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Odd-parity stability of a Reissner-Nordstrom black hole*
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The odd-parity perturbations of a Reissner-Nordstrom black hole are studied through the
use of a variational principle for the perturbation equations. The Hamiltonian for the per-
turbations is expressed in terms of a natural set of canonical variables and shown to be
(weakly) positive-definite. This result is used to prove the nonexistence of unstable normal-
mode solutions of the perturbation equations. The two wave equations governing gravitation-
al and electromagnetic perturbations are decoupled by a simple transformation.

I. INTRODUCTION

In this paper we establish the stability of the
Reissner-Nordstrom family of black holes against
small, odd-parity perturbations. We first estab-
lish the positive-definiteness of the Hamiltonian
for the coupled gravitational and electromagnetic
perturbations. The assumption of an unstable
normal-mode solution of the perturbation equations
(obeying suitable boundary conditions) is then
shown to lead to a contradiction. The methods
used here were developed in two recent papers"
and applied there to Schwarzschild perturbations'
and to the perturbations of isentropic, perfect-
fluid stellar models' (for which a stability crite-
rion was derived).

A variational principle for the perturbations is
derived by taking the second variation of the ap-
propriate, exact variational integral. "The per-
turbation functions are first expanded in Regge-
Wheeler tensor harmonics. A canonical trans-

formation is then performed from the original,
Regge-Wheeler variables to a new set which is
more naturally adapted to the gauge symmetry of
the perturbed Einstein-Maxwell equations. In
terms of the new variables the Hamiltonian be-
comes manifestly gauge-invariant and aositive-
definite as soon as the initial-value constraints
are taken into account. Finally, a simple trans-
formation is given which decouples the wave equa-
tions for the gravitational and electromagnetic
perturbation s.

Other studies of the Reissner-Nordstrom per-
turbations have recently been made by Zerilli' and

by Chitre, Price, and Sandberg. '

II. PERTURBATION FORMALISM

The variational integral for the perturbations is
derived by taking the second variation of the exact
expression '
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The notation used here is the same as that of Ref.
7 except that we have absorbed a factor of 2 into
the definitions of g' and A„. After taking the sec-
ond variation of Eq. (1) we substitute, for the un-
perturbed metr c, the Reissner-Nordstrom solu-
tion

ds =-N dt +e dr +r2(d8 +sin28dqP), (3)

where

N' = e '" = 1 —2m/r+ e'/r',

which, for ~e~ & m, represents the exterior of a
black hole with charge e and mass m.

The perturbation quantities,

~N= N', ~N;:—Nc',

are expanded in Regge-Wheeler harmonics, ~ an
example of which is

(4)
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For the remaining, odd-parity perturbations, we
have the two Regge-Wheeler functions h, (r, t) and

A, (r, t) (which determine h;&}, their conjugate mo-
menta p, (r, t) and p, (r, t), and the single perturbed
shift vector function k,(r, t). Since all the pertur-
bation equations are independent of the azimuthal
harmonic number M, 4 we may set M=0 and take
all the perturbation functions (A, E, h„h„P„P„ho)
to be real-valued. Solutions for arbitrary M can be
obtained from those with M =0 by a rotation.

For L ~ 2 both gravitational and electromagnetic
waves can occur. In this case it is convenient to
perform the canonical transformation to new vari-
ables k„k„f„„w„wwdefined by

All of the new variables are gauge-invariant except
for k„whose conjugate momentum n2 is the single,
odd-parity initial-value constraint (it is a general
feature of gravitational perturbation theory that
constraints and gauge-dependent variables occur
as canonically conjugate pairs}. In terms of the
new variables the variational integral for perturba-
tions outside the event horizon at r= x,= m
+(m' —e'}~' is given by

16wI~„= dt dr(w, k, , +w, k, , +w~f, , -z), (6}
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Variation of the shift function ko gives the initial-
value constraint w2 =0, which is conserved in time
since 0, is cyclic. Hamilton's equations for k„ f„
m„and m& may be combined to yield two coupled
second-order equations which have a gauge-in-
variant significance. For the quantities n& and

w,
=- rw, (2e/r) I.(I.+—1)w,

we find
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where C& and D& are certain constants and where
we have imposed the boundary conditions of purely
outgoing waves at spatial infinity and purely in-
going waves at the event horizon.

The conservation equation obeyed by the Hamil-
tonian H is easily found to be

where H is defined by-

dr 2

dr*

Owing to the vanishing of N'/r' as r-~ and as
r r, (r*--—~}, the normal-mode solutions [with
time dependence exp(i~t)] of Eqs. (11)and (12)
have the asymptotic behavior
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which expresses the time derivative of H in terms
of a flux through the boundaries at spatial infinity
and at the event horizon. For solutions with as-
ymptotic behavior given by (the real parts of) ex-
pressions (14) and (15) this flux is nonpositive, so
that d8/dh & 0. Thus 8 either remains constant or
diminishes with time, as one would expect for
waves obeying the assumed boundary conditions.

III. STABILITY ANALYSIS

An unstable normal-mode solution is one with
time dependence exp(i&et) and for which the fre-
quency ~ has a negative imaginary part. Such
solutions grow exponentially in time. From the
asymptotic forms (14) and (15) we see that such
solutions decay exponentially in r* (at constant f)
as Ir*l -~. Consequently, they have vanishing
flux at r=~ and r= ~, and thus give

H, =0 or H =h = constant .

The constant h will be finite owing to the exponen-
tial decay of an unstable solution for large Ir*I .
However, the Hamiltonian is a non-negative func-
tion of the field variables (since I, =0 for any ac-
tual solution) which can vanish only if the gauge-
invariant perturbation functions vanish. Evaluated
for an unstable solution, however, H would consist
of a sum of positive terms growing exponentially
in time and thus could not satisfy Eq. (17). This
contradiction proves the nonexistence of unstable
normal-mode solutions obeying the assumed
boundary conditions.

Defining v, = v, /[L(L+1)] and v~ = (I, —1)'~'
&& (L+2)'~'vz, we may write Eqs. (11) and (12) as
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APPENDIX

To compare our equations with those of Zerilli'
we must relate our functions nf and m~ to Zerilli's
f „' and R~"„'. By a direct comparison of the har-
monic expansions used here and those used by
Zerilli, one finds that

2f (n)
IN

Hamilton's equations give

s, , = (Xe '/r)(-L 1)-(I+2)I—(I,+1)

x [h, + —,'h, , —(1/r)h, ] .

(Al)
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We evaluate this equation in the Regge-%'heeler
gauge (signified by an asterisk) to obtain

v, , = -[Xe-'/~](L -1)(L+2)L(L+1)a+, (A3)

since h*, =0. Thus, using Zerilli's convention for
a normal-mode solution (8/st--ice) we get

3m 2e(L —1)' '(L+ 2)'~')

(2e(L —1)"'(I,+2}"' -3m

(20)

Evidently, the orthogonal transformation which
diagonalizes T decouples the two wave equations.

A similar analysis can be made for the L, =1
modes in which only electromagnetic radiation can
occur. %e shall discuss the stability problem for
the even-parity perturbations in a subsequent
paper.

where s, = [Xe '/(f~r)] a+L(L+1)(-r.—1~+2) (A4)

—(N'/r')[L(L+ 1)-3m/a+4e'/r'] (19)
(A5)s, = (1/i&a)L(L+1)(L-1)(L+2)d, ) .

The connection between corresponding field equa-
tions is now immediate.
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