S with respect to the 16 field vari-
ables g„v and four potentials A „, as well as with

respect to 64 displacement fields I'„„ leads to the
field equations

R{q„)= 2«(b'av —Zqv),

R{gv] —
2 (Fpv @pv) t

9[Pv] P
I v

(2.33)

(2.34)

(2.35)

and the transposition-invariant algebraic equations

gpv; p =gatv, p gpaI pv govI pp
=P (2.36)

for the I'~~„. The field equations (2.35) result from
variation with respect to A„. In the absence of
(2.35) we would have the result

rp =r ~p[pp]

and the Lagrangian would not be transposition-in-
variant.

Now, as we did in the field equations of general
relativity, we can eliminate the extra field vari-
ables F„„from (2.34) and rewrite the new field
equations in the form

9[rsvp] pvpa
0 p (2.42)

where the axial 4-vector B„generates the field
9["v) according to

&uv=st Rv

where

"[pa]
4pv = a ~ pvpa9 ~

(2.43)

(2.44)

It is interesting to point out that we could, if we

wished, obtain the same field equations from the
Lagrangian

&.= 9"'R„.+«'[(-g)'" —(-Ã)'"], (2.4o)

where now the field variables 9["v] are defined ac-
cording to the equation

9[Pv] 9[yvP ) (2.41)

and where 9["vP] is fully antisymmetric in p. , v, p
and is, therefore, an axial 4-vector. Hence the
field equations (2.39) are a consequence of the def-
inition (2.41). The potentials Q~""~~ can also be
defined in the form

R{pv) =a«(~pv gpv)~

2
R[pv), p +R[vp] p +R[p p] v+ z K I„vp

9[yv] P

where

(2.37)

(2.38}

(2.39)

4gv p +t{'vp, p +t{'pp, v
= 0 (2.45)

In a similar way, the field equations (2.34) or
(2.38) can be stated in the form

Hence the field equations (2.39) can be replaced by

pvp pv ~ p vp ~ 0 p p
~".p++ p. ~'+p~ (2.46)

and is an axial 4-vector. Because of the two dif-
ferential identities obtainable from (2.38) and

(2.39) only 16 independent field equations remain
to determine 16 field variables g„,. The variation
with respect to g„, involves the relation

5[(-g)'"1= lg„.5[(-&)"'g""]

=-,'b „„O9~'.

The fundamental significance of the extra term
involving E„, in the general-relativistic Lagran-
gian, with a coupling strength G/c', lies in the
fact that without it we could not interrelate or uni-

fy, in a physically meaningful way, the fields g„,
and C „, in the generalized theory. This is also
clear from the simple observation that the Lagran-
gian (2.27) reduces, in the correspondence limit
r, =0 (or q =~), to the Lagrangian (2.15) of gener-
al relativity. We have thus established a corre-
spondence principle for the generalized theory of
gravitation, without which the theory could not
possibly have a physical basis. The above results
(i.e. , the field equations) were also derived, pre-
viously, from a geometrical approach based on the
Bianchi identities for the nonsymmetric theory. '
Therefore, the universal constant x, also has a
geometrical basis.

Jv —cfv +gp [( +)zyaFvv]
1

4~ a~' (2.47)

as the generalized conserved electric current,
where

goal

[( g)1/2C, flv]
1 8

4~ a&' (2.48}

We thus see that the theory contains a vector po-
tential A „and an axial-vector potential B„.

The variation of the Lagrangian (2.40) with re-
spect to the 14 field variables 9~"'~ and B„yields
the field equations (2.37) and (2.38).

We may now, by using the correspondence prin-
ciple, ' recognize the roles of the various quantities
and identify them for the physical interpretation of
the generalized theory. First we observe that the
role of the extra variables F„, in general relativity
is clear: They are equal (as a result of the action
principle 5$o = 0} to C „„,whose divergence van-
ishes because of the absence- of charge. Hence in
the generalized theory we can follow the same path
and define an electric current vector by taking the
divergence of the antisymmetric tensor 4„„
+r,'R&„„& (=F„„), thereby eliminating the extra
field variables F„, (once more} by defining the
vector density
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JJl ~ [( )1/3R[vv]]
4~ Bx' (2.49)

In the correspondence limit rp:0 both of these
currents vanish, so that the electric currents are
consequences of a finite universal length r,. The
subscripts e and 0 in the definitions (2.48) and
(2.49} refer to charged and neutral currents, re-
spectively. The statements

~ dg~ ke y Jo do'~ = 0 (2.50)

will be proved in Sec. VI. The neutral current 4,"
will be interpreted as a "polarization current. "

The definitions (2.48) and (2.49) imply that
knowledge of the electric current g" dePends on
knowledge of the field variables g„, , which, in
turn, are the solutions of the field equations
(Z. 37)-(2.39). We have nose established the im-
portant facts that electric currents are determined
according to the laws of the field and that the cur
rents cannot be prescribed arbitrarily.

The theory has also an axial-vector neutral cur-
rent

or
63 = (-g)"'s"

0 "d0„=0, (2.52)

where der„are the 3-dimensional surface elements
in the 4-dimensional space. Here again it is clear
from the definition (2.51) and from the field equa-
tions (2.38) that the distribution of the magnetic
charge density is prescribed by the laws of the
field and cannot be predetermined. In order to see
more explicitly the nature of the magnetic current
distribution 0" we may derive the linearized form
of the field equations (2.38) in flat space-time in
the form

.[(-g)"'f"'],
4w Bx'

where the axial-vector density p" is a "magnetic
current" and has no classical counterpart since,
as seen from the field equations (2.38), it vanishes
in the correspondence limit r, =0. It is shown in
Sec. VIII that 6" represents a magnetically neutral
current density (i.e., equal amounts of positive and
negative magnetic charge distributions) and van-
ishes at distances beyond the universal length r„
and that

much larger than r„ in which case, because of the
large size of 3 (-10'4cm '}, 4" is negligibly small.
However, the equation does still contain useful in-
formation on the nature of g~. From a plane-wave
solution exp(ik„x") of (2.53) we see that k" is a
spacelike vector and therefore the current g" has
no wavelike properties, and that the magnetic cur-
rent distribution is confined to distances of the or-
der of r, .

Now, in addition to the neutral magnetic current
density 0" we may also define a charged magnetic
current density &" as the divergence of the tensor
density (-g)"'g"". Thus we write

.[(-g)'"[[""],1 B

4i Bg" (2.4 I')

where, as follows from the case of spherical sym-
metry (see Secs. III and IV), we have

g"do„=+g . (2.50')

The corresponding magnetic fields for the currents
S" and g" are short rang-e fields. Therefore, a
monopole charge is associated uith the short-
range field. It will be shown in Secs. VIII and IX
that the range of the field associated with a mono-
pole is of the order of the nucleon Compton wave-
length. This result will be interpreted as a clas-
sical basis for the strong and weak interactions.
We have thus shown that the four antisymmetric
tensors C „„,f„„g„„,R[„„]of the field provide
two electric and two magnetic currents, where
f„„and r,'R[„„]refer to neutral fields.

Now, for the sake of further comparison with
the classical theory, we shall cast the field equa-
tions (2.38) and (2.39) [or (2.45) and (2.46)] in a
more conventional form in terms of the four gen-
eralized electromagnetic field vectors g, X), X, [[]
defined by

2 2 2g =(4,4+r, R[,4], 4,4+r, R[,4], 4,4+r, R[„]),
(9[14] 9[34] 9 [34] )

(9[33] 9[31] 9[12])
2 2 2=(4»+r, R[»], 4»+r, R[»], »+, R[»]),

where in identifying various components of g„„
[(2.45)] and F» [(2.46)] we have employed the usu-
al polar and axial-vector symmetries of these
quantities with respect to space-time transforma-
tions. Hence the field equations (2.38), (2.39) or
(2.45), (2.46) can, in a local Lorentz frame of ref-
erence, be written as

(
2

V —
2 2 +g 0 =0.2

c'B t' (2.53}

This equation is, of course, valid only at distances

Bg)
V X)=0, VxX=-cBt'

B=0, Vxg= ——
c Bt

(2.55}

(2.56)
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which, in the correspondence limit r, =0, reduce
to Maxwell's equations for empty space where
3 =X, $ =S. The field equations (2.38), (2.39),
when expressed in the form (2.55), (2.56), resem-
ble the electrodynamics of continuous media. The
4 and R terms in the definition of the generalized
electric field 8 represent charged and neutral (or
polarized) fields, respectively.

For the definitions (2.47) and (2.47') the corre-
sponding equations in a local Lorentz frame of
reference are given by

where

-4&K g Xu =9 Rup +g R „-5„9
(2.60)

p — p a peuv= euI'(, )
—ru„

Aa

I8 =9""(r'„.r,„-r „„r&',.) ) .
On substituting the field equations (2.33)-(2.35) in
(2.60) we obtain

&'„= 4, (q'[(-g)'" —(-g)"'f 6"„9'-"F„,}
a +v xe =4m(go+a, )cbt

where

v C "pa v+ 25"„X — 9 u p (2.61}

V.Z =4wg'

+V xX) =477/.
cat

In the same way we may rewrite the field equa-
tions (2.37) in the form

X=X".

In the limit ro —0 (2.60) and (2.61) reduce to the
conventional energy tensor of general relativity.
The field equations as well as the energy tensor
X"„remain invariant under the gauge transforma-
tions

2
Guv Kp +uv y

where

2G
Kp 4

(2.57) ZP ZP +gPg

Au Au+~, u ~

Bu-Bu+A, u.

(2.62)

R(„„)=G„„—S„„. +S„.„+I'(„)I'(,),P P P

and where the source term V'u, of the gravitational
field is given by

2
K -2

~uv 2 2(huv guu)+~o Auvi
Kp

p p a p
Au Su p Sup; v ~[ ] ~tav]

s'„„=g"(c„.r, .„,+c., r,„., ),
rp =( o }~sp

& uu} 2g (goa, v+gva, u gou, a}

(2.58)

The A„„ term in &u„ is small compared to the
first term. The latter in the correspondence limit
rp 0 reduces to the energy-momentum tensor of
the electromagnetic field. Hence we see that, just
as in general relativity, the generalized theory al-
so can yield Lorentz's equations of motion for
point particles. ' Higher-order corrections to
these equations of motion are proportional to q ',
where q is very large (-10'o esu).

Finally, from the action principle (2.32), via the
Bianchi identities' of the nonsymmetric theory,
we can derive the conservation laws

A, (-,' v) =exp(i —,'wM„), (3.1)

where the generator of the rotation M» is given by

t 0-i 00

M,2=
i 0 0 0

0 0 0 0
(3.2)

III. STATIC SPHERICALLY SYMMETRIC EQUATIONS

The static spherically symmetric field solutions
in general relativity, i.e., the Schwarzschild and
Nordstrom solutions, have provided a satisfactory
basis for deriving various physical implications
of the theory. It is therefore, quite natural to
adopt the same method for the generalized theory
of gravitation. In the latter instance the spheri-
cally symmetric field represented by the nonsym-
metric tensor guv has only five nonvanishing com-
ponents. In order to see this fact we shall discuss
the spherically symmetric form of the antisym-
metric part 4„„.The values of Cu„at, for ex-
ample, the point (0, 0, z = r, t} remain unchanged
under the rotation of a local Lorentz frame of
reference by an angle —,

'
m around the z axis. The

rotation is effected by the matrix

X'„,=0, (2.59) 0 000
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The rotation of the coordinates by R, (-,' w) produces
the transformations

(x2 ~y2)l/2
8=tan '

z

x'= —y, y'=x, z'=z, t'=t .
Under the transformation (3.1), the tensor I &„
transforms according to the rule

[C„'„]=R,(-,'w)[C„„]R,(-,'w) .
By using the condition of spherical symmetry

(3.3)
or

8'=a '+a '
1 2

x
a =--a

2
y

1

Cu =~u (3.4) y8
1 (Q +y2)1/2

together with the transformation (3.3) we obtain
for the points on the z axis the results

23 31 41 42

x8
2 (x2 + y2 )

1/ 2

(3.9)

a,x+a,y= 0 .
The angle of rotation Q is given by

(3.5)

There are thus, for the spherically symmetric
field, only two nonvanishing components: 4» and

4'43

We may now extend the above special transfor-
mation and the resulting symmetry obtained to
more general transformations pertaining to arbi-
trary points of space and time. Thus let us apply
a new rotation to bring the point (0, 0, r, t) to the
point (x, y, z, t), where r'=x'+y'+z'. We first
rotate the yz plane (x=0) around the z axis by an
angle Q to coincide with the point (x, y, z, t). The
equation of the new plane is

Hence the rotation around (a„a„0)is effected by
the matrix

R, (8) =exp[i (a,M»+a2M»)] . (3.10)

R =R, (8}R2(Q) . (3.11)

Now, by applying R to the matrix [ill&„] with only
two surviving components, 4» and 434 and then
transforming into spherical polar coordinates, we
obtain the final result

[@ll„]=SR [412„]RS

From the above results it follows that the rotation
matrix required to bring the point (0, 0, r, t } to the
point (x, y, z, t) is given by

P =tan '(y/x),

and the corresponding rotation matrix has the
form

R, (Q) =exp(iPM») .

(3.6)

(3.7)

Xsin8 0

0 —Xsin8 0 0

0

(3.12}

exp(i ill M) =exp [i (ill, M»+&112M2, +1112M»)]

}
sinlll

( }, coslll —1
(d (d

where

(3.8)

The explicit form of (3.7) can be obtained by using
the relation

where for an arbitrary function f (r)

X =r'f (r),
and where the matrix S is given by

exuS=, ,„, x'"-=(r, 8, y, t),ex'" '

with

(3.13)

(ill M)2=111'(&ll M) .

The matrix exp(i co M) represents a rotation by
an angle

~
e ( around the direction v = &u/ld.

We may now perform a rotation by an angle 8
in the plane (3.5) around its normal direction
(a„a„O}to bring the point (0, 0, r, t) to the point
(x, y, z, t), where

x =r sin8 cosltl,

y =r sin8 sing

z =r cos8,

t=t' .

By applying the same steps to the symmetric
part g„„we can construct the most general spher-
ically symmetric tensor in the form



—ep sin@ ep cost sin8

}—tanhT''0

—epcos4 sin8 —epsin4 sin'8 (3.14}

where the diagonal elements in agreement with the existence of a light cone are restricted by the con-
dition

sinC ~0. (3.15)

The condition (3.15) on the function 4(r) will also be obtained from the field equations which do not have
solutions with real time in the region excluded by (3.15). Furthermore, as will be seen later, the function-
al forms of [g»] for the five functions 'tL(r), 1l(r), 4(r), I'(r), p(r) are imposed, in a natural way, by the
spherically symmetric forms of the affine connections I'»(g).

In the course of the various manipulations of the field equations we shall need a number of algebraic re-
sults; the following is a summary of them. The inverse of [g„,] is given by

-'U' e~cosh'I'

— coshI' sinhF

-e psin4

e pcos4
sin8

e pcos4
sin 8

e psinc
san'8

'0 cosh I' sinhI'+

cosh T'

The determinant of [g ~,] as follows from (3.14) is
given by

eRP

Hence

e
W coshI'

(3.16)

and that of [g~„] by

p

@=Det[g(„„}]=—,sin'4 sin'8 .

(-g}'~'= —sin@ sin& .X 2

We may now write the tensor density g ""
=(-g)'~' "'"' s

—eP sinhT' sin 8

[g lg~3]

cos4
'V (3.17)

ep sinhI' sin 8

The two fundamental invariants Q and A are

0= g Q~ 4~v=cot 4 —tanh 1",

A = g f~'4q, = —cot@ tanhI',

1+0-A' '~'= }
sinC coshl

(3.18)

%Ye observe that the tensor density g ~""~ as
given by (3.1V) has some interesting symmetry
properties with respect to the transformations
&--Q and I"-—I'. Under these two transfor-
mations we obtain 8 ~""~» —g ~""~. The physical
meanings of these transformations are of great
significance and are discussed in Sec. IV.
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The spherically symmetric components of the fundamental symmetric tensor b„„are given by

e ~ sine
coshF

—ePcoshF

—epcoshr sin28

e~ sine
coshF

{3.19)

In this case also the restriction (3.15) on the func-
tion 4 (r) is an essent:ial requirement.

IV. STATIC SPHERICALLY SYMMETRIC FORM
OF THK FIELD EQUATIONS

and prime indicates differentiation with respect to
Hence w'e see that the theory predicts two signs

for the electric charge.
The first integration of the field equation (4.1)

yields the result

%'e shall now discuss the first integrals of the
field equations

1 2
~[pv], p +~fvp], p

+ [pp], v + 2 pvp

g[pv] 0Iv s

which for the static spherically symmetric field
variables, as follows from Appendix A, reduce to

x0 A[23]+q 423 —+ l 0 s1n6),

q 'Q»=epcos@sina,

0= qep cosc sin8

(4.6)

(4.1)

g [41] 0 (4 &)

The components r0'A«»+C [4» and 9[" satisfy
the field equations identically. Equation {4.2)
can be integrated once and we obtain

9[ ] =constxslne.

From (3.17) we may write

eP sinhF =+ A.0', (4.3)

where the constant of' integration A0' can be ex-
pressed as

(4.4)

Since the universal constant q is positive, the
constant e represents a positive electric charge.
The + signs in (4.3) are due to the invariance of
the equations under the transformation F —F.
The generalized electric field 8 is given by

@14++0+[14] ~

or

2 gq-1 (4 7)

where, as in the case of the electric charge ap-
pearing in (4.4), the constant g represents a
positive magnetic charge. The intrinsic charged
magnetic field generated by the charge g is given
by

X=q QC '] = —cosc . (4.8)

Because of the appearance of the function cos4 in
the definitions of 0 and X they represent shoxt-
range fields.

Now, the remaining field equations to be inte-
grated are

represents neutral magnetic field, and where the
negative sign in (4.6) can be understood by observ-
ing that if 4(s) is a solution of (4.6) corresponding
to I,' then v -C(r) is another solution correspond-
ing to —l '.

In view of the axial nature of the left-hand side
of (4.6), the constant of integration I,' in (4.6)
can be related to a magnetic charge g by writing
E0' in the form

8=-qt ain'h{ +Iepr, '[u(Ve~'pp'tanhI')' cothI'j.

+ LI0Re'L+ P (ps2+ C, a P)] ],

(4.5)
where

+e
q tanhZ

( pp & 4)|ig i

2 e sin@
'U coshF

8» = —,'~'eP (sin@ —coshi'),

A» =8» sin 8,
sin@

844 = —2K e i—
coshF

(4 9)

(4.10)

(4.11)
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1
A[2pi = pK (l p -e cos4) sin8 . (4.12) e -2'll

ll po2 44 &

By taking the linear combinations

A&»~ sinC +822 cos4 sin8,

A&»& eosC -8» sin@ sin0,

we can achieve considerable simplification and
write the nonlinear differential equations in the
form

g(ge 'p4') '+ g'4'p'e '~ tanh'I = K'(e~ cos4 coshI" el, 'sin4 ) -2 cos4 —= 2X,

'U('Oe 'pp') ' + 'U'p"e+' tanh'I'=K'[e~(1 —sin4 coshI") el, 'cos4] +2 sin4 =-2Y,

(4.13)

(4.14)

p(~P"~')'+~'e "tanz'r(sq"tmr+s~'p -3p"-e")=~*a'( t- "" -=2z,
coshX'

(4.15}

p" + p' —+ & (p"+4")—p" tanh'I" =0, (4.16)

where, as follows from (4.3), we have used the
relations

F'= -p' tanhF,
l2r"=, -p" ta hr,cosh'I"

4 (r) v —4-(r),
2 ) 2

(4.17)

and where X, F, Z abbreviate the right-hand sides
of Eqs. (4. 13), (4.14), and (4.15).

In Eqs. (4.13) and (4.14) we retain —l,' on the
right-hand sides for the solution 4(r) and l,' for
the solution v -4(r). Thus Eqs. (4.13)-(4.16)
remain invariant under the transformations

electric charge, must occur at the same time for
the field Sp. The two types of magnetic charges
(+ 9) are not separable. We shall see that this fact
implies the absence of single magnetic poles as-
sociated with a long-range field. Furthermore, the

solutions (4.18) and (4.19), because of the relations
sin(+2nw+4) =sin4 and sin[+(2n+1)v -4] =sin4,
are consistent with requirement (3.15) on the
metrical coefficients of the field. There are no

solutions for sin(4 a 2v) = s cosC, except when

4 = 2m. The latter possibility is discussed in

Sec. VII.
The other two fundamental symmetries of the

field equations refer to invariance under the
transformations of electric and magnetic charge
conjugation

In general there exist two classes of solutions: &(r)- -&(r) (4.20)
+2nv+4(r) =f„', (4.18)

and electric charge reflection
with positive magnetic charge in the future light
cone [corresponding to retaining —l,' in (4.13) and

(4. 14)] and

+ (n+ ,')2v 4(r-) =f„-, (4.19)

with negative magnetic charge in the past light
cone [corresponding to retaining + l,' in (4.13) and

(4.14)], where

Hence we see that the theory predicts, for the
neutral field 0, the two signs for the magnetic
charge simultaneously with the corresponding two
sets of infinite number of solutions. These solu-
tions for a given r represent infinitely degenerate,
but, because of the nonlinearity of the equations,
nontrivial solutions of the field equations. Both
signs of the magnetic charge, in contrast to the

(4.21)

The invariance under (4.20) describes, as follows
from the definitions of the electric and magnetic
fields by (4.5) and (4.8), both electric and mag-
netic charge conjugation. In fact (see Sec. IX),
under (4.20) the energy of the field also changes
sign. Therefore the symmetry (4.20) predicts
the existence of particle (positive-energy} and

antiparticle (negative-energy) pairs The nec. -
essary requirement of positivity of the energy
for particles and antiparticles will, presumably,
be achieved by a possible application of quantum
field theory or by some other procedure to be
discovered.

The symmetry (4.21) implies merely the ex-
istence of two signs for the electric charge,
which fact is contained explicitly in the definitions
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of the electric and magnetic fields and implicitly
in Eqs. (4.13)-(4.16). The symmetry (4.21) does
not effect the sign of the magnetic charge. If
we apply both transformations (4.20) and (4.21)
then the electric charge does not change its sign,
but the sign of the energy and the sign of the mag-
netic charges change. This fact implies the ex-
istence of antiparticles with positive or negative
electric and magnetic charges. However, if I =0
then the symmetry (4.20) predicts the existence of
electrically neutral particle- antiparticle pairs.
There are no solutions withe =0. The magnetic
field X under (4.20) goes to -X, and the latter under
(4.19) (time reflection) is restored back to the origi-
nal field. All elementary particles carry a net mag-
netic charge (+9) associated with a short range-
field Par. ticles and antiparticles carry equal but
opposite signs of magnetic charges superimposed
over a magnetically neutral core.

r 2 (l 4 ~ y 4)1/2 q -1(e2 4 92)1/2

which in conjunction with

4
2 r 2

(5.8)

leads to the results

2G, (e'+ 92}'/2
r, '= —,(e'+9'), q=

0
(5.9)

%e have thus obtained the particular values of
the universal constant r, ' and the constant q of
the theory in terms of the two constants of inte-
gration e and g. The theory, so far, does not
relate e and g. In order to find a relation between
e and g we shall need an additional requirement,
namely introduction of the constant 5 by a quan-
tization of this theory. An important dimension-
less number is the ratio

V. SPECIAL SOLUTIONS OF THE FIELD EQUATIONS
lo = —=f
A.

' e0
(5.10)

(e2P ~ g 4)1/2 r 2 R2

and using sin 4 +cos 4 = 1 we obtain

(5.1)

Let us begin by solving the field equations
(4.13) and (4.14) for cos4 and sin41 in terms of
X and Y. Thus, setting

where the constant f, as will be seen, is a mea-
sure of the strength of the coupling between the
various regions of the field at distances of the
order of l 0 from the origin.

The three lengths

where

+ l 0' cosu+R' sinu
(R4 l 4)'/'

w l 0' sinu+R' cosu
(R4 ~ l 4)l/2

(5.2)

X,2 = —,e(e'+ 92)'/2,

g(e +9)2G

(5.11)

(5.12)

(5.13)

Xr,' = (R'+ l,') '" sin n,
ep r,'Y=—(R'+ l,')'" cos a,

(5 3)

(5.4)

are related according to

Ap~ Lp~rpo (5.14)
R2

tan(a+4) =a
0

and n(r) is a function of r.
The magnetic field X can now be written as

q ag cosa. + (R2/1, 2) sina
'Q g (R4 l 4)1/2

(5.5)

(5.6)

eP )2 (5.7)

Thus using the definition coshl' =e P(e'P + A,')"
we obtain the relation

For C(r)= +2n7/ in Eq. (4.13), using the positive
sign of lp' and noting that 41'(r) =0, the left-hand
side vanishes and we obtain

eP coshI' =r,'.
Hence in this case p is a constant and therefore
the left-hand side of (4.14) also vanishes and we

find the result

RsinQ-
0

(5.15}

which reconfirms the statement (3.15). On the
other hand, for 4(r) = 2m (and therefore 4'=0} Eq.
(4.12}yields the result l,'= q '9=0, which for
q=~ produces the field equations of general rel'a'-

tivity and Maxwell's equations. However, for q=~
we have X,2 =0. In this case Eq. (5.1) reduces to

The lengths A., and l, may serve to differentiate
between leptonic and hadronic processes, re-
spectively In (5. 1.4) the equality A.,= l, holds
only for g =e. For l 0 = r, we must set, for an

arbitrary g e =0.
On using (5.7) and (5.9) in the definition (5.1)

we obtain R =0. The origin r =0 is thus a point of
inflection. Therefore for the solutions 4(r)=+2nw
we have tan(42+4) =0 or 42(r) =+2nw. Furthermore,
for R2&l,' Eq. (5.2) yields
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d' =R'=r'.

Hence for R2» l,' Eq. (5.2) gives

(5.16) In the asymptotic region where r «l, the grav-
itational potential, which results from setting
P'=4h' =0 in Eq. (4.15), is given by

k l.'cos4 2, slnc)' 1 . (5.17) e~ -1+~' (5.32)

e/i (2.4 + I 4)1/2 (5.18}

It will be proved in Sec. VIII that in general we
have the relation

10- 1+ ~ exp(2F),
lo

(5.33)

ft2 (F4+ I 4+g 4)l/2 ~ 2 (5.19)

We may now, formally, solve Eq. (4.16) in the

form

where

r'(r +l ++4)' 2 exp(F)
(r'+ I;)2/4 (5.20)

Thus the function ft as defined by (5.1) plays
the role of an "effective radius" and in terms of
t' is given by

where, because of the symmetry of Eq. (4.15)
under the substitution W- -'U, one of the con-
stants of integration associated with the term
J(d2/u) is set equal to zero. The appearance of
the exponential factor exp(2E), since E is posi-
tive, indicates the long-range character of the
gravitational force even at distances where
y'«l 0.

On dividing both sides of (4. 15) by 2/ and sub-
stituting (5.32) for exp(%) we easily see that
(4.15) is satisfied at 2' = 0, as were (4.13) and
(4. 14). At 2'=0 we obtain the exact result

@,/2

E=-, dr.
2 p

I et us now consider the asymptotic region

(f ) 1).

(5.21)

(5.22)

lime = 1+—V
1

c2 i" 2

where

~c = )~ c'

(5.34)

(5.35)

In this case, using (5.8), we may write

(5.23)

2r'
'l '' (5.24)

p 2e -l0+
0

(5.25)

. 2r'
P (5.26)

4
(e'2+X '}'"-2 '+

0 0 2+2~
0

~2 1 ~4 ~4~2
coshx

l 2 +2 2 l 2 2l 6 j
0 0 0 0

4

i h '-hhf1' (
h1—

0

2 +4
tanhI'-~~2 1-,+„l 4

(5.27)

(5.28)

(5.29)

From (5.15), for 2'« l „we get the approximations

d& =g~ dx dx

= c'e di' —e~ sin4 (d8'+ sin28dp2)

—(e /u')dr'. (5.36)

At the origin we obtain the timelike line element

ds0'= c' 1+—
2 V~ dt (5.37)

represents the value of the gravitational potential
at the origin. For the vanishing magnetic charge
g it assumes an infinite value. Thus the regu-
larity of the gravitational field everywhere is
due to the fact that gto. The mass dependence
or independence of (5.35) follows from the pos-
sible nature of the magnetic charge g. According
to this theory a particle is created by a "grav-
itational condensation" of the electromagnetic
energy density by its own gravitational field,
and therefore it is quite natural to expect the
mass of a particle to depend on, among other
things, g.

The space-time line element ds' defined in
terms of the metrical coefficients g„„(=g(„„}}
has the form

y4

0

exp g 4 e

(5.30}

(5.3 1)

VI. ELECTRIC CHARGE DISTRIBUTION

For the present case of a spherically symmetric
static field the only surviving component of the



2736 BEHRAM KURSUNOGLU

electric current defined by (2.47) is the charge
density 44, viz. ,

[-'&'e~'~(p" +C ")tanhi'thoro

4~

g4 g4 +y4

where

8'= —(e~ tanhI'sinC }'sing'=4',

4~ coshI

(6 1)

(6.2)

+'0('Ue~' ~ p' tanhl')') ' sing

+pro sinC' p''U'e~ ln
4& cosh 1 cosh'1 sin0,

(6.3)

and where we have employed the relations (A7),
(4.3), (4.16), and

Ie
R[ ] = Ur'e ln

cosh r (6.4)

, e sinC e~
q(-g)'~ R ' = pep' U ln 2 sing .cosh I' cosh'1 (6.5)

The neutral charge density' 840 depends on the gravitational potential e~ and therefore on the mass itself.
The definitions 8', and 4', do, of course, satisfy the conservation laws (2.3), since

sin@
Q, = g', drd8dp = ae = ae,coshI', (6.6)

sinC, , e~
Qo

= Iafodrdgdg =sero p''U e& ln z =0,
cosh I' cosh'I' (6.7)

where we have used Eqs. (5.26)-(5.31).
A neutral particle can be defined by setting 44=0

or, as follows from (6.2), by taking

sinC =A coshI', (6.8)

& = ~i4+ro'~I-i4) = @.+~0

where

1 +e

(6.9)

(6.10)

(+e)ro ~ e
+r cosh I (6.11)

The calculation of the electric current 4" depends
on knowledge of the field variables C „„which, in
turn, are the solutions of the field equations. Thus
the electric current cannot be prescribed arbitrar-

where A is a constant. We observe that an elec-
trically neutral particle, as defined by (6.8), does
still carry a polarization charge density, and the
latter is given by (6.3), where sin@/coshi' is re-
placed by the constant A.

The presence of the neutral charge density im-
plies a structure for a spherically symmetric ele-
mentary particle. For r, =0 the predicted struc-
ture reduces to the point description of the conven-
tional theory. The charge densities 4', and $', are
derived from the generalized electric field

k8
g - ——sinee 2& r4

0

+8 2r
sin80 + ~

4
0

(+I)r ' exp(E}g, -+e 5
0

4r r
g, -+e(+I},—' exp(F),

0 0

(6.12)

(6.13)

(6.14}

(6.15)

all of which vanish at the origin provided g 0 or

ily but is determined from the field itself. The de-
pendence of g, on 1/'U and of h, on 'U is related,
as will be seen, to the range of these fields. The
quantity $, represents a long-range field regular
everywhere; this is due to a positive or negative
charge density. The field 50 is regular every-
where and represents a neutral short-range field
caused by a neutral charge distribution. For 4
=-', w (which corresponds to 9 =0) Eq. (6.10), as fol-
lows from (5.20), reduces to the Coulomb' field
+e/r '.

In order to see the nature of the above physical
quantities more explicitly we must obtain their as-
ymptotic forms for the two regions r & lo and r»ro.
First let us consider the asymptotic behavior near
the origin, where, as follows from (5.23)-(5.32),
one obtains the results
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q 'ee 0. The numerical factor (+1) in (6.14) and
(6.15) results from particle and antiparticle con-
jugation.

()Ue'((+ ()))al ) t

+0 'eu'(' tanh'I" (Bp" tanhI'+ 3%,' p' —3p")

VII. SPECIAL EXACT SOLUTIONS

In order to assess fully the signifieanee of the
magnetic charge in this theory we shall study the
solutions of Eqs. (4.13)-(4.15) for the special case

Using (7.3), Eq. (7.4) can be written as

d r'5e~ =I+-'~'[r'-(r'+x ')' ']
dr r4+g 4 0

0

and can be integrated, at once, in the form

(7.6)

@(r)=5&~ (7.1)

This result follows also from setting g =0 in the
relation (5.6). On substituting 4 = —,'w, C ' = 0 in Eq.
(4.12) we obtain

2 0

Hence for the class of solutions (7.1) the magnetic
charge g must vanish so that these solutions are
valid beyond the spectrum of tt values and beyond
the distances where g =0. The magnetically neu-
tral surface implied by (7.1) is, in view of the un-
known value of r, gpgd8tenningte. This is a con-
sequence of general covariance, according to
which it is not possible to define a rigid object.
From the definitions (5.18), (5.21), and (4.3) we
obtain

r'+~, e —
2Gm 1 r' 1 (r'+~, ')'"e&- ' 1- + ————r' c'r 3 q' 3

2———'X(r)
3 r (7 7)

p=eos

4
' r4+ 41/2 =3 rr'+Ao''"-Ao'Xr

dr 1 dy
(r '+ X ')'" 2x, „(1—-', sin' )'"

is an elliptic integral of the first kind and where
we have employed the relations

r2
(r e + g 4)1/I

tanhF +
(

4 4)zgm

r'+A. ,' '"dr=-,' 2A,,4X r +r r4+X,4 "' .

The solution (7.7), as can be seen by direct substi-
tution, satisfies Eq. (7.5). Hence Eqs. (7.4) and
(7.5) are compatible. The solution (7.7) is singular
at r =0. For the charged part of the electric field
we have

Equations (4.13) and (4.16) are satisfied identically,
and Eqs. (4.14) and (4.15) reduce to

q +e(*i)
(7.8)

'9('Ue~'('p')'+9'p" e~'~ tanh'I' = ~'e'(1- cosh 1")+ 2,

(7.4)

which is just the usual Coulomb field, where (+1)
correspond, as before, to particle and antiparticle
conjugation. The neutral field can be calculated as

4 (r '+ ~')'~' g' 3C me, = e),'R)„)=+)(+1), )—,+ —, , + z,'x ()))Sr ' r r c (7.9)

+e X,4r
~e g& (re++e)3&2 sins (7.10)

for r» A, falls off as A, '/r '. The total charge is,
of course, conserved since

which falls off as 1/r '. The electric charge den-
sity

However, the neutral charge density 8,', in view of
its singularity at r =0, is not conserved. This il-
lustrates the fact that the neutral charge density is
held together by the neutral magnetic charge dis-
tribution in the particle itself.

Now for the asymptotic limit r» A., the solution
(7.7) reduces to

t +er'
(7.11) 2Gm Ge

+cr cr (7.12)
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+l ' 1 l 'r '
cosc- r' 2 r'o', 2l o'
sine -1— 4'-

2

(7.13)

which is Nordstr5m's extension of the Schwarzs-
child solution of general relativity in the presence
of an electric field. The result (7.12) cannot be
obtained for the nonvanishing magnetic charge g.

Theorem: There exist no regular solutions
where 8 =0, and conversely for 8 =0 the solutions
are not regular everysehere.

In order to prove the theorem let us consider the
asymptotic solution for Egs. (4.13)-(4.15) in the
region where r»Xo. From R-r, e -r', and from
Egs. (5.2) we obtain

Hence the only solution of (7.17) which can make
the solutions (7.15) and (7.16) compatible is

lo =0, (7.18)

VIII. MAGNETIC CHARGE DISTRIBUTION

or III =0. We have thus proved the theorem. The
actual value of r where g = 0 and the absence of
neutral magnetic charge density beyond this value
of r involve an indeterminacy. Thus relativistic
invariance together with a structure of an elemen-
tary particle imposes an indeterminacy on the ac-
tual size of the structure. The degree of this in-
determinacy may eventually be represented by the
introduction of K (see Sec. VIII).

1 4" l'
2 ' 4rP

+exp —
~ k 1— (7.14)

coshI'-1+ 4, tanhl—

2mG Ge=1 —
2 +cr cr (7.15)

Now the asymptotic form of Eg. (4.15) is given
by

r2
(r me+ cu I) i 0

which is solved by

2mG G(e'+ 4')
cr cr (7.16)

Thus Ne only remaining unknown is the gravita-
tional function e~, for which we have three equa-
tions, (4.13)-(4.15). Equations (4.14) and (4.15),
as in general relativity, can be solved independent-
ly. I.et us consider the asymptotic form of (4.14).
Using the above approximations and neglecting
terms of the order (Xojr)' and higher we obtain
from (4.14) the result

(«)'=I —
a 2=1 — . 2,

4 Qe2

2r ro c r
which can be integrated as

X=
& cos4, So=qe~ cos4sin6) (8.1)

for g vanish. The correspondence of the g =0 so-
lutions to nonregular behavior of the field shows
that the intrinsic magnetic fields 3C and , do not
extend beyond the distribution of the neutral and
charged magnetic charge densities

The properties of the magnetic charge predicted
by this theory are novel and bear no relation to
other theories on this subject. " In this theory a
magnetic charge g does not reside in a magnetical-
ly neutral core of an elementary particle as a dou-
blet of positive and negative charges. Further-
more, it does not exist as a free pole carrying
positive or negative magnetic charge producing a
long-range field. Thus the magnetic charge den-
sity of this theory, besides playing a fundamental
role in the creation of mass itself, generates only
short-range fields associated with strong as see/l

as creak interactions. In this theory the magnetic
charge does not directly partake in electromagnet-
ic interactions. The currents of these charges
can only give rise to radiation of massive parti-
cles instead of the radiation of photons via the
long-range forces of the electromagnetic field.
Thus, through the magnetic charge, we have es-
tablished a classical basis for strong and sneak
interactions.

From the results of the previous section we see
that the "intrinsic magnetic fields" of a particle

The two solutions (7.15) and (7.16) differ in their
last terms. This incompatibility of the two equa-
tions (4.14) and (4.15) can be resolved by studying
the asymptotic form of the remaining equation,
(4.13). It is given by

S = ——(e~ cos4) sine,
4m dr

i4 = ——(e~ cosh sin@) sins,q d
4m dr

(8.2)

(7.17) respectively, where the total magnetic charges
are given by
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Qp = 5 drd8d = qe cosc 0 0,

Q~= & drded =+g .
(8.3}

Now from (8.7}we also have

p' =4' tan@,

where

(8.8)

However, in the asymptotic region r (l, the mag-
netic field X has the form

X-+6,' exp(E),
0

(8.4)
On setting X,' = 0 in Eq. (4.16) and substituting for
p' from (8.8) we obtain the nonlinear equation

where F is given by (5.30). It vanishes at the ori-
gin r =0.

For the static distribution, the radial part of the
asymptotic equation (2.53) is solved by the spheri-
cal Bessel function

1
6 ' = j,(e—r), (8.5)

where the constant z, being large, implies that 04,
for rc0, is vanishingly small. The zeros of the
Bessel function j,(~r) are given by

C I2 gl4"tanc + —,+ —4 ' tanc = 0.
2 cos24 (8.9}

4(r) =+nwt n=0, 1, 2, . . . (8.10)

and the fact that they are valid at the point r =0.
Thus to obtain the remaining solutions we must
assume

ol

A class of solutions of this equation are given by

tan(Kr) = Kr . (8.6)
e)'w l,'.

At these points the magnetic charge density
changes sign and the magnitude of the distribution
falls off with alternating signs. Thus at distances
where r»lp the structure of an elementary parti-
cle appears to consist of an infinite number of con-
stituent layers of magnetic charge densities. The
charge densities of alternating signs are held to-
gether by the mutual magnetic and gravitational
attractions of the layers. The absolute value of
the total sum of fractional magnetic charges of
fixed sign contained in the alternating layers is
equal to g. Thus the neutral distribution of mag-
netic charge in the core of the elementary particle
contains the quantity +g of positive magnetic
charge and the quantity -g of negative magnetic
charge. In general the distribution will depend on
the centrifugal magnetic number l (=0, 1, 2, . . . )
which is contained in the radial part of the asymp-
totic equation (2.53) and is associated with the
spherical Bessel functions j,(er) Howev. er, the
nonlinear equation (2.38) itself may give rise to a,

radial magnetic number n (=0, 1, 2, . . . }.
In general for the points where the neutral mag-

netic charge density vanishes one has

——(e~ cos4) =0,d
4m dr (8.7)

or
COS4 =+lp e

In this case we can multiply Eq. (8.9) by cot4t and
divide by 4' to obtain

@II 3 @I gg I
+ + —=0.4' 2 sine cosC

Equation (8.11) is solved by

~ =+—,l, 4t'(tane)"'.1

(8.11)

(8.12)

We thus see that the point of degeneracy r =0 (or
the point of isolated regularity} and also the point
r, corresponding to the case where 4t(r, ) = —,'w do
not group themselves with the remaining infinite
number of interior points (0&r &r, ) (or interior
neutral surfaces) where the neutral magnetic
charge density vanishes. Hence we have the re-
strictions

0 & I & —,
'

w for l,' and 4 = c os '(l, 'e ~ ) + -,' w,

—,'w & 4 & w for -l,' and C = cos '(-l, 'e ~) ——,'w,

which in terms of e~ imply, for the points of zero
magnetic charge density, the inequality

(8.13)

By using the above results and the definition
(5.18) for e~ in Eqs. (4.13), (4.14), and (4.15) (see
Appendix B) they can be integrated at once to yield
the solutions

] ~ ~2l 2 ]2 t 3(1+t )" 6g —3X
' (1+t')"' 2 (1+t')'" (1+t')"' 2' 4 (1+t')"' (1+t')'" 1+t 2~t

g2l 2 t2 1 (2t)ii (2t)it2
2 (1 ~ t')"' 2(2t) 1 ~"t'I —t I

' (8.14)
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SX 1,(2t)'" (2t)'"
4~t 2(2t)"' 1+t 1- t

St st - 28 (1+t')"'
2 (1 yt2)~/2 2(1+t2)(/2 2}((t 1+t 2(1+t2)

4 (1 +t ) 12 (1+t2) / 2}tt

K2t 2 t t 1 (2t)1/2 (2f)1/2

2 ((+('}'" 3 2(2(}"' (+( ( —( I'
d t 3/2

[exp(%)] = A2 (1 2)2/2

K'l ' t' (1+t')"'- t
(1 + t 2)$/2

(8.15)

(8.16}

In these equations, because of the condition 4
can}/ the point t =0 is excluded. In fact, if t =r2/
l,' then for t large compared to 1 Eqs. (8.15) and
(8.16) with

2mG 2mG
lc ' Lc0 0

(8.17)

(2t)1/2

, =tany(t), t~o (8.18)

where y(t) is a function of t. In general Eq. (8.18)
would have an infinite number of solutions yielding
the surfaces of zero magnetic char ge. Equations
(S.14)-(8.16) would further yield, for each surface
of zero charge, a relation between'„A, and l„~.
In this way we see that the constant g behaves like
an *'eigenvalue" of the charge distribution and as-
sumes a spectrum of values. Relativistic invari-
ance of the theory is not compatible with a sharp
boundary of neutral magnetic charge density.
Therefore, general covariance of the theory, for
the surfaces of zero magnetic charge density in
the particle core, implies an indeterminacy. The
degree of this indeterminacy for the surfaces of
zero magnetic charge density may be given by

ol

(8.19)

yield the Schwarzschild solution of general relativ-
ity. Hence, as seen from Appendix B, the defini-
tion (5.18}is correct.

Now, outside (0&r &r, ) the three equations
(8.14)-(8.16) are compatible at only r =~ provided
l 0 0. Hence the constant of integration A y 0 We
thus have three equations to determine the three
unknowns t, e~, and Kl, . By combining (8.14) and
(8.15) one obtains an equation of the form

solution of Eqs. (8.14)-(S.19) should yield a mass
spectrum.

On the basis of the above results we may now
state the fundamental theorem of this theory.

Magnetic theorem. General relativity and clas-
sical electrodynamics are valid only in the region
r»Ap which corresponds to the g =0 limit of the
generalized theory of gravitation. There exist no
free magnetic poles associated with a long-range
field, but elementary particles are composed of
stratified layers of neutral magnetic matter with
or without electric charge, and the corresponding
electric, magnetic and gravitational fields for g

c 0 are regular everywhere. All elementary par-
ticles carry a magnetic charge g (different magni-
tudes for different particles) associated with a
short-range field. This charge is superimposed
over the magnetically neutral particle core. Mag-
netic monopoles associated with a long-range field
do not exist.

IX. SELF-ENERGY AND BINDING ENERGY
OF A PARTICLE

Vfe may now use the conserved energy-momen-
tum tensor 'X„" to calculate the binding energy of
a static spherically symmetric system. We shall
consider the simplest case of an electrically
neutral (i.e. , X, =0) field without polarization
charge and, in analogy with general relativity,
compute the volume integral of the quantity

2

Xg -Xg-X2-K2= —[(-g') -(-g) ] (9 1)

By using the definitions (3.16) we may write for
the binding energy

4 ~Z ~2 ~3

where t is a function of /0 and m. Therefore the

" e~
= 2(l' —(1 —sin@)dr . (9.2)



From the field equation (4.15) we obtain, for
A,0=0, the result

x'e~
(v e~'~%.') ' = (1 —sinC )'U

On substituting from (5.9) and the asymptotic
solutions (5.27)-(5.33) and (5.12) we get the
fundamental result

The above value for g is, of course, only a guess
based on the assumption that the length /, ought
to be of the order of nucleon Compton wavelength.
The actual value of g may have to come from the
quantization of the theory. However, the value
(9.6) appears to be quite reasonable even though
it is 1V orders of magnitude larger than the value
of the magnetic charge obtained by Dirae for a
free monopole associated with a long-x'ange field.

For the value (9.6) of 9 the corresponding values
of the hadronic (l,) and leptonic (X,) lengths are
given by

d( g) R { ID)

Eo
(9.3)

lo= 2 g= 1 2&10 cm,
(2G)'"

C

1/2
(e&)"' —4.&&&10 "cm.

C

(9.7)

(9.8)

and where the + signs are due to the linear de-
pendence of energy on '0 and, as mentioned be-
fore, are interpreted as pertaining to the clas-
sical counterparts of particles and antiparticles.
The constant of integration m, obtained earlier,
is the gravitational mass of the particle. The
second term

(24,)'
8 (9 4)

where if me take m to be the nucleon mass then
one of the values of the magnetic charge is given by

&=1 coulomb=3x10 esu

ox'

g =6.24&10"e. (9.6)

represents the total self-energy (or magnetic
potential. energy) of a totally neutral particle
arising from the magnetic attraction between the

layers of magnetic charge densities of alter-
nating sign. The factor 2 is due to the two pos-
sible signs of a layer of magnetic charge density.
Thus Ez may be interpreted as the total rest
energy of the constituents of a particle. From
(9.4) we see that for 4=0 the self-energy becomes
infinite.

Fox' an estimate of the self-energy or the bind-
ing energy of an elementary particle we need a
reasonable value for the magnetic charge g. One

possibility is to assume that the length l 0 is of
the oxder of the nucleon Compton wavelength.
Another possibility is to relate the gravitational
potential energy of a uniform homogeneous spher-
ical nucleon to the dimensionless number e'/4'
by writing

1 2 Cm' e'

The lengths A., and l, as given by {5.11) and (5.12)
are equal only if g =e. In this case, as seen from
(5.35), the gravitational potential assumes its
maximum value. The corresponding value of
the length is given by

23/4
=10—

&0
—

2 e~G= 2.3 X 10 {9.9)

e'+ g'
PPlC

Ko
(9.10)

tn= =7.2&10 ' g.8
6 (9.11)

Thus l is the smallest size into which particles
could have collapsed in the primeval time. The
binding energy of such "micro black holes" and
"anti micro black holes" is of the order of 10"
ergs. However, the binding energy of a, particle
or antiparticle, as follows from (9.4), is of the
order of 10"ergs. Thus the minimum temper-
ature in the primordial field mould have been of
the order To-10' 'K. Thus To is the minimum
temperature required to put all the magnetic
charge layers together to produce a nucleon.
The large size of the self-enexgy confirms the
earlier conclusion of the theory that there exist
no free monopoles associated with a long-range
field.

For I =0, except for the fa,ctor + 1, we obtain
the result of general relativity provided that the

A possible speculation on the origin of the length
can be based on the assumption that in the

"primordial field" the energy density and the
corresponding gravitational field mere high enough
for the particle to consume its binding energy
(i.e. , its magnetic potential energy) and thus
collapse to a size of the order / where
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range of integration in (9.2) does not extend
beyond the size of the material system with
Schwarzschild radius 2mG/c . In this case
E = mc' represents the total energy of matter
in terms of the energy-momentum tensor of the
matter alone.

The above, from the point of view of the clas-
sical field theory, is a solution of the self-energy
problem. The presence of negative-energy so-
lutions in a classical theory is a pleasant sur-
prise and not necessarily a vice. The negative-
energy solutions imply the necessity for a
quantum-field-theoretical formulation of the
classical theory.

The above value of the order of 10"cgs
units for the binding energy ean also be re-
garded as the degree of conservation of bary-
on or lepton charge.

X. CONCLUSIONS

From the classical point of view the results
of this paper show that the generalized theory
of gravitation, which is based on a correspon-
dence principle, lays the foundations for regular
and divergence-free eleetromagnetie, gravitation-
al, and short-range interactions. In this theory the
nem ideas are the existence of a magnetic charge
9 (which assumes a spectrum of values) and the
idea that the regularity of the solutions is due to
the finite value of g since for g =0 the spherically
symmetric solutions reduce to Nordstrom's solu-
tion of general relativity. An elementary particle
has a magnetically neutral core of matter con-
taining a distribution of alternating positive and
negative magnetic charge densities over the strat-
ified layers of the core. Furthermore, every par-
ticle carries an excess +g (different for different
particles) and generates a short-range field. A

novel result is the emergence of an electrically
neutral current, in addition to a charged current,
and a corresponding neutral field which appears
to be a classical version of the vacuum polar-
ization in quantum electrodynamics. From (6.12)
and (6.13) we see that the ratio of the neutral
charge density g', to the electric charge density
in the neighborhood of the origin is given by
(ro/Io) and becomes infinite for S=O.

A very interesting consequence of the above
results is the finiteness of the self-energy, mhich
in turn yields for an elementary particle a finite
binding energy. Furthermore, the classical coun-
terparts of the strong and weak interactions are
represented by short-range fields due to a spec-
trum of g values superimposed over the neutral
magnetic charge density in the core of the particle.
An important difference of the magnetic charge

$ = «g ««g (10.1)

Hence for each solution of the field equations
there exists a nonvanishing extremum action
function corresponding to particles represented
by the field. The corresponding limit (i.e. , q -~)
of (10.1) yields the extremum value for the action
function of general relativity as

I
16mc

(10.2)

which is the action function of a pure electro-
magnetic field in its own gravitational field.

A Dirac type of linearization (in terms of Dirac
matrices) of the action (10.1) was carried out by
this author' earlier, and in view of the then un-
known physical interpretation and the correspon-
ding solutions of the field equations no useful
results were obtained. We are planning to re-
consider the older' approach in light of this
paper's results. The above suggested procedure
may turn out to be a simpler may to quantize the
theory. Quantization is, presumably, the only
may to discover a connection between g and e

from the electric charge is the fact that the former
depends on the mass itself, and this is the basic
reason for the short-range nature of the corre-
sponding field. The appearance of both positive-
and negative-energy solutions with corresponding
electric charges is very surprising. In this
context it is necessary to study the plane-wave
solutions of the field equations to see the nature
of the negative-energy solutions in this ease. If
g&„represent a set of solutions with positive
energy and g„„ the corresponding set mith neg-
ative energy then the superimposed quantities
g„', +g„„do not yield an approximate solution,
though each of them is an exact solution. How-
ever, if the fields in g&„are small compared to
q then me may call them weak fields, and in this
case the field g„'„+g„,is an approximate solu-
tion. The approximation ean further be improved
to higher orders. In particular, one mould like
to discuss the classical aspects of the scattering
of light by light to understand further the re-
lationship between positive- and negative-energy
solutions.

The origin of the negative-energy solutions, in
this theory, is presumably due to the presence
in the theory of square-root terms containing
both electromagnetic and gravitational variables.
In order to elucid3te the negative-energy problem
me shall calculate the extremum action function
of the theory by substituting the field equations
(2.33)-(2.35) in the action function (2.26) and

obtaining
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and also to associate negative-energy solutions
with real particles. However, on a cosmological
scale the classical positive- and negative-energy
solutions may imply a large-scale symmetry
between the distribution of matter and anti-
matter in the universe. On a classical level one
may regard the total energy content of the uni-
verse as being zero. In a similar way the total
hadron number N„, total lepton number Nl. , total
electric charge Q, , and total magnetic charge
Q& of the universe must vanish. In this connection
another classical problem that needs early at-
tention is the study of the time-dependent spheri-
cally symmetric fields.

This paper might have, perhaps, been written
over 20 years ago. The mathematical formulation
for the theory has not changed. However, there
are some fundamental reasons for the delay. One
of the stumbling blocks in the development of all
three versions"' of the theory has been the
misinterpretation of the axial-vector S" [(2.44)]
as the electric current density. We know now

that this was an erroneous assumption. Another
important consideration was the absence of a
correspondence principle, which would, of
course, have demonstrated the true nature of
0". In the affirmative one can cite the recent
proliferation of elementary-particle models,
particularly those describing possible constituents
of the particles, none of which have been entirely
satisfactory. Under these circumstances an
elementary-particle model based on a fundamental
theory, even if a classical one, should be given
very serious consideration.
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APPENDIX A: SPHERICALLY SYMMETRIC
STATIC AFFINE FIELDS

The static spherically symmetric components of
the 64-component affine connections F~, can be
obtained by a long but straightforward process
which leads to an algebraic solution of the equa-
tions g„„.z =0. For the time-independent case
there are only 17 nonvanishing components:

1 1 j.
F22 =

Sln g

= —,'& 'e~' ~(i ' cosc —p' sine ),
I' = u'e'~(-'L' —2r'tanhr ),
F2 F3

{&g 2P

F» ——-sing cosg,

F~ ~=cotg,

F&„&=-,'~'- r'tanhF,

~

= —4"'e tanhl sing,

(Al }

r i»] =2&'e ' (4p'sin4+p'cos4p) sing,

F I'3g) = -24 sing

1 C'
2 sing

F' ='Ue I"t4il

r', , = r)„,=-,'Ve~p'tanhr,

where a prime indicates differentiation with re-
spect to r.

The only nonvanishing components of R~„,~ and

Rt„,&
are givenby

intricate properties of elliptic functions appearing
in various fields of physics and chemistry.

I
R„=p"+p'

&
+—'(p''+p")+ —', 'll" ~ 'lL" ~ %L'

&
'p'p')

+ F" tanh'I' —,— I'"+—I"+-'ll' F' tanhI',1
cosh'F '0 (A2)

R» = -I + 29[oe~' (p' sin@ —4'cos4)] ' ——,4 "V'e~' (4 ' sin@ +p' cos4)

——,"O'I"e~'~(p' sin4 —4p' cosc }tanhI', (AS)

R» =A»»n'g, (A4)
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~l%"+%,"+'ll ' —+&' p' ——'(4" +p") tanh'I'44 2 2

+ tanhj. 2l "+2I"
&

+21"'p'+2%'I" (A5)

1
R~»i= =2'0['Ue~'p(4 ' sink+ p'cos4)] '

+-,'g 2e~' p[ 4 '(4' cos4 —p' sin@) + I"tanh N4' sin@ +p' cos4 )], (A6)

ft&, ~= ep-[(~e'2' p'tanhi')'+ —2'Qe~' (p''+4'*)tanhI']. (Av)

APPENDIX B: OSCILLATIONS OF THE MAGNETIC CHARGE DENSITY

By using the results (8.8) and (8.12) in Eqs. (4.13)-(4.15) we obtain, for the points of zero magnetic
charge density, the equations

[(e' —l,') '"e e~] ' =-'p'[//'(e' —l,')"' —//'e (e' —l,')'" —2e P(e' —l,'}"')
[(e2p I 4)-1/4 p %1] I

~lpga
(e2p I 4)1/4 2[ ep ( 2p I 4}1/2 I 4 -p] +1pt ( 2p I 4)2/4 -p

[(e2 I 4)-1/4(@ I/pi)ePe'Il] 1
pl+ ( 2e2 I ) 4[ eP (e2 I ) /2]

On dividing by p' and using the substitution

eP I 2(1 +t2}1/2

the above equations can be replaced by

(B1)

(B2}

(B3)

4 I+t2 2 (1+t2) / (I 4 t ) / (B4}

4 1+t (1+t ) / (1+t2) / (B5)

1 + t 2/3/2 t 3/2

[(1+ t 2)1/2 t]dt g
/ dt ' 1+t (B6)

The integrals for the integration of these equations are given below:

t5/2 tS/2 3 g
1/2

(1+t')"' (1 + t')'" 2 (1+ t')' '

where

g
1/2 1 t '/ (I +t2)'/2

Jr (I+t2)1/2 dt=X a1 ~2
—2g a~ ~2 +2

1

The first- and second-kind elliptic integrals are
defined by

I

respectively, where

(
a

'
2 2 (1 ——,

' sin' )"' '

a
g +, ~ —— 1-2siny' dy,

R =cos

d3'.

dt t' (1+t }'

The remaining integrals are
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(1+t&)3/2 (1+tm}&/& 2 ~ ~2

g
3/2

+ t2 1/2

(v) Jl ...qA= t"' —
~q tanh '(

q )~ tan-'(
q }

1/2 2 1/2 1 1
(vt) (1 t~P&, dt= —

(1 t2),&2
+

3
t (1+t ) ——,X n' X2

For t large compared to 1 the elliptic functions X and 8 tend to -2/v t .
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)Some further results obtained via the theory described
in this paper can be found in an article by the author
which is to appear in the 1974 Proceedings of the
Orbis Scientiae of the Center for Theoretical Studies,
University of Miami (to be published).
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