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An approximate solution to the classical radiation reaction for the motion of a Dirac
classical particle in a uniform magnetic field is presented. The approximation involves
restrictions on the magnitude of the magnetic field and on the energy associated with mo-
tion transverse and parallel to the field. Within these restrictions, the solution is valid

over all proper times.

I. INTRODUCTION

The solution to the equation of motion of a Dirac
classical particle in a uniform electric field has
been known analytically ever since Dirac! did his
original work on the radiation-reaction problem.
No analytic solution to the complete set of differ-
ential equations of motion in a uniform magnetic
field has been found, although various approximate
solutions exist in the literature. Sen Gupta® has
derived an analytic solution to the motion parallel
to the magnetic field line. But, when solving for
the transverse motion, he assumed a system in
which the particle was at rest parallel to the field
line. The solution given below yields the same re-
sults as Sen Gupta for motion in the plane orthog-
onal to the field line. Herrera,® apparently inde-
pendently of Sen Gupta, obtained another approxi-
mate solution to the equation of motion on a plane
perpendicular to the direction of the uniform mag-
netic field, but the solution is not valid for all
proper time. The solution presented here is more
general than that given by Sen Gupta or Herrera
since it treats the motion along and transverse to
the field lines together. Shen? considered effects
on the spectral distribution of synchrotron radia-
tion due to the presence of intense magnetic fields,
including strong radiation damping and quantum
effects. However, Shen’s results do not hold in
the nonrelativistic limit. Shen suggested evaluat-
ing the invariant radiated power in the rest frame,
a procedure used in this work, but did so to a dif-
ferent approximation. Jaffe® considered the power
in the same approximation as presented here, but
a different form resulted because he assumed a
constant pitch angle—the angle between the in-
stantaneous velocity and the direction of the mag-
netic field. The Jaffe solution for the energy de-
cays inversely with time for large time rather
than exponentially given in the results below; this
solution is valid only as long as the exponential
can be expanded in a linear approximation.
Mitchell, Chirivella, and Lingerfelt® developed a

solution to the radiation-reaction problem in the
presence of both an electric and magnetic field by
substituting an approximate form for the first de-
rivative of the four-velocity into the Lorentz-
Dirac equation. The four-acceleration is then a
function of the uniform fields and the four-velocity
only. The differential equations are separable in
terms of the square of the three-velocity trans-
verse to the fields and the three-velocity parallel
to the fields. The limitations of the approximation
are not examined in detail. The result in the case
of the absence of an electric field agrees with the
results of this work.

II. EQUATIONS OF MOTION IN A UNIFORM
MAGNETIC FIELD

The general covariant equation of motion of a
Dirac particle (charge e and mass m) in an elec-
tromagnetic field with radiative damping was first
derived by Dirac':

. e R A
ui=WF,.,,u +W <ui+?uiu,u )

(2=1,2,3,4), (1)

where the dot represents differentiation with re-
spect to proper time 7, F;, (called the Maxwell
field tensor) contains the components of the elec-
tric and magnetic fields, and c is the speed of
light. A repeated index means an implied sum, as
in the usual Einstein summation convention. The
components of u; are

u; =y(vy, vy U5, ) (2)
and
wu,=c?, 3)

where y is a total energy normalized to the rest
energy, and v,, v, and vy are the usual compo-
nents of the three-velocity v in the x, y, and z
directions, respectively.

For a uniform magnetic field in the z direction,
H, Eq. (1) can be written as the following four
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coupled, nonlinear, second-order, ordinary dif-
ferential equations in the four-velocity, «;:

Uy =Wolky+T, (ii1+clgu1i¢_,i¢"> R 4)
. 1L,

Upy=—=wolly +T, <u2+ =7 Ugll gl s (5)
, 1 .y

Uy=1T, (u3+-c—§u3u,u , (6)
. .. 1 . oLy

Ug=To | Uy "'0_2'“4“./“ ’ (7)

where w,=eH/mc is the Larmor frequency, and
To=2e%/3mc? is the light travel time across the
classical electron radius.

However, no more than three of the four differ-
ential equations are independent, by virtue of Eq.
(3). Similarly, it can be shown that the z compo-
nent of the three-velocity, v, is a constant,? in-
troducing another constraint on the system and
reducing the number of independent differential
equations to two. The two independent differential
equations can be written

it = —iwqu+ T, (u‘+ 2 i i ,) ®)
and

=T, <i24+;12-u4i¢,i¢’> , @
where

Usu, +iu, 9)

and #,u” is a function of the remaining indepen-
dent coordinates. The magnitude of # can be com-
puted from the solution to (7) and the constraints
given above, so that Eq. (8) contains only one in-
dependent variable. Finally, the Lorentz-invari-
ant power #,%’ can be evaluated to zero order in
T, resulting in

2
tyi? = —? [( ‘%) uf—cz:l . (10)

The use of this approximation introduces restric-
tions on the limits of validity of the solution.
These limits and details of the derivation are
given in the Appendix. This approximate form of
the Lorentz-invariant power decouples Eq. (7)
from Eq. (8), so that

?=To{5;—7w02[<1-£§;))/2-1]} , (11)

where yc has been substituted for #,. This can be
rewritten as

y 2

7-Z-wf (1- ) ' eaty=0. (12)
To C

The solution of this equation gives all the essential
features of the motion.

III. THE SOLUTION OF THE ENERGY EQUATION
A. Linear approximation
Let y be written as
Y=vstw ,

where y#=(1-v;2/c?)™. Then the derivatives can
be written as

y=w
and

y=w .
Substitution of w and its derivatives into Eq. (12)
gives

ﬁ—%—wozw(2+3%+;—‘-§>=0. (13)
If we assume that

w

7
Eq. (13) becomes the following linear, homoge-
neous, second-order differential equation with con-
stant coefficients:

<1, (14)

-2 ~2w2w=0. (15)
To

The solution gives

w=Aexp {5:—'_ [1+(1+ 8w°21'02)1/2]}
o

+ Bexp{—zTT[l -1+ 8w021'02)1/2]} . (16)
]

But for magnetic fields less than 10'° gauss, this
can be written as

w=Ae"/T0+ Be=2w0’To" | (17)
So the solution for the energy is
Y =ys+ A€ 0+ (yo = vy — Ao 200 | (18)

where y, is the value of y when 7=0. Equation (18)
is exact for H=0, so that in this case the solution
becomes

y=y,—A+Ae" 0, (19)

This solution is valid for all 7. In this simple

case a “runaway solution” is present completely
analogous to that found in the uniform-electric-
field case. One is tempted to identify a priori a
solution of the form ¢"/"o as that solution. Such a
solution has the intrinsic property that the energy

gain or loss of the particle is independent of the
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applied fields. This is physically unacceptable.
In particular, in Eq. (19) this reasoning leads to
the result that A=0; then y =y, for all 7. A func-
tion of this type is present in Eq. (18), where the
expansion of the exponent in Eq. (16) is valid for
all magnetic fields less than 10'® gauss. By ap-
plication of the same argument as above, it is as-
sumed that A=0 for the general solution, where
H+0. However, condition (14) is not satisfied for
all 7 if A is finite.

Therefore, we cannot take the limit without ex-
amining the choice of A.” Let us choose an arbi-
trary value of A>0 in Eq. (18), for example, A
=A,. Let us then follow the motion until y(7,)
=7y, Wwhere y(7,) is the value of the energy at
some future time 7, >0. Such a situation is phys-
ically impossible because the field does no work
on the particle, yet the approximate solution to
differential equation (4) is still valid since condi-
tion (14) is fulfilled (the limits of validity of the
approximation are examined below in Sec. IIIB).
We have obviously chosen too large a value of A.
Therefore, let us choose a new value, A=A4,<A4,.
If we follow the motion again until y(7,)>y,, we
would find 7, > 7, and y(7,) =y(7,). By repeating the
same argument, we obtain a physically meaning-
less result, so that A is still too large. In this
way, we obtain a sequence {A(7,)} in which the
last term is arbitrarily small, and a correspond-
ing sequence {r,} in which the last term is arbi-
trarily large. The entire argument can be re-
peated for A<0 in Eq. (18) except that at some
proper time 7>0 for any nonzero A4, y(7,)<y;. The
result is physically impossible since the minimum
energy of the particles is that associated with the
motion along the z axis. Finally, we obtain

¥ =yg+lyg—va)e 2w o (20)

Using Eq. (20), we obtain the relation between
laboratory time and proper time through a simple
integration:

- Yo=¥311 _ ,-2wg2TyT
t—7’37+210w02[1 e™?w0 o], (21)

B. Limits imposed by the approximation w/y,|<1

By substitution
X_r-¥ (22)
Y3 Y3

Since the energy decreases for increasing proper
time, the approximation at 7=0 can be written as

1> Yo=73
Y3
U2y 2 1/2
= (1+ —%—0% F) -1, (23)
C" = V3 =Vp" = Vg

where v, and v,, are the initial velocities in the
x and y directions, respectively. After a straight-
forward manipulation,

2 2\ 1/2
Y3 <-v—°%g—> «<1. (24)

If condition (24) is met, we are assured of condi-
tion (14) for all 7. Thus, we have the condition
that the product of the normalized energy in the
direction of the field and the square root of the
normalized energy in oscillations perpendicular
to the field (normalized to the rest energy) cannot
exceed unity. This severely limits the applicabil -
ity of Eq. (20), but the solution leads to one other
particularly useful relation,

] -t

This quantity is much smaller than unity for mag-
netic fields less than 10'S gauss, so that

M «<1. (25)
Y
C. A more general solution
If
i 2] (26)

as in the limited solution in Sec. III A above, we
can write for Eq. (12)

* 3
L w2 Ly w2y =0. @M
To Y3

This approximation will be examined at the conclu-
sion of the analysis. Equation (27) is a nonlinear,
first-order ordinary differential equation whose
variables are separable. Its solution is

Y3
Y= o 2
{1 - [(’)’o2 - 732)/702]9 2w To" }1/2

Clearly, under condition (23), Eq. (28) reduces to
Eq. (20). By ignoring the second derivative, only
the exponentially increasing part of the solution
has disappeared, and no essential properties of
the motion have been lost. Since y =dt/dr, a sim-
ple integration gives

(28)

[ —2wn2ToT 11/2
Y 70+b’02 - (702 _732)3 2wo™ "0 l
t=—"3—1n 29
YooTo (yo +y3)e-wo o » (29)
where it has been assumed that £=0 when 7=0. An
algebraically involved but calculationally simple
rearrangement gives

2 2
t w,
7= In (cosh £oTef , ¥s ginp Lo Tl
WoTo 73 Yo 73

30)
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This can be substituted into Eq. (28) to give the
complete solution to the total energy as a function
of laboratory time.

D. Limits of the approximation K7, /y!

Using Eq. (28), the ratio [y7,/y| is easily eval-
uated to be

2
2 e =2wy ToT

+%(Yoz-73 ) y (31)
_ (702 —)’32)6_2“’0 ToT

.. 2
-r
ol -2y 27027°

This ratio has its maximum value at 7=0. This
value is

- 3.2_1.a
Lol —aup.2ry 2o 2¥s | (32)
Y Y3

Then, the approximation is valid if

L
T2 &f_L «1. (33)

For particles in circular motion only, Eq. (28)
would accurately describe the decay of the motion
if

voH <10, (34)

where H is the magnetic field in gauss. If the
fields surrounding pulsars are of the order of 102
gauss, the limit becomes

Vo< 10%, . (35)

For the motion in the vicinity of pulsars, this solu-
tion is applicable as long as the total energy of the
particles does not greatly exceed the energy the
particles would have if all their motion were along
the field line, the limit being given by condition
(35).

In general, the limits above are more stringent
than that imposed by condition (A17) governing the
use of the approximate form of the Lorentz-invari-
ant power. This guarantees that solutions consis-
tent with condition (33) are consistent with all ap-
proximations imposed on the differential equations
used to derive the solutions. Since the restrictions
are most stringent for 7=0, solutions consistent
with condition (33) [or condition (A11)] for 7=0
are valid for any other proper time.

IV. THE TRANSVERSE MOTION

The transverse motion—motion orthogonal to the
field—is given by the solution to

U= —iwolh+ T, <ii+ -cl—zm't,it"> . (36)

This equation can be solved by substituting Eq.
(10) for #,u 7 to get

U= —iwolh+T, {i&-

37)

But since u,=yc and y,2=(1 — v,2/c?)™, Eq. (37)

becomes

; 2
. U Wy | W 02 2 } _
U——=\1 + —y.2) (u=0. (38)
TR
v is a known function of the proper time only,
given by Eq. (28). Equation (38) is then a linear,
homogeneous ordinary differential equation of
second order. Assume a solution of the form

- |u|e-iar , (39)
where arbitrary phase factors have been sup-

pressed, and substitute this into Eq. (38). The
real and imaginary parts give

PN P I P
2ol + £2jul - £ ul =0, 0)
. 2
il - il -2 =0, @)
0

where |#| or |it| represent first or second deriva-
tives with respect to time of the magnitude of u
rather than the magnitude of the derivatives.

To eliminate the second derivative in Eq. (41),
differentiate Eq. (40) to obtain

2ali]+ 22| - = |i| =
T0 T0

Solve this equation for |i| and substitute the result
into Eq. (41). This gives

(g ) 5 -
(42)

Equation (42) can be put into a more useful form
by noting that

2
(M)
Lo =yl -
73

2 2\1/2
juj = E=rale @)
Vs

which follows from the definition of ¢ and the con-
stancy of y;. This confirms that statement made
earlier that Eq. (8) contains only one independent
variable if the solution for the energy is known.
This independent variable is the phase factor for
the proper time in Eq. (39), and represents the
reciprocal of the time constant for the decay of
the transverse velocity. Then Eq. (43) becomes

wot+a\ |#| a_
(%22) B g+ L - (4)
Equation (44) is a nonlinear, first-order ordinary
differential equation whose variables are separa-
ble. Its solution is



|©

]2 = @y —yP)cre 2L

Oyg +wolye =¥s) = Wy (ve =¥ 5 )e-2e 1T’
(45)

where 7,=7,[(wo+@)/2a], and |u|,=clyZ -vs3) "' Yv,
is the initial transverse velocity at 7=0. By sub-
stituting the solution to y given by Eq. (28) into Eq.
(43), an independent expression is obtained for
Juf:

2
-2y ToT
2e 0 ‘0

|u12 - (')’o2 —732)6‘

Yoz - (702 - }’32)6 -2w02ToT (46)

However, since Eqgs. (45) and (46) represent the
same solution, « is determined. The result is
a=w, . (47)
Finally, the result for the transverse motion is
_ c(,yz _,)/32)1/2
Vs

u eiwomtB) (48)
where Bis some constant phase factor determined
by the orientation of the transverse coordinate
system with respect to the initial direction of the
transverse velocity of the particle. For large 7
the motion described by Eq. (48) is that of an
underdamped harmonic oscillator in which the
natural frequency of the system is w,.

V. SUMMARY AND CONCLUSIONS

We have presented here the solution to the equa-
tion of motion of Dirac classical particles, includ-
ing radiation reaction, in a uniform magnetic
field. The equations are complete solutions within
the limitations of the approximations used to de-
rive them. The solutions are complete in the
sense that they contain the appropriate number of
arbitrary constants. One of these constants is
shown to be zero. This eliminated a possible solu-
tion similar to the “runaway solution” obtained in
the uniform-electric-field case. Then the initial
acceleration of the particle need not be specified.
The other constant is determined by the initial
velocity of the particle. The solution is valid for
all 7, and the motion can be followed over the en-
tire range of proper time. This can be seen from
Eq. (31) and Eq. (A15), where the approximation
actually improves as the proper time increases.
The most stringent test of the approximation is
for 7=0, and the result is a restriction on the
choice of the magnitude of the magnetic field. For
a given magnetic field, Eq. (33) gives additional
restrictions on the choice of the total initial en-
ergy of the particle and the initial velocity along
the field line.

The three-velocity in the direction of the field
remains constant, while the three-velocity trans-
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verse to the field decays nearly exponentially as
the particle oscillates harmonically around the
field line with the Larmor frequency—that is, the
transverse particle motion is nearly that of a
damped harmonic oscillator. The solution of the
equation of motion for the component of the four-
velocity orthogonal to the field line is given in Eq.
(48). The solution for the total energy given in
Eq. (28) shows that the energy of the particle de-
cays exponentially until all that remains is the en-
ergy associated with the motion along the field
line.
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APPENDIX: DERIVATION OF THE APPROXIMATE FORM
FOR THE INVARIANT RADIATED POWER IN THE REST

FRAME AND RESULTING LIMITS ON THE RANGE OF
VALIDITY OF THE SOLUTION

The evaluation of the Lorentz-invariant power
#,;u” is necessary to solve the radiation-reaction
problem. As suggested by Shen,* a useful approxi-
mate form can most easily be derived in the rest
frame of the charged particle. We have used the
superscript R for quantities evaluated in this
frame. Equation (1) can then be written

(ie)® = ;ne-E{jno(ua)R (@=1,2,3), (A1)

where E £ is the electric field seen by the charged
particle in its rest frame. The inner product is
given approximately by

; (@ )* (@)% = _(%)2 af:l (ER®, (A2)

where terms of the order 7, or higher have been
ignored. However, from the orthogonality of «
and % (#,)¥=0. Then

(@) R@Y* =" (@, )R @® . (A3)
o=l
Since
dgid = (i,) R )R (A4)
then
Y =& 2N Ry
il <m> é: (ERY: . (A5)

The electric field in the rest frame can be deter-
mined by a Lorentz transformation from the rest
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frame (called the original frame) to the laboratory
frame (called the transformed frame). The trans-
formation velocity is the negative of the particle
three-velocity v. The components of the electric
field are then

E'f=:tzgu4vsine and Eff=0, (A6)

where | and L mean parallel and perpendicular to
the transformation velocity, © is the angle between
that velocity and the direction of the field, and the
sign is determined by the choice of the coordinate
axes relative to the magnetic field and velocity
vectors. Finally, since the velocity along the field
is a constant, © can be represented by

cosO = % y (A7)

which can easily be written as

—1n.2/p2 2/.2)_ 1/2
sin6=[(1 Ziz//"cz)(_“; /e’) 1] . (a8)
Then
3 2 2
é\; (E§)2=H2[(1 - ’%) % - 1] . (A9)
Finally
u,u’ = —wy? I:( —%{-) uf—c_'z] (A10)

The use of this approximation imposes limits on
the validity of the solution. ' The relative differ-
ence betwoen the approximate form of the Lorentz-
invariant power® given by Eq. (A10) (called L,)
and that generated by the solution itself (called
Lg) can be made small by certain restrictions on
the physical parameters. We demand that

|Ls= Lyl <|L,l - (A11)

L can be derived from Eq. (48), the definition of
u 4 and the condition that v; is a constant. The
result is
CZw 2 C2 72 °2
Lo==%0 b2y 2 S XYY
s ')’32 Y =73 732 ‘)/2—’)/32
+12(c? - v?),

(A12)

where y,2=(1 -v,%/c?)~! and y=u,/c. When Egs.
(A10) and (A12) are substituted into Eq. (A11), the
result is

2

2.2 2 2
c Y . c’w
=y Lty 7P -0 < (P =) .
Ys Y —7s3 Y3

(A13)

Condition (A13) can be written after algebraic
manipulation as

5\ 2 2 2\ 2
<—Z—> KW <7—22’3—> .
73 73

(A14)

Equation (28) can be used to relate condition (A14)
to the physical parameters of the problem. We
get
- 2
WETE < ro'= (701—2732)6 Bl
o

(A15)

for any 7. Condition (A15) is most restrictive for
7=0 since

2 2 2 2
Y Yo =y o2 =vs)e
J!' < >

Yo Yo
for all proper time 7> 0. Finally the restrictions
on the range of validity of the solution are found
from

-2 wozToT

(A16)

2
wlTZ Yo «1. (A17)
Y3
Since
2 3 2__ 2
w2 z_:? < wirg? <_7’oy_2_7.a_> , (A18)
3

we conclude that if condition (33) is satisfied, con-
dition (A17) is guaranteed to be satisfied. Clearly,
we could derive Eq. (A10) by ignoring the change
in total energy of the particle associated with the
radiated power so that the total energy is treated
as a constant for periods of time of the order 7,.
Then, the only force on the particle arises from
the Lorentz force associated with the velocity
transverse to the magnetic field.

*Present address: International Business Machines
Corporation, P. O. Box A, Essex Junction, Vermont
05452.
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