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A unified discussion is given of the scaling limit for one-particle inclusive electroproduction,
e+p e+ hadron+ anything, and for its crossed reactions such as e + e -p + hadron+ anything,
p + hadron-e++ e + anything, etc. General threshold relations, which hold also in absence
of analytic continuation across the kinematical thresholds, are derived, generalizing previous
results for the scaling functions of deep-inelastic scattering and a»&hilation.

It was pointed out by Drell, Levy, and Yan' that
for a class of graphs in the cutoff Yukawa theory
the scaling functions for e'-e annihilation are
analytic continuations of those for inelastic elec-
tron scattering. Detailed investigations ' have
shown, however, that this is not true in general,
because of certain "double discontinuity" graphs.
Nevertheless, it was possible to show that a
threshold (&o = 1) connection is still expected to
hold between the two processes, independently of
analytical continuation. 3 Experimentally, two-
particle inclusive e'e annihilation is more di-
rectly related to the triggering system required
for colliding-beam experiments, whereas detector
limitations may render more difficult the verifica-
tion of the threshold relation for one-particle in-
clusive annihilation. For this reason, among

others, we have undertaken the effort to provide
the threshold relations among the inclusive pro-
cesses with two observed hadrons (initial or final).
Similarly, as for deep-inelastic scattering and
annihilation and on the same assumptions, we
have derived such threshold relations which again
hold independently of analytic continuation.

We consider the processes (l stands for lepton
and h for hadron)

(A) l + l -h, +h, + anything,

(8) h, +h, -l+l +anything,

(C} i+ l +h, -h, + anything,

(D) l +h, -i+h, + anything,

(E} l+l +h, -h, +anything,
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photon region, q~~, ~
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FI6. 2. Kinematical domains in the ~»-~2 plane for

processes (A)-(H) in the photon region (q
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(F) in the t.r. For each process X= (A), (8), . . . , (H)
one defines a structure tensor

w"'(q P P )=(2x)'g5"'(q+P +P -s')
(6), q')0; (H), q'&0

FI6. 1. Feynman graphs of (A) L + L h»+ h2+ anything;

(B) h»+ h2-L+L+ anything; (C) L+L+h»-h2+ anything;

{D) L+ h» L + h2+ anything (E) L+L + h2 h»+ anything;

(F) L+ h2 —L+ h + anything (6) L +L+ h»+ h2 anyQung;

(H) L + h» + h2 L + anything; where L= lepton, h = hadron.
For each graph two related set of momenta, p», P2, and

g (of positive time component) andp», p2, and q, are
introduced. The Bjorken limit is defined as q2 + ~ for
{A), (8), (C), (E), (6), and q~ —— for (0), (F},(H), keeping
w f -{2p».q)/q, m2 = -(2p2'q)/q, and g = {2P» P 2)/q
fixed.

(F) l+h, - l+h, +anything,

(G) l + l +h1 +h2 anything)

(H) l+h, +h, - i+anything,

corresponding to the graphs of Fig. 1, where the
momenta P, , and g (of positive time compo-
nent) are indicated together with the definitions of

P, , and q. We shall study the limit q'- a~ [(+)
for (A), (8), (C), (E), (G), (-) for (D), (F), (H)], but

keeping

2p, q ~ 2p, q q
2p, p,

finite. Detailed study of the limiting kinexnatics
for (A), (8), . . . , (H) presents two solutions, 1)- 0
or q- &u,~„ for each case, except for (8), for
w ic only g ~»~2 is allowed.

We call q-0 the target region (t.r.) and 1i- &u, u,
the photon region (ph. r.). Figure 2 shows the
kinematical domains for (A), (8), . . . , (H) in the
ph. r. The threshold regions of interest, connect-
ing the only measurable processes (A), (8), (D), (F),
are those around v, =1, co, =l for positive ~» ~, .
No such common thresholds exist for (A), (8), (D),

x (f '1'Ij,(0)I n'1)&

(0)I
'(1

& (2)

where

I~'"'& =0, Is'"'& =
I -P„-P„s&;

I" '&=lP,), I

" '&=I-P. , &;

In the limit q'-~~, ~, , ~, fixed, and limited
transverse momenta one has, on the assumption
of scaling,

(e), ),)--();„.- ))" (~ ~ n)

Pi'e P 'e-~ 2 Pl ~ ))
—

q) q)) P1, -))
1

(x) (&1) &2) '0))
QP»g

where g-0 or g- &,(d, . The dominant graphs con-
tributing in the photon region in a parton-model
description are shown in Fig. 3. In addition, for
(8) the "connected" graph of Fig. 4, where the
vertical line denotes Pomeron exchange, is ex-
pected to also contribute in the limit. ' It is sug-
gested, however, that its contribution is numeri-
cally smaller. ' One can show from the graphs in
Fig. 3 that for vector currents and spin-y partons,
in the ph. r. q - &u, e, + Iq'I 'f (&u, , e, , t ),
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F&AS&(&d &u t )

M, 2

F&n~&(w &u, , t )

S2 + &d2(T + &dg t ) M2 S& + &d&T M&
+ImT&~) s» ' ', ' + ' ImT, »s, , ', ' +

1 (a)2 (d2 1 Al Ml J

(3a)

&dJ(l &u )(l &d )~
&P& 2 l &d

+
&u

™&0&
2 2 1

S2+ &d (T2+ &d2 t ) M S& + &d&T M&
+ImT(ap) s» 1- + ImT(ap) s,), +

(ud2 (d2 1 (Oi (di

(3b)

where T&» (T&,») is the nonamputated amplitude
for two partons into two hadrons with incoming
parton (antiparton), and t is the (limited) trans-
verse momentum of h, . We also report the ex-
pression for the scaling functions of deep-inelastic
scattering (dis), l+h- i+anything, and deep-

inelastic annihilation (dia), l +T-h +antyhi ng:

MF& k&
(&d )—

&ural —&ui

s+~t' M'
dsd't ImT(p) s +

P =-P2
M2

+ImTt, p) s, + 4

P=P,

Ppg P, =P,

(0)q'&0;(H) q*& 0

q-k

P P,

(0). q'&0; (0) q' &0

[(+) for dis, (-) for dia], &u &1 for dis, 0«u &1 for
dia. It will be convenient to define ImT~ &=R+Pand
ImT&,» =P (the idea is to distinguish between reso-
nant and diffractive contributions), and corre-
sponding integrals [see Eq. (4)]

M s+c0t' M'
&R'"(&u) = dsd't ft'" s + (5)

' q-k

k

q
q-k

k

q-k

[(+) for dis, (-) for dia]. Similarly, one defines a
quantity &P&" (&d) as the corresponding integral over
P'". Equation (4) becomes

P, =-g

(E), q'&0; (F), q'&0

P;-P,

k

-q-k

(=P,

Pr-P)

(A), q')0

F'"(&d) =&R'"(&u) +26""(&u)

and one recovers interesting factorization prop-
erties for the "integrated scaling function" (over
transverse momentum) in the photon region:

(B), q') o

FIG. 3. Dominant parton-model contributions to
processes (A)-(H) in the photon region. Partons are
represented by broken lines. Summation over the
different parton species is understood. The bubblesde-
note nonamputated amplitudes for two partons into two
hadrons. The vertical heavy lines denote unitary cuts.
The (+), (-) signs identify the limit convention of
energies to their real values.

-q-k

k

-q-k

P, =p P=P

(B),q'&P

FIG. 4. Pomeron-exchange term contributing to pro-
cess (B).
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6&»&(&u &u, ) = &f2) F«s&(&u, (u„t)

Qp
3

2 [&R&- ~ +)
((u )&P&-, +)

((u }
2

cidence of the two limits k'-a~ in both ImT&»(s, k'}
and ImT&,»(s, k'), and, from Eq. (4), leads to Eq.
(7). A more general assumption (which only leads
to threshold proportionality of F'4'" and F,' &) is

iy&(&z)((u (u )—

+d" "((u )&R&- "((u )

+2d" "((u,)&P' '"(&u,)], (6a)

't F&o» (~, ~, t )

lim ImT&"&(s, k') = (wk') y&) &f I"&(s),
k2~ T~

lim ImT(&~)&(s, k') = (vk') y&s&f &",~)&(s) .
4'2~ 7 (o

(8)

3
[&R&- ~ +)

(&u )&R&+,
- ) ((u )

2

+&R( "(&u,)d"' &((u, )

+&P&~+)(&u }R&+, )(&u )

+2d" "(&u,)d"" '((u, )]. (6b)

We recall that a threshold relation'

lim F,"'((u) =lim F,' '(&u}

Feynman-graph calculations ' in &t&' theory show
that the stronger assumption is presumably valid
(i.e., one expects f+= f ) In r.enormalizable the-
ories with softening of large momenta, Feynman-
graph calculations' indicate that Eq. (8) at least
should hold. Keeping the more general form in
Eq. (8), we notice that for &R")(&u) in Eq. (5), it
leads to (Xs and ys are constants)

lim &R"'(&u) =M'&('"[1 —&u~» '
QJ~I 4

can be derived between dis and dia from Eq. (4) on
the assumption that ImT&»(s, k') and ImT&~&(s, k')
are analytic functions of k' with singularities only
on the real positive axis. This implies the coin-

and to a similar equation for the analogous quan-
tity (P'"(&u) (in terms of corresponding A~, y~).
For the integrated scaling functions of Eqs. (6a)
and 6(b) one then obtains

2

lim 6:«~'(&u &u ) = ', &u, '&('„"~l —&u([» ' (&P' '"(&u,)+N' '"(&u()[&R' "(&u,)+2d" '"(&u,)]),
I 2

(10a)

lim F' ~&(&u &u, ) =&(s ~ +'~1 —(u, ~» ' f&P' +'(&u, )+N' '(&u, )[&R' "((u,)+2d" '"(&u,)]j,
Q)2

(11a)

lim S&n~&(&u (u ) = ' (u '&(&+ -)~1 —&u, ~»-( f(R& +)(&u )+&p' "((u,)+N" )(&u()[&R& "(&u,)+2&p& "(&u,)]]
M2

~ ~lI 2

(u '&('„" '~1 —(u, [ys '[(R' "((u,)+d" "((u,)],M2

2

(10b)

lim P' r'((u &u2) =&(s ~ +'~1 —&u2~» ' {&R'+ '((u )+(P " '((u() +Ã '"(&u,)[(R'+' '(&u, )+2d"" '((u))])
~ ~l2

= Z&„- "~1 —(u,
~

» ([&R' -'((u, ) +d'" '((u, )], (11b)

where

g(a)
(&u) = ~I &u~yP ys

~'s'

is expected to be very small. Finally,

(12)

lim 62o+&(&u(, (u, )
(d ~ I+eI
QJ

2
M~

2

lim 6:&"s&(&u &u )
t(& ~I ~+I
~ ~12

M'
1 &(&-,+&g&- ~ +) ((I &u (ys-1[1 &u [

y~-(
2

(13a)

(13b)
Therefore, we see that;

(i) In the "double threshold" region ~, , &u, —1',
F&") and %2&

& are proportional (equal, if &('=&( ) to
the same function of ~» ~» so also for 5,' ' and
p(~)

We notice that under the condition' ~I -1', in a
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fixed range, and ~, such that

(it(- "((d ) 1
&C(p(-, +) ((g ) ~(,+)

((d )
t

Eq. (10a) becomes

(14)

such that

8,( "((d ) 1
(p( "{(o,) N( "{(d,) '

we have:

(14')

M2
lim F' +((d (d ) = '

(A) X'„~+'i1-(d, i)'s '

(15)

and thus, under such conditions, we have:
(ii) The integrated scaling functions for A (B)

and D (F) have the same power behavior in ~l —ur)i

for (d, -1', but are proportional to different func-
tions of ~, [essentially &u,

' times the Pomeron
term of dia (dis) for A (B) and (d,' times the sum
of resonance and Pomeron terms of dia (dis) for
D (F)].

Similarly, for ~,- 1', in a fixed range and ~,

(iii) The integrated scaling functions for A (B)
and F (D) have the same power behavior in ~1 —(d, ~,

for ~,-1', but are proportional to different func-
tions of e( [essentially the Pomeron term of dia
(dis) for A (B) and the sum of resonance and Pom-
eron terms of dia (dis) for F (D)].

We stress, however, that conclusions regarding
5,' ' do not hold whenever B has significant con-
tributions from the diagram in Fig. 4, and possi-
ble deviations from our conclusions might be taken
as indications of those terms (so far, seemingly
smaller).
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