
PHYSICAL REVIEW D VOLUME 9, NUMBER' 9

Inelastic electron scattering in the symmetric quark model
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The electroproduction process ep e N* is studied, using the nonrelativistic symmetric
quark model with various binding potentials. The following conclusions are obtained: (i} A
mod]Ifted Woods-Saxon potential —Vo[(r/b) +1]/((rk) +exp[(r-a)/s]) gives the best fit
among various quark-quark potentials. (0} This potential gives values correct for the elastic
cross section and the cross section corresponding to the production of the first peak. Hrnv-

ever, this gives values a little low for the cross sections corresponding to the production of
the second and third peaks.

I. INTRODUCTION

It has been known' for some time that the non-
relativistic quark model with a harmonic-oscilla-
tor potential gives Gaussian-type form factors
for the processes eP -eN*. Therefore, the pre-
dicted magnitude is too small for large q'. If a
1/r potential is used, then the elastic form fac-
tors are improved, but it gives values too small
for the higher resonances. '

The cross sections calculated nonrelativistically
depend on the frame in which the form factors
are calculated. Thornber' ' calculated them in
the N* rest frame. Krammer' calculated the
form factors in the Breit frame using an anti-
symmetric spatial wave function for the S state.
Le Yaouanc et aE. ' pointed out that if the non-
relativistic form factors are calculated in the
Breit frame or in the frame in which the nucleon
and isobar have equal but opposite velocities,
a harmonic-oscillator potential gives correct
values for d od/(AN) /od/dA(elastic). However,
do/dA(N*) and do/dA(elastic) themselves still
strongly disagree with the experimental data.
Abdullah et gE. applied this method to the
neutrino reaction and predicted the ratio
do/dA(vN-N*V, )/do!dA(vN-P]J, ).

Recently we have investigated "the electro-
pxoduction processes using a quark-diquark mod-
el. [In the previous papers' "we have called
our model a two-body baryon model. However,
this nomenclature is not adequate since there
are many kinds of "two-body baryon models"
(e.g. , Ref. 12). We feel that it is better to call
our model a quark-diquark model using the ter-
minology of Lichtenberg although the quark-
diquark model examined extensively by Lichten-
berg et a/. "is not the same as our model. ]

This model is closely related to the quark mod-
el. Relations of the magnetic moments among
members of the lowest &' baryon octet in this
model are completely the same as those pre-
dicted in the quark model if a relationg, =4g~
holds" (g, and g, are the gyromagnetic ratios
of quarks and diquarks, respectively). A quark-
diquark model gives similar results to those of
the quark model for the cross sections of the
processes ep- eN*."

Recently, we have found by a numerical meth-
od" that a modified Woods-Saxon potential, which
has merits of both a harmonic-oscillator and a
1/r potential, gives good agreement with the
experimental data except for the d,»(1236)-pro-
duction cross section, for which this model gives
slightly higher values. In the quark-diquark
model the masses of the quark and diquark are
assumed to be very large.

In this paper we 'mill show that also in the quark
model the use of a modified Woods-Saxon potential
improves the theoretical prediction appreciably.

In this case the cross section for the h»(1236)
production is also predicted correctly, and this
potential gives reasonable energy levels for the
baryon resonances.

In Sec. II, the basic formalism is briefly re-
viewed. In Sec. III, the eros's sections are ex-
amined using various potentials and the results
are compared with the experimental data. In
Sec. IV, we present concluding remarks.

II. FORMALISM

The formalism to be used here has been de-
scribed previously, ""and only a brief summary
will be given here. The generalization of the
Bjorken-Walecka formula' is
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where 8 is the scattering angle of the electron,
~ is the incident electron energy in the laboratory
system, m is the proton mass, and M is the isobar
mass. (do/dA)„s is the cross section for the
elastic scattering of an electron by a spinless
point proton. The frame in which nonrelativistic
form factors are calculated is determined by the
parameters a and P. q, P, P', E, and E' refer
to this frame. '

fore, we consider only the BF and LVF here-
after.

Expressions for the form factors If, I' and
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T
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P' —P=q, a+P = 1, aP+PP' =0, (2) Here Yd»(Q, ) is a vector spherical harmonic and
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We have the N* rest frame for ~=0, P = 1, the
Breit frame (BF) for a=/ = —'„and the least-
velocity frame'2 (LVF) for (r = M/(m+M},
P = m/(m+M). For the elastic nucleon form
factors the scaling law holds only for the BF
and LVF. ' In the BF and LVF the quark and
hadron velocities are smaller than those in the
N* rest frame and in the laboratory frame, so
that the nonrelativistic approximation seems to
be better in the former than the latter. There-

S

p(x) =g j(i )6(x -r, ),
i= j.

J(x)=g . f 5(x —rj)V+ V5(x —r;)}
—.2' ~

+Vxp Q(i)g, 5(x —r, )o(i).

It is well-known that p., = p.~= —~ p.„.
Using the conventional quantum-number as-

signments shown in Table I, the shell-model
wave function for each resonance is obtained.
The c.m. motion is not separated out, but we
will discuss this problem later. This assump-
tion is the same as that used in Ref. 2.

Then the spatial wave functions are given by

(56}: 11/I', = Y',(Q,)Y',(A, )Y',(Q, )R,(r,)R,(r,)R,(r, ) for Sstate, (6)

1p
I f = (—',)'"[ Y f(Q, )R1(r,)Y',(Q,)R,(r,)Y',(Q,)R,(r,}+ Y,'(A, )R2(r, )Yf(Q,)R~(r,) Y",(Q,)R,(r, )

+ Y,'(A, )R,(r, )Y',(Q,)R,(r, )Yf(02)RI (r2)] for even L(e 0) states;

[70}: 4 '
I f = (2}"'[

Y f(Q,)R~(r, )Y,'(Q, )R,(r, )Y,'(Q, )R,(r, ) —Y',(A,)R,(r,) Yf(Q2)R~(r2) Y',(Q, )R,(r,)],
4 "

I f = (~2)
1/2 [ Y f(A, )R~(r, )Y",(Q2)R, (r2) Y,'(Q, )R,(r, ) + Y',(Q,)R,(r,)Yf(Q2)R~(r2) Y,'(Q, )R,(r,)

—2 Y',(Q,)R,(r,)Y',(A,)R,(r, ) Y f(A2)Rs(r2)] for odd L states,

The form factor for each resonance is listed
in Table I. We use the same notations as in
Ref. 8:

I~, = r'RL r jl. q ~R~ re,

Ea
P =2

ma

+L ~'RL, i I,... q ~ +)z, y q

x—Rs(r)dr,

(12}

F12)
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TABLE I. Assignment of baryon resonances and form factors in the quark model.

Resonances Excitation sU(e) If. I'

Pgg (940)

Pgg (1470)

Dgs(1520)

S„(1535)

Dg 5 (1680)
Dgs(1675)
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S (g(1710)
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Pg 3 (1860)
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1
2

2
3

1
. 2

3

2
i
2

1S

2S

1P

1P
1P
1P

1D

1P
3S

1D

1F
1S

1P

1P

1D

1D

1D

{se}
{se}

{vo}

{vo}

{se}

{se}
{se}

{vo}

{se}
{vo}

{vo}

{se}
{se}
{se}

Iss 2

I2s,s
2

23IP$

1
3IP$

IDs 2

0

Iss,s
2

R 2
3IDS

2Im

2sIps

2sIps

2q2p 2I 2

2q 0'q I2$ s

2 2 2qy, Ips

4-2
sq PqIDs

0
2q & Isss

sq p IDS

~~2 2 2sq &aIss

sq& Iss

sq Pq Ips

Ds

+q2p 2ID 2

@q Pq ID$

4Ag
s qt'a ss +6

2Ag

22~2 2 I 6A2

0
0

4A2

2
8A3

0

2 2 I 2Ag 2

27q I a SP g q
2

27q Pa ISp
gq q

28~2 2
18A

27Ac so —
sg I ql

Ifsl'=»g l«yllTg 'Il&g&l',
Z=p

Ill*=»gl«tll &y'll&g& I',
J'= p

If, l'+ If I' = Ifsl'+ Ifz I'.

(14)

(15)

(16)

values too low for large q'. This result is the
same for all nonsingular potentials.

(b) I/r Potential. The potential

V(r) = -~V
gives for the elastic form factors

(16)

III. RESULTS AND DISCUSSIONS

A. Potentials

G 1~=a =I
(1+q'/4V 'm ')' ' (19}

First we calculate the cross sections using
the following approximations: (1) The mass of
the quark is so large that we can omit the terms
of order 1/m, . (2) We do not separate out the
c.m. motion.

Then the results of the quark model are closely
related to those of the quark-diquark model. '
From Table I we can show, using approximation
(1),

This formula is the famous dipole formula and
by comparison with the experimental data we
obtain 4m, 'V, ' =0.71 (GeV/c}'. However, this
potential gives values too low for the cross sec-
tions corresponding to the production of reso-
nances with L& & 1, because a 1/r potential is
too shallow in the outer region. '

(c) Modified Woods-Saxon potential (MWP).
The potential possesses the merits of both HOP
and of a 1/r potential:

If, i*~I„',
lf, l'+ If I'~f„ (17) (r/b)+ 1

V( ) = —Vo
( /b) ~ etr R)/a . -

Let us review the properties of I« for various
potentials.

(a) Harmonic-oscillator Potential (HOP). This
potential gives a Gaussian form factor and gives

For small values of r this potential approaches
a 1/r potential and for r- R it approaches a
Woods-Saxon potential. We set the parameters
as follows:
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Set (I): R=1.4 fm, a=0.05R, b=0. 15R,

Vc = 2 X 9.38/(m, R') .

This set of parameters [referred to as (I)j cor-
responds to the set (B) in Ref. 8.

+2TQ 2tan2 zg

q2
G TI +q 9/0. 71 ' 47779

(22)

B. Comparison with experimental results

Now let us compare these results with ex-
perimental data. The quantities that we are in-
terested in here are the elastic form factors and
the ratio

d (x d0'
for 8=6',

ln el
(21)

qe [(Gev/c)e]
1 2

where dr7/dQ i is the cross section for the pro-
cess eP-eN*, and d&z/dQ ~„ is the elastic cross
section for the same q'. Although d&7/dQ ~. drops
steeply with q', the ratio do'. /do'„ is nearly
constant in a wide range 16q'6 7 (GeV/c)'.

We use, for the elastic cross section,

for both the theoretical and experimental values.
Experimental data are taken from Breidenbach, "
Drees, "and Mo." All of these data are based
on the SLAC-MIT experiments but the fitting
procedures are slightly different. The plots of
the theoretical predictions are given by HOP,
a I/r potential, and MWP(I). The nonrelativistic
form factors are calculated in the BF and LVF
for each case.

(a) Elastic scattering (Fig. 1). The results
are completely the same as those of the quark-
diquark model. HOP gives values too low for
large q', a I/r potential gives the dipole formula,
and MWP gives values very close to the dipole
formula.

(b) First Peak (Fig. 2). This peak corresponds
to a»(1238) resonance. HOP gives values too
small for large q', but a I/r potential and MWP
give a good agreement. In the quark-diquark
model the latter potentials give values which are
slightly too large. '

10

d~nin
der e=e

&(1236)

IO '

10

MWP lI BF

IO

10-1 .

WP ll LVF

k:6 re i de nbach(1970)

$:Dreee(1971)

f:M 0(1969'

la' 1 0 2

2
qe [(Gev/c)e]

FIG. 1. I&& (=Gz/p&) for MWP (I), MWP (II), and
HOP. Also plotted is the dipole expression for G„/p&.
I z& for a 1/r potential is the same as the dipole expres-
sion.

FIG. 2 ~ The ratio of the inelastic cross section to the
elastic cross section for 633(1236) given by HOP, a 1/r
potential, MWP(l), and MWP(II) in the BF and LVF.
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(c) The second and third peaks (Figs. 3, 4).
The second peak is composed of D„(1520) and

S»(1535). D»(1520) dominates this bump in the
quark model as well as in the quark-diquark mod-
el. The third peak is composed of D„(1680),
D„(1675), E»(1690), S„(1710),S„(1640), and

D»(1691). Owing to the Moorhouse selection
rule'e (this selection rule does not hold in the
quark-diquark model), the matrix elements of
D»(1680), D„(1675), and S„(1710)vanish. Among
the remaining resonances, F»(1690) dominates
this peak in the quark model as well as in the
quark-diquark model. For these two peaks HOP
gives values too small for large q' and a I/r
potential gives values too low for all q'. The
theoretically predicted values are greatly im-
proved by MWP(I) but they are still too small.

In the quark-diquark model MWP gives a sat-
isfactory agreement with the experimental data,
but in the quark model we cannot obtain such a
satisfactory agreement, especially for the second
and third peaks. One might think that the set of
parameters (I) is not suitable.

In order to increase the cross sections for the

second and third peaks we must decrease the
radius R where the potential is cut off (see Ref. 8).
Therefore, let us choose another set of parame-
ters.

Set (II): R= 1.1 fm, a=0.03R, 5=0.07R,

Vc = 23.5/(m, R') .
Since the "range" of the MWP(II) is smaller than
that of MWP(I), even the S state is distorted and

the elastic form factor deviates from the dipole
formula considerably.

The results given by MWP(II) are plotted in
Fig. 1 (elastic form factor), Fig. 2 (the first
peak), Fig. 5 (the second peak), and Fig. 6 (the
third peak). Although the cross sections for the
second and third peaks increase, their shapes
are badly distorted and disagree with the ex-
perimental data. Therefore, it is not helpful
to change R for this purpose.

We have further investigated changing the bottom
shape of the potential; for example,

(23)

For y= 1 the potential (23) reduces to (20). The
agreement with experiment is not greatly im-
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FIG. 3. The ratio of the inelastic cross section to the
elastic cross section for the second peak given by HOP,
a 1/~ potential, and MWPg) in the BF and LVF with

00

2

q [(Gev/c)e]

FIG. 4. The same as Fig. 3 but with a different peak,
with m =.
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10-3 T
I

q~ (GeV/c)~
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FIG. 5. The ratio of the inelastic cross section to the
elastic cross section for the second peak. The plotted
theoretical curves are curve 1, given by HOP in the
LVF (the c.m. motion is not separated); curve 2, given
by HOP in the LVF (the c.m. motion is separated);
curve 3, given by HOP in the BF (the c.m. motion is
not separated); and curve 4, given by HOP in the BF
(the c.m. motion is separated). The other curves are
given by MWP(II) in the BF and LVF with m =~.

proved by changing y. In fact, the dipole formula
is given only by a I/r potential, and if we change
the form of the b'ottom of MWP, the elastic form
factor inevitably deviates from the dipole formula.

Thus we fail to obtain a good agreement by using
two approximations presented in Sec. III A. Next
we comment on them.

C. The separation of the c.m. motion

In the quark-diquark model the separation of
the c.m. motion is easy and can be done analyt-
ically since the system consists of two particles.
However, in the quark model the system consists
of three particles and for general potentials the
c.m. motion cannot be separated out analytically.
For HOP the effect of separating out the c.m.
motion is to multiply every form factor by a
factor exp(q'/12a') (a is the spring constant).
Although this correction is not small, our pre-
dicted values are not greatly affected since in

I 2
q& (Geypc )~

FIG. 6. The same as Fig. 5 but with a different peak.

our model the spring constant o. is determined
by the elastic form factor in the limit of q-0.

The corrected o. is smaller than the uncorrected
Therefore, the cross sections after removing

the c.m. motion are slightly larger than the pre-
vious ones (see Figs. 5 and 6). In this sense the
correction is small at least for HOP and we
believe that the corrections for the general po-
tentials are small enough so that the conclusions
in this paper are not altered.

IV. CONCLUDING REMARKS

The following conclusions are obtained: The
results given by MWP are much better than those
given by HOP or a I/r potential.

If we use the same parameters for MWP as was
used in the quark-diquark model, ' MWP gives
values correct for elastic cross section and the
cross section corresponding to the production of
the first peak. However, the predicted cross
sections corresponding to the productions of the
second and third peaks are too small.

It seems difficult to obtain a complete agreement
with the experimental result by changing param-
eters of MWP.

Although we have neglected the c.m. motion,
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this correction may improve the theoretical pre-
diction as is the case for HOP. Further, we
have used the approximation m, = ~. If we assume,
instead, that the mass of the quark is m~/2. 793,
i.e. , g, = 1, the predicted values further approach
the experimental data. However, in this case the
nonrelativistic approximation becomes poor.

Let us make one more remark. For m, =m /2. 793
the energy interval between the S state and P
state in MWP is about 400 MeV, roughly in agree-
ment with the interval between the S states [P(938)
and 6(1236)] and the P states [N(1520), N(1535),
N(1670), and N(1700)]. However, if we assume

that the quark is very heavy, say, 30 GeV, then
the interval becomes only 4 MeV.
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