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The odd-parity perturbations of a Reissner-Nordstrom black hole are studied through the
use of a variational principle for the perturbation equations. The Hamiltonian for the per-
turbations is expressed in terms of a natural set of canonical variables and shown to be
(weakly) positive-definite. This result is used to prove the nonexistence of unstable normal-
mode solutions of the perturbation equations. The two wave equations governing gravitation-
al and electromagnetic perturbations are decoupled by a simple transformation.

I. INTRODUCTION

In this paper we establish the stability of the
Reissner-Nordstrém family of black holes against
small, odd-parity perturbations. We first estab-
lish the positive-definiteness of the Hamiltonian
for the coupled gravitational and electromagnetic
perturbations. The assumption of an unstable
normal-mode solution of the perturbation equations
(obeying suitable boundary conditions) is then
shown to lead to a contradiction. The methods
used here were developed in two recent papers’:2
and applied there to Schwarzschild perturbations!
and to the perturbations of isentropic, perfect-
fluid stellar models? (for which a stability crite-
rion was derived).

A variational principle for the perturbations is
derived by taking the second variation of the ap-
propriate, exact variational integral.’'®* The per-
turbation functions are first expanded in Regge-
Wheeler tensor harmonics.* A canonical trans-

formation is then performed from the original,
Regge-Wheeler variables to a new set which is
more naturally adapted to the gauge symmetry of
the perturbed Einstein-Maxwell equations. In
terms of the new variables the Hamiltonian be-
comes manifestly gauge-invariant and nositive-
definite as soon as the initial-value constraints
are taken into account. Finally, a simple trans-
formation is given which decouples the wave equa-
tions for the gravitational and electromagnetic
perturbations.

Other studies of the Reissner-Nordstr6m per-
turbations have recently been made by Zerilli® and
by Chitre, Price, and Sandberg.®

II. PERTURBATION FORMALISM

The variational integral for the perturbations is
derived by taking the second variation of the exact
expression’
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The notation used here is the same as that of Ref.
T except that we have absorbed a factor of 2 into
the definitions of &' and A,. After taking the sec-
ond variation of Eq. (1) we substitute, for the un-
perturbed metric, the Reissner-Nordstrom solu-
tion

ds®=—N2dt? + 2 dr? + r3(d6® +sin®0 dg?),  (3)

where
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(1)

—

N%=e2*=1-2m/r+e2/7?, (4)

which, for |e|<m, represents the exterior of a
black hole with charge e and mass m.
The perturbation quantities,
08;;=h;; omti=pti, 6A,=A],
68'=8', 6N=N', 6N,=N!,

are expanded in Regge-Wheeler harmonics,* an
example of which is
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For the remaining, odd-parity perturbations, we
have the two Regge-Wheeler functions #,(7, f) and
hy(7, t) (which determine %;,), their conjugate mo-
menta p,(7, t) and p,(7, ¢), and the single perturbed
shift vector function %,(7, £). Since all the pertur-
bation equations are independent of the azimuthal
harmonic number M,* we may set M=0 and take
all the perturbation functions (4, E, k,, ky, Py, P2, Fo)
to be real-valued. Solutions for arbitrary M can be
obtained from those with M =0 by a rotation.

For L =2 both gravitational and electromagnetic
waves can occur. In this case it is convenient to
perform the canonical transformation to new vari-
ables &y, k,, f,, m,, m,, 1, defined by

(g'l/zg,-jé"') =

H= [ arx
T+

T+

ky=hy+3h, .= (1/7)h, ,

m =Py,
ky=h, ,

. 1 L(L+1 (1)
7T2=P2+5P1',+<';)p1 - %t—)A,r ’

fi=E=L(L+1)e(k,/7?), ,
m=A.

All of the new variables are gauge-invariant except
for k,, whose conjugate momentum 7, is the single,
odd-parity initial-value constraint (it is a general
feature of gravitational perturbation theory that
constraints and gauge-dependent variables occur
as canonically conjugate pairs). In terms of the
new variables the variational integral for perturba-
tions outside the event horizon at r=7,=m

+(m? - 2)V2 is given by

1671 = J’dtj arlmk, 4 by 1, fy =50, (8)
T+
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Variation of the shift function %, gives the initial-
value constraint 7,=0, which is conserved in time
since k, is cyclic. Hamilton’s equations for &,, f,,
m, and 7, may be combined to yield two coupled
second-order equations which have a gauge-in-
variant significance. For the quantities n, and

me=rm —(2e/7r) L(L+1)m, (10)
we find
Ty, + Ty ok — (N2 /73 L(L+1) + (46 /7)]m,
={2N%e/[r*L(L+D)]}m, (11)
and
—Tg, e+ Mg, rkrx
—(N%/r?)[L(L+1) = (6m/7) + (4e2/7?)] m,
=[2N%e/7°|L(L+1)(L-1)(L+2)7, ,
(12)

—

where 7* is defined by
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Owing to the vanishing of N2/7% as 7~ and as
=7, (r* = —x), the normal-mode solutions [with
time dependence exp(iw?)] of Egs. (11) and (12)
have the asymptotic behavior

;e = Cyr e €XPiwl — iwr*) as r—w, (14)
Ty =Dy exXpiwt+iwr*) as r—7, (r*--w),
(15)

where C;, and D, , are certain constants and where
we have imposed the boundary conditions of purely
outgoing waves at spatial infinity and purely in-
going waves at the event horizon.

The conservation equation obeyed by the Hamil-
tonian H is easily found to be
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H = {LL+ Dy 7g e+ (L= DL+ LEL+ D]/ Pr, () 11050, (16)
_

which expresses the time derivative of H in terms
of a flux through the boundaries at spatial infinity
and at the event horizon. For solutions with as-
ymptotic behavior given by (the real parts of) ex-
pressions (14) and (15) this flux is nonpositive, so
that dH/dt<0. Thus H either remains constant or
diminishes with time, as one would expect for
waves obeying the assumed boundary conditions.

III. STABILITY ANALYSIS

An unstable normal-mode solution is one with
time dependence exp(iw?) and for which the fre-
quency w has a negative imaginary part. Such
solutions grow exponentially in time. From the
asymptotic forms (14) and (15) we see that such
solutions decay exponentially in 7* (at constant ¢)
as |7*|-=. Consequently, they have vanishing
flux at =« and 7=7, and thus give

H ,=0 or H=h=constant . 1

The constant % will be finite owing to the exponen-
tial decay of an unstable solution for large |7*|.
However, the Hamiltonian is a non-negative func-
tion of the field variables (since 7, =0 for any ac-
tual solution) which can vanish only if the gauge-
invariant perturbation functions vanish. Evaluated
for an unstable solution, however, H would consist
of a sum of positive terms growing exponentially
in time and thus could not satisfy Eq. (17). This
contradiction proves the nonexistence of unstable
normal-mode solutions obeying the assumed
boundary conditions.

Defining #, =m,/[L(L+1)] and #,=(L—-1)"?
x (L+2)Y27,, we may write Eqs. (11) and (12) as

ﬁf ﬁf
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where
92 82
STt o
- (N?/7r)[L(L+1) -3m/r+4e*/7?] (19)
and

3m 2e(L - 1)V2(L+2)V2
r= 2¢(L-1)V2(L+2)V? -3m :
(20)

Evidently, the orthogonal transformation which
diagonalizes 7 decouples the two wave equations.

A similar analysis can be made for the L=1
modes in which only electromagnetic radiation can
occur. We shall discuss the stability problem for
the even-parity perturbations in a subsequent
paper.
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APPENDIX

To compare our equations with those of Zerilli®
we must relate our functions 7, and 7, to Zerilli’s
f{m) and R(™). By a direct comparison of the har-
monic expansions used here and those used by
Zerilli, one finds that

mp==2f - (A1)
Hamilton’s equations give
Ty o= —(Ne™/7)(L-1)(L+2) L(L+1)
X[hy +3hy = (1/7)hs] (A2)

We evaluate this equation in the Regge-Wheeler
gauge (signified by an asterisk) to obtain

Ty ==[Ne™/7)(L=1)(L+2)L(L+1)h¥, (A3)

since 2% =0. Thus, using Zerilli’s convention for
a normal-mode solution (9/8f —~ -iw) we get

T, =[Ne™/(Gwn) | RXL(L+1) (L - 1}¥L+2)  (A4)
or
me=(1/iw)L(L+1)(L-1)(L+ 2)R<L";> . (A5)

The connection between corresponding field equa-
tions is now immediate.
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