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A Pomeron trajectory describing rising cross sections is generally a hard branch-point surface.

Shielding cuts are introduced in order to make the Pomeron compatib1e with two-particle unitarity in

the t channel. These shielding singularities may vrell be important phenomenologically.

The asymptotic expansion of amplitudes describ-
ing high-energy scattering is not only controlled
by the familiar s-channel bounds, but must also
comply with t-channel restrictions. Within the
framework of local relativistic field theory and
dispersion relations, many of these t-channel
constraints are mell established. They are based
upon the existence of a unique complex angular
momentum interpolation, mhich, inturn, folloms
from dispersion relations and polynomial bounded-
ness in one variable. Of special relevance is
t-channel unitarity. Meally, me mould like to
make the asymptotic s -channel expansion explicitly
compatible mith multiparticle t-channel equations,
but it is perhaps mainly the lowest tmo-particle
threshold {e.g., t =4m„') which is relevant for
the properties of the diffraction peak.

It is the puxpose of this paper to show hom the
Pomeron can be made compatible mith tmo-particle
f-channel unitarity in case it is not a simple
Regge-pole trajectory j= a(f) with the appropriate
branch point at the threshold t = to. In particular,
me are concerned with situations mhere the Pom-
eron fi.s a branch-point surface leading to a rising
total cross section. ' A special example' is the
amplitude which saturates the Froissart bound, '
but our method is completely general. It makes
use of shielding surfaces a,(t), which may be
relevant phenomenologically at medium high en-
cl gies~

We assume that the continued partial-wave am-
plitude F(t, j) satisfies the elastic unitarity condi-

tion fox' to ~ t & t;. Ne mrite this condition in the
analytic form

Fll'(&, i)=F '(t, j)+»p(&),

where p(t) = [(&- f,)/f j"', and where the subscript
II indicates the continuation into the second sheet
associated with the elastic square-root cut. If
j= Q(f) ls R singular sill'fRee of F such tllRt

F(t, j-a(t))-~, then Ell. (l) implies

F(t, j-a(t))- l/[21P{t)].

A priori, this behavior is incompatible with the
continuity theorem of functions with tmo or more
complex variables. ' But there axe several mays
out. %e mention the folloming possibilities:

(l) The trajectory a(t) has an appropriate
branch point at t = t,. Then o. ' (f) lL a(t) and

F(t, j-& (t))-~; hence there is no difficulty.
This possibility is familiar for ordinary Hegge
poles. '"'

(2) There is a shielding surface a,(t) so that
the limit j- a(t) and the continuation from sheet
I to sheet II are not interchangeable. ' Similar
shielding cuts also protect nonsense mrong-sig-
nature fixed poles. '

(3) The character of the singular surface a(t)
of F(t, j) has a specific t-dependent character';
for example F(t, j)- [j—o.'(t) j "' for j- el(t).

Of course, these possibilities must be consider@d
mithin the framemork of othex' known properties
of the amplitude F(t, j).
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In this paper, we are interested in the shielding-
surface method, which appears to be rather nat-
ural if a(t) is a branch-point trajectory. Explicit
examples for shielding cuts of pole trajectories
with a = ~"have been discussed in previous pub-
lications. '" Here we are interested in branch-
point surfaces. As an example, let us consider
an amplitude which has a singular surface of the
form

F(t j)"9 .(f-)]'- f] '
for

o', (f) = a,(t)+ (at)"'.

We assume p&0, a& 0, n"(t) = e,(t), and that
o.,(t) is regular at t=0. The case uo(t) -=1,

a=t, ', and P =
& corresponds to the positive-

signature amplitude which gives

F(s, t) ~ i(4t,) 's(lns)' ' +0(s ins), 2z, Wr)
(4)

for s-~, ~=-(t/t, )(lnsP fixed. In Eqs. (2) and
(3) the s-channel bounds require o.,(t) + (at)"' ~ 1
+ (t/t, )"' for 0 & t ~ t„and a,(t) ~ 1 for t & 0.

For the purpose of shielding the singularities
(8), we need a pair of singular surfaces n„(t) so
that o.„(ta)= a,(t,). We use

a„(t)= n, (t) +c(t —t,),
where c &0. En order to see how the shielding
works and to learn about the character of the
surfaces (5), we make the rather general ansatz

(t- t,)'F '(t, j)=(Lj- a,(t)]'-atj'
f}f (t)

0& & 3L&J
(6}

where o.', (t) = a,(t)+c(t- to). The functions p and

y satisfy the conditions

p(t, a,(t)) = p(t),

x(&, j; ~.(t)}=(&-t.) .
Otherwise, these functions, as well as 4(t, j), are
analytic as required For ex. ample, they may be
chosen as

a, (t) —x
a, (t) +ct, —x

(8)

at least near the relevant limits.
Let us continue the amplitude (6) into the second

Riemann sheet of the elastic branch point at
tp As we move with t around t 0, the end

point of the integral encircles the pole at & = a,(t)
in the integrand, and we just obtain Eq. (1) with
the factor (t —t,)~. The hard branch points at
j= o.,(t) are present in the physical sheet of F(t, j),
but now they do not suddenly disappear as we con-
tinue into sheet II, because the shielding surfaces
j=a„(t) intervene and provide a refuge in their

second sheets. The branch points at j=a„(t) are
present in Eq. (6) as end-point singularities of
the integral at X = o.',(t). With the expressions (8)
for p and X, they have the character

(f)]3/2 . 8 II+ logy (t) (9)

We can take the limit j-a„(t) in Eq. (6) and sub-
sequently let t- f,. Then we find F '(t,j)
~ (t- to)"', as required for masking the elastic
unitarity cut. Note also that for P =1, v =integer,
we have simple poles at j= a,(t), and Eq. (9) re-
flects the square-root shielding cut obtained in
Ref. 6. There is, of course, the superimposed
winding point due to the factor (t- to)~ in Eq. (6).
Although we can remove this "centrifugal cut" of
F(t, j) for t ~ t, in the physical sheet of the t plane
with the help of the factor (t —t,), this is not
possible in the second sheet. Therefore, this
branch point appears in models like Eq. (6) which
make the continuation into sheet II explicit.

In order to see the possible phenomenological
implications of shielding surfaces like j= o.', (t),
we consider now the amplitude (6) for the case
P=2, u, (t)=—1. With a=t, ', the Sommerfeld-
Watson transform can then give saturation of the
Froissart bound. For t =0, we obtain

cto (1-cf —g}&+ll2
F(0, j)~(j—1) ' e(0, j)+-(j—1}'" dz

«OQ

(10)

There is the leading third-order pole for j - 1,
which gives rise to o - (Ins)'. Expanding the sec-
ond factor in powers of (j—1), we may obtain

terms proportional to (j-1) ' and/or (j—1) ',
depending upon the choice of the parameter v and
the properties of the function C(0, j). However,
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s ict (i0n)s-3 2 /ct 02v- (12)

Assuming, for example, that c =1 GeV ' and

t, =4el:„', the intercept of a~(t) is not much below
10

these terms may just as well be absent if we as-
sume that 4(0, j)= constant and that ~ is sufficient-
ly large.

On the other hand, there is definitely a contri-
bution from the shielding surfaces j=a„(t), which
coincide at f =0, where they have the intercept
a,(0) =1 - ct~ Therefore the amplitude E(0, j) has
a singularity of the type

1 +et )1/2+et +2v

Again, the square-root factor is in evidence. The
branch point (11)gives a contribution to the as-
ymptotic expansion in the s channel which is pro-
partional. to

We see that the requirements of t-channel tmo-
particle unitarity may mell have an important
influence upon the phenomenology of diffraction
scattering. " Although the shielding mechanism
does not disturb the leading asymptotic term for
lns large and v = -at(ins)' fixed, like the one in
Eq. (4), it nevertheless introduces corrections
which can be very important at presently acces-
sible energies.

In another paper me mill discuss the applications
of our shielding mechanism to nucleon-nucleon
and meson-nucleon amplitudes and to other many-
channel systems.
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