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Cascade models for quark and hadron fragmentation are displayed. These models i11ustrate many of
the predictions of the parton model for inclusive reactions. Multiplicities are constructed to go as

C„ ln(s/m ') in hadron-hadron collisions and as C...-ln(Q'/m ') in e+e annihilation, implying a
multiplicity in leptoproduction of C...-ln(Q'lot') + C„ln(&e—i). However, Feynman's conjecture that

quark quantum numbers are retained, on the average, in the parton fragmentation region is not

necessarily true. This was first noted by Farrar and Rosner in a model with meson emission only. The
conjecture (as a general principle) is shown to fail as well with baryon emission included if
multiplicities grow no faster than logarithmically. In cascade models a weaker version of Feynman's

conjecture is found to be true in general and this version is accessible experimentally. Also, triality is

found to play a significant role, suggesting that C...— need not equal C„. Other implications of
cascade models are also explored for hadron-hadron collisions, e e annihilation, and leptoproduction,
for both small and large transverse momentum of the produced particles.

I. INTRODUCTION

The hypothesis of limiting fragmentation' or
Feynman scaling' has been eminently successful
in describing high-energy collisions when only
one final-state particle is observed. s The hypoth-
esis suggests that at very high energy a struck
hadron will fragment in a fa,shion independent of
the energy and type of the particle striking it.
More precisely, for a final-state particle with
longitudinal momentum a finite fraction z of the

beam momentum, the Lorentm-invariant inclusive
cross section (E/rr) Air/tf'p is expected to become
a function only of z and the transverse momentum

P, . In parton models, similar behavior is pre-
dicted for the parton struck by the current in
leptoproduction or produced in e'e annihilation. 4 6

In these instances, an isolated (and unobservable)
parton is converted into observed final-state had-
rons, which are anticipated to have a distribution
independent of the initial state and determined
only by the parton type and by kinematic variables
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analogous to P~ and z.'
Two characteristic features of hadron fragmen-

tation are the existence of a flat plateau in rapidity
(dz/z distribution for small z) and the retention of
quantum numbers, on the average, in the fragmen-
tation region. Herman, Bjorken, and Kogut and
Feynman' have speculated that parton fragmen-
tation should also develop a plateau. In addition,
Feynman' has suggested that the quantum numbers
of the (quark) parton are retained, on the average,
in the fragmentation region. The existence of a
flat, nonzero plateau would imply a In@' contribu-
tion to the multiplicity in e'e annihilation and in
leytoproduction from the current-fragmentation
region. ' The retention of fractional quark quantum
numbers, on the average, in the parton-fragmen-
tation region would be a striking indication of a
quark substructure for the hadrons even if quarks
are not seen. A dynamical mechanism which could
produce a plateau in the current-fragmentation
region is not at all understood; in fact most tradi-
tional calculable models lead to a finite multi-
plicity —that is a zero plateau —for this region. '
However, we shall assume that the multiplicities
from current fragmentation are logarithmic in Q'

(which makes possible Feynman scaling while
avoiding the problem of observing particles with
quarklike quantum numbers). With this constraint,
we construct cascade models to describe parton
and hadron fragmentation which are useful for
studying Feynman's quantum-number -retention
hypothesis as well as other properties of inclusive
lepton-hadron reactions.

We find that Feynman's quantum-number conjec-
ture for parton fragmentation is not true in gen-
eral in our models, although it could happen "ac-
cidentally. " This was first noted by Farrar and
Hosner" in a model in which fragmenting yartons
produce only mesons. Although a small amount of
baryon emission can save the conjecture, the
multiplicity is then forced to increase too quickly
with Q' (see Appendix). With logarithmic multi-
plicities, only a weaker version of the conjecture
is valid (see below), but it does provide an ex-
perimental test, although not as striking as that
of the original proposal.

The major conclusion is that triality plays a
central role in cascade processes. All triality
+1 cascades evolve into a particular asymptotic
form which is the charge conjugate of the asymp-
totic form of triality —I cascades, but not nec-
essarily related to the asymptotic form of triality
zero cascades. Thus the coefficients of In@' and
lns in the multiplicities in e'e annihilation and

Pp collisions need not be the same. In general,
the quantum-number -retention hypothesis need
hold only for cascades which become eigenstates

of charge conjugation asymptotically, as in the
triality 0 cascade from a fragmenting hadron. In
the case of triality +1 cascades, the difference
between the quantum numbers of the quark and
those left in its fragmentation region is a constant,
independent of the quark type. That constant is
not necessarily zero and is not known g pro~i.
Consequently, the baryon number or electric
charge left in the parton-fragmentation region
cannot be predicted.

II. FRAGMENTATION AS A CASCADE

The models we use to describe fragmentation
may heuristically be described as easeades. The
fast-moving hadron or quark which fragments is
pictured as throwing off particles in a cascade
which proceeds towards lower rapidities. Feyn-
man, Bjorken, and others introduced the concept
to avoid the problem of observing particles with
quax'klike quantum numbers. Consider, for ex-
ample, e'e annihilation into hadrons, which pro-
ceeds via a qq intermediate in the quark-parton
model. If asymptotically each quark fragments
into a finite number of hadrons separated by a gap
in longitudinal momentum, the fractional quantum
numbers must appear in the final state. Conse-
quently, it was proposed that the quark and the
antiquark initiate cascades which terminate when
they meet by annihilating the quarklike quantum
numbers. As Feynman speculated, the quantum
numbers of the quark could be retained in the frag-
mentation region on the average.

These cascades may be thought of as a steywise
process that deposits final-state hadrons (or par-
tons which are then converted into final-state had-
rons) at each step in rapidity. For example, if
the cascade occurs steywise though emissions
(like q -qM and q -qqB, where M is a meson and
8 is a baryon) in which the products (including the
guarks which continue cascading) share the initial
momentum, then each step corresponds to a finite
step in rapidity. The density of emitted particles
per unit rapidity is presumed to become constant
away from the initiating end of the cascade (the
assumption of a plateau).

We are not preyax ed to say whether such a step-
wise process ought to be imagined to occur in
physical space-time or whether it is really a
mnemonic for some transformation between two
representations of physical states —one as hadrons
and one as quark partons. A literal interpretation
in space-time may lead to problems if the q and q
systems get so far apart at high energies that
annihilation and removal of the quark quantum
numbers are impossible. However, the use of the
cascade to represent the transformation of the
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fragmenting particle into final-state hadrons is
more general than a specific space-time evolution.

An example of a cascade and its mathematical
description can be seen by reformulating a model
given by Feynman' in his book. Feynman considers
a simple model for e'e annihilation in which the
rapidity gap between the initial quark and antiquark
is filled with N isosinglet qq pairs (N~ rapidity).
Adjacent quarks and antiquarks (beginning at either
end) are then assumed to convert into pions [see
Fig. 1(a)]. Feynman uses a density-matrix for-
malism to show that, on the average, the z com-
ponent of isospin of all the pions to the left (insen-
sitive to where in the plateau the average is
stopped) is the I, of the left-moving fragmenting
quark. This model can easily be cast into a cas-
cade formalism to derive the same results. The
first step of the cascade is the initial quark throw-
ing off the first pion and producing a quark, which
then initiates the second step, etc. [see Fig. 1(b)].
Various alternatives are offered at each step de-
pending on the type of pion (s', w', or v ) produced.
Since a particular state after a certain number of
steps is uniquely labeled by the initial quark (pro-
duced incoherently in the parton model) and the
position and type of each pion in rapidity, there is
no interference between states. Consequently,
probabilities can be used in the place of amplitudes
to describe the cascade. Moreover, the quantum
numbers deposited in the hadronic final state after
n steps is calculable solely from knowledge of the
initial quark and the quark present at the nth step.
Thus a probability vector representing the type
of quark present at a particular step and a matrix
describing the transition to the next step are suf-
ficient to describe the cascade process. The quan-
tum numbers deposited in the fragmentation re-
gion are equal to those of the initial particle if
the probability vector at the end of the cascade
(N- ~) is neutral in those quantum numbers. With
only 6' and X quarks, as in Feynman's example,
the probabilities for emission at each step are

Then if the probability of having a 6' or X quark
present at the Nth step is represented by a two-
component vector

(2)

the probability vector at the N+1st step is

77
) 7'

q q q q q

/4 ~ ~ ~

q q q

(a)

q q

(b)

FIG. 1. (a) A simple model for hadronic final states
in e+e annihilation. The rapidity gap between the initial
quark and antiquark is filled with N isosinglet qq (N
tx rapidity gap). Adjacent quarks and antiquarks (be-
ginning at either end) are assumed to convert into pions.
(b) The above model pictured as a cascade. The first
step is the initial quark throwing off the first pion and
producing a quark which initiates the second step.

P, =(',) =-,'(u, +u,),
then

(4)

PN 2 1+( 3) 2 2 — 2ul

Therefore, the z component of isospin carried
by P„(limit of P„as N-~) is zero, which im-
plies that the isospin of the initial quark is re-
tained, on the average, in the fragmentation re-
gion. Feynman's hypothesis works, in this model,
for the z component of isospin. "

However, Farrar and Rosner' showed that in
certain cases Feynman's hypothesis is not true
for electric charge. Their devastatingly simple
argument paraphrased in terms of the above mod-
el" is that P„carries electric charge, i.e.,

so that the average charge left in the fragmentation
region (6Q) is

6Q = Q(PO) —Q(P ) = 2 .
This counterexample destroys the hypothesis as

1 2

P~+ ~ 2 1 Pg TPg 2

3 3

The eigenvectors of T are u, = (,') and u, = (', ) with
eigenvalues A, =1 and k = ——,', respectively. Thus
if
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a general principle.
When X (luarks are included, Q(P„) can be zero

if SU(3) is exact; but this is an unlikely assump-
tion since many more pions than kaons are ex-
pected in the plateau (in analogy with hadronic
reactions). The general model with cascade steps
of the form q-Mq is described by the following
probability vector and cascade matrix:

I ( C

r= b a c

1-a-b 1-a-b I-2c

The largest eigenvalue and its eigenvector are

A, =1, s= c

so that Q(P ) wo unless a+I) + c = 1 and c eo (the
second condition ensures that the leading eigen-
value is nondegenerate).

That Feynman's hypothesis fails for models with

only mesons emitted is obvious from consideration
of baryon number. Since baryons are not produced,
baryon number (+ —,

' for q, —
~ for q) cannot be re-

tained in the fragmentation region, contrary to
the hypothesis. Moreover, the failure for electric
charge then follows from the Gell-Mann-Nishijima
relation since the hypothesis holds for I, and fails
for I'=B+8 [unless there is a compensating failure
for 8, as in the exact SU(3) version of the meson-
emission model].

This suggests that the hypothesis might be valid
if baryon emission is included. In fact, as we
show in the Appendix, any amount of baryon emis-
sion resurrects Feynman's hypothesis in models
where the cascade is a discrete branching Markov
process ((Iuarks cascading independently). Unfor-
tunately, the independence assumption causes an
avalanche of quarks, resulting in a multiplicity
which grows as a power of Q'. The reason for the
success of the hypothesis in these models is that
the number of quarks in the cascade increases so
rapidly that the densities of quarks and antiquarks
become equal. However, we must examine the
consequences of baryon emission in more realistic
models where the cascade saturates (where there
is a finite number of quarks in the asymptotic cas-
cade) to produce a logarithmic multiplicity.

Ne display next an example of the cascade with

baryon emission and logarithmic multiplicity which
can be solved in a fashion similar to the meson-
emission case. Once that is done we shall be able
to conclude what will result in more complex mod-
els with more degrees of freedom. Consider a
model in which the "quarks" are SU(3) singlets,
carrying only baryon number, + 3 for quarks and
——,

' for antiquarks. Again suppose that a single
quark g has been isolated, as in 8 8 annihilation
or electroproduction. Now we shall suppose that
in a cascade step the q can emit a meson M and
continue as a q, or emit a baryon 8 and continue
as a qq state. The qq state we shall assume can
emit a meson (or mesons) and continue as qq, or
emit an antibaryon and continue as a q.' Thus we
have a closed system (setting aside the emitted
hadrons), which asymptotically produces a con-
stant density of final-state hadrons in rapidity.
Also, we may use probabilities rather than am-
plitudes since there is no interfex ence. Let the
yxobabilities for emission Bt each step be'

P(q-Nq) = a,
P(q-Bqq) =1- c(,

P(qq-Mq~) = P,

P(qq- &q) =1 P. -
Then if the probabilities of having a q or qq pres-
ent at the Nth step are represented as a vector,

(P(q) ~

we have

u 1-Pl
(1-a P

The eigenvectors of T are

with eigenvalues A, =1 and A, = o. +P —1, respec-
tively. Thus if

1- p 1-0,
2- n-P I-P
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1-II»=
2

++A g
u, = y, A, =1,

If either a or P is less than 1, A, is also less than
1 and the eigenvalues are nondegenerate. Thus

lim P„=P„
g-moo

1 l q Q=c(+P —2'yq

g, = -1, A =o. —p.

The baryon number carried by P„ is

1 2Q — -1

so that the baryon number emitted is

1-e
Po —P

Feynman's conjecture that the baryon number of
the original (Iuark (+ —,') is left in the emitted had-
rons fails unless 2n =1+P. Since there is no a
priori reason for this constraint we see that the
conjecture is not a general property of cascade
models with logarithmic multiplicities.

Consider on the other hand a system with triality
0. For simplicity, we examine only baryon num-
ber and suppose that a hadron fragments by cas-
cades among the following states: baryon (qqq),
meson (qq), and antibaryon (qqq). Each of these
states can be connected to the other two at each
cascade step by depositing hadronic quantum num-
bers at that position in rapidity. Starting with a
particular state, the cascade is again described
by a probability vector and a transition matrix,
0l.e.~

(('(sm&)
I'(qqq)

V(n3 )
The eigenvalues and eigenvectors of the cascade
matrix are

Excluding special cases which produce degenerate
eigenvalues, P„ is proportional to u, . Since u,
carries no baryon number, the initial baryon num-
ber must have been emitted into hadrons, on the
average, in contrast with the case of a fragment-
ing quark. Of course, the retention of quantum
numbers in a hadronic fragmentation region is
well known from the ideas of limiting fragmenta-
tion and Regge-Mueller theory.

In terms of a cascade, the reason for the quan-
tum-number retention for triality 0 and not for
triality +1 is charge-conjugation invariance. The
matrices describing the triality +1 and 0 cascades
transform under charge conjugation as follows:

CTOC '=To,

CT„C '=T, ,

CT, C '=T„.
For triality 0, nondegenerate eigenvectors of T,
must be eigenvectors of C with eigenvalue +1.
As a result, P„must be neutral in additive quan-
tum numbers like S, which then implies the quan-
tum-number-retention hypothesis. For nonzero
triality, P„ is not an eigenvector of C, and con-
sequently is not necessarily neutral with respect
to B or Q. Another way of stating the condition
sufficient for satisfying the hypothesis is as fol-
lows: If a particle and its antiparticle are con-
nected through the cascade, then the quantum num-
bers of the fragmenting particle are retained in
its fragmentation region. For example, a cascade
step cannot connect a q with a q (q-q+final-state
particles) or else fractionally charged particles
would appear in the final state. In the case of ha-
dronic fragmentation, particle and antiparticle can
be connected through the cascade. (Note that in a
special model where baryons and antibaryons are
not connected through the cascade the quantum-
number hypothesis fails for hadronic fragmenta-
tion; this case corresponds to a cascade matrix
with degenerate leading eigenvalues. )



QUANTUM NUMBERS AND QUARK-PARTON FRAGMENTATION ~ ~ ~

= d, Q(X) —Q(Z), etc. (21)

For example, the electric charge left in the frag-
mentation region of a 6' quark should be one
greater than that left in the fragmentation region
of an X quark or a A, quark. Similar results fol-
low for the other additive quantum numbers. Also
note that charge conjugation implies Q(P„') = —Q(P'„)
so that EQ(q) = —KQ(q). Of course a similar argu-
ment in the case of triality zero cascades implies
the asymptotic state P'„ is neutral, i.e., b Q(hadron)
= Q(hadron).

For the case Q =I, the situation is somewhat dif-
ferent from the cases Q=B and Q= Y. Since T,
must be invariant under a reflection in isospin
space (charge symmetry), P+„, P„, and Po must

The above results can be generalized as follows:
%e assume that cascades develop in a steywise
process of the form P„„=T, P„, where t is the
triality (+1,0). The probability vectors P„give
the probabilities for various states, which we
assume to be finite in number, to be occupied after
N steps. Vfe assume that the cascade matrix T,
has a unique leading eigenvector, which must have
an eigenvalue unity. Physically, this means we
assume that there is a unique cascade for each
triality which developes asymptotically. For ex-
ample, a cascade begun with a 6' quark will de-
velop asymptotically into the same cascade as an

g or A, quark or any state with triality +1. The
asymptotic state, P'„, is independent of the frag-
menting particle except for its triality. Because
CT„C ' = T „ the asymptotic cascades for triality
+1 and -1 are simply charge conjugates. Let the
asymptotic probability vectors be P+, P„, and P'„
for triality +1, -1, and 0, respectively. A cas-
cade begun, say, by a 6' quark could be repre-
sented by

PS+1 T+ jPN

(2o)
P, =(Prob(d') =1, Prob(X, X, d'X, etc.) =0) .

The amount of any additive quantum number Q
left in the fragmentation region would be hQ = Q(PO)
—Q(P'„). Feynman's hypothesis was that Q(P„') =0
for all additive quantum numbers Q. If this were
the case, then AQ would be the {Iuantum number
of the quark initiating the cascade. As we have
seen, this is not necessarily true. What we can
expect is that if we compare cascades initiated
by different states with the same triality, then

dQ Q(P,) is—universal. This result follows from
the uniqueness of the asymptotic state; the quan-
tum-number hypothesis fails when this state is not
neutral. In other words,

have I,= 0, i.e., the z component of isospin is re-
tained in the fragmentation region. Thus DI,(d') =

~q

&l,(X)=- —,', eic., as Feynman found. On the other
hand, T, need not be SU(3)-symmetric, so we can-
not draw any conclusions about Y.

Summarizing the results for cascades initiated
by a single quark, we have for the quantum num-
bers left in the fragmentation region

af, (d') = —,', ~I,(3I) = —-'„d,l,(X) = 0,

na(d') = d,a(0I) = Sa(X),

~r(d') =~r(3I) =~a(~)+I,

(22)

where AI„AB, and 6Y are the average amounts of
the quantum numbers observed in the fragmentation
region. The electric charge and strangeness are
related to the above via the Gell-Mann-Nishijima
relations: 4Q„=4I, + —,'4 Y, where 6Y= AB+hS.
The fragmentation region need not be precisely
defined since the adjoining plateau is neutral at
very high energies.

The experimental quantities AQ can be repre-
sented in the notation of Gronau, Bavndal, and

Za, rmi' as follows:

z{(q)=Q f qz(Y'(z){ ()z),

zB(q)=gf zqD{)z)()))z, (23)

( n) = C,+,- In(Q'/m2) +C, ln({d —1),

where m' is on the order of ahadron mass squared.
The length of the parton-fragmentation region is

zq(q) =Q f qz))'(z) q{q), ,

where the sum is over hadrons h, and D,"(s) de-
scribes the probability of a 6' quark producing a
hadron h with a fraction z of the momentum of the
quark. Our assumption that there is a unique cas-
cade for the system with triality +1 gives D~ -D„"
-D~-a/z, for smally, where a isthe sameconstant
in a11 three cases. In other words, the plateau height,
which determines the dominant contribution to the
logarithmic multiplicity, is the same f'or all frag-
menting states of the same triality. (The plateau
heights are the same for triality +1 and -1 by
C invariance. ) In particular, since there is no
relation between triality 0 and triality +1 cascades,
the constants multiplying 1ns in the multiplicities
in e'e annihilation and PP collisions need not be
equal, i.e., C,+,-&C„. However, the height of the
current plateau in electroproduction or neutrino-
induced production is equal to that in e'e annihi-
lation (see Fig. 2}, so that the multiplicity in lep-
toproduction at high Q and/or high {d is
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determined by the nonleading eigenvalues in the
cascade picture. If each cascade step corresponds
to a fixed rapidity interval I., then nonasymptotic
contributions should vanish as X~ -A, ~, where I,

is the second-largest eigenvalue. The correlation
length is l -I,/(- Ink). An order-of-magnitude
estimate is l - 2 (as in hadronic fragmentation).
L = ln2 (if two particles share the momentum of
the initial one), so that X= 0.4.

The experimental consequences of the weaker
version of the quantum-number conjecture [Eq.
(22)] can be tested in inclusive neutrino reactions
(vN- phd). These processes permit a determina-
tion of the type of quark ejected. For example, at
high energy, the left-handed W' boson (oz,) takes
only a X or A, quark into a 6', while a right-handed
W' boson (o„) takes only a 0 into a X or X. The
strangeness-changing processes, which are sup-
pressed by the Cabibbo angle, can be separated
in principle (although it may be extremely difficult
in practice) by observing the strangeness of the
final state.

III. HIGH-ENERGY PROCESSES
WITHIN CASCADE MODELS

—xP

dtT
TOT dy

C~+e- h

Q2
In

m Il

(a)

-2xP

In
S

Q2

To clarify Sec. II and to extend the dynamical
framework, we outline how a number of high-en-
ergy processes would be described in the context
of our cascade models. The essential features of
the models are that the cascades exist among
states of the same triality and proceed to a unique
asymptotic state (for that triality), and that the
hadrons are emitted by the cascade in a stepwise
fashion leading to a constant density in rapidity.
Although many of the results obtained are not

new, ' ' it is interesting to view them from this
different perspective.

A. e+e annihilation

In e'e annihilation, the timelike virtual photon
decays through a qq intermediate with each quark
having an initial rapidity ln(Q/M) in the relative
center-of-mass system (rapidities being measured
with respect to the qq axis). The q and q cascade
independently for about & steps, where
N-O(ln(Q/M)). If N is large, the cascades will
be given approximately by P'„and &„=CP'„. Thus
the heights of the cascades are the same and the '

quarklike quantum numbers disappear when the
two cascades "meet. "

B. Deep-inelastic leptoproduction

For vP- p. hX and e &- e hX we follow Feyn-
man' and work in a frame in which q, the virtual
W or y momentum, is purely spacelike and defines

FIG. 2. Parton distributions (a) before and (b) after
interaction with a virtual photon in the Breit frame of
the virtual photon and struck parton. (c) The inclusive
distribution, a ~do/dy, versus the rapidity y for deep-
inelastic leptoproduction at large (o (m&~ is the average
transverse mass}.

the negative z axis. If the target's momentum is
P and the observed hadron's momentum is P, the
standard invariants are

Mv=P. q

Mg=P P,
gv~ =P 'q

Q'=-q q,
&u = 2Mv/Q2 =- 1/x,

(d ~
= 2p v ~/Q

Thus in thi, s frame Q = q» and -2', =q».
The target hadron cascades according to the

prescription of Sec. II for triality 0 until the cas-
cade reaches the point at which it contains a parton
of momentum x&. The virtual photon strikes this
parton (let us assume it is a 6' quark) and precise
ly reverses its motion. The hadron cascade is
thus transformed into a system of triality -1 which
proceeds via T „while the struck parton decays
via T„.
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In this same frame, the initial hadron rapidity
is y = In(+Q/M). When the virtual photon strikes
the cascade, the cascade rapidity has decreased
to -In(Q/M). The struck parton begins its cascade
with approximately the negative of this rapidity,
while the hadron minus the quark continues from
y =In(Q/M). For large Q/M, the cascades meet
as before in e'e annihilation, with C invariance
guaranteeing that they have the same height [Fig.
2(c)]." Note that the hadron minus the quark has
the quantum numbers of a q and asymptotically
develops the same plateau (P ).

C. Hadron-hadron scattering

As described in Sec. III B, we imagine that hadrons
evolve into final states through a cascade similar
to that by which quark-partons turn into hadrons.
The cascade prescription guarantees that a neutral
plateau is present in the center of mass of the
colliding high-energy hadrons, and that this pla-
teau is universal (independent of the colliding had-
rons). The quantum numbers are retained in the
respective fragmentation regions.

According to Feynman's parton model, the dom-
inant scattering mechanism producing the above
picture is the exchange of "wee" partons —partons
with finite c.m. momenta —resulting in a final
hadrons distribution with limited transverse %o-
menta. In addition there may be "hard" parton-
parton scattering, resulting in par'tons knocked
out with large transverse momenta. A similar
description of this process in the parton model has
been given by Savit, "but we shall review the anal-
ysis in terms of the cascade. Suppose two had-
rons, each having a c.m. energy E=&v s, collide
such that the partons with momenta P, and P, suffer
a hard collision and exit as P,' and P,'. Let us
focus our attention on P, and P,'. We shall consider
the cases of large fixed P,'~ (P', ~ = E,' i sn8»M, but

E,' »P,'~) and fixed angle (E,' =P'„), and the relation
to limited transverse momenta (P,'~ = (P~)).

First we boost to a frame in which P, and P,' are
collinear and oppositely directed. Partons moving
initially in the same direction as Py and with x &0

are also collinear with P, and P,' in this frame.
Setting aside the partons associated with P, and P,',
the partons in this collinear frame have the same
distribution as they would if they were the result
of leptoproduction, with P,' being the struck-parton
momentum and P, being the hole momentum. Ac-
cordingly we expect them to evolve into hadrons
in the same fashion as they do in this previously
considered situation. Thus, typical hadron mo-
menta will have limited transverse components in
the collinear frame. What does this look like in

the c.m. systems Boosting back, we find that a
"fragment of the hole" will also have limited trans-
verse momentum with respect to the original beam
direction. If we consider a fragment of the struck
parton, the hadron momentum lies near the direc-
tion of the struck parton and also with a spread
-(P ) away from this axis. The two cylinders
centered on the hole and struck-parton directions
will overlap for final-state hadrons with a c.m.
energy E, such that E, sin8, - (P~) (8, is the parton
scattering angle as before). The hadrons with
E ~ Ep are not simply associated with just the hole
or the parton. It is natural to assume that the dy-
namics in this region are those of triality 0, i.e.,
governed by To. In this heuristic picture, we see
a triality -1 and a triality+1 system merging and
continuing as a triality 0 system. The extent of
this triality 0 system depends on 8,. For finite
8„E,= (P~)/sin8, is finite. On the other hand,
if P,', of the parton is large and fixed while E-~,
8, -P', j /E and there is an increasing domain,
E&EO, in which the hadrons are controlled by
triality zero dynamics.

A virtue of this description is that if we let P,',
decrease towards (P,), the triality zero system
engulfs the triality nonzero systems and we move
continuously to the case in which all transverse
momenta are limited (see Fig. 3). We find directly
that the multiplicity is given by"'"

(&) = Cq In(s/4E, ') + 2C, +, - ln(4E, '/M'),

where E, is the energy of the parton with large

before

after

(a)

I

Q
I

(p )4

FIG. 3. (a) Parton distributions before and after a
"hard" parton-parton scattering which produces large
transverse momenta events in hadron-hadron scattering.
(b) Schematic representation of the final-state hadron
distribution in a large-transverse-momentum hadron-
hadron scattering event. The triality of each cascade is
indicated for an event in which a quark and antiquark
suffer the hard collision.
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transverse momentum (seen as a jet of hadrons)
and M is an average hadron mass. (The first term
contributes only for s»4E, ' and the second for
E,' »M'. ) This formula makes manifest the
smooth transition to the limited transverse mo-
mentum domain.

duction (unlike the situation in the Farrar-Rosner
model}, but that multiplicities grow geometrically
rather than logarithmically.

We can express the population of the cascade by
a column vector:

IV. CONCLUSIONS

We have presented a framework for parton cas-
cades which reproduces many of Feynman's con-
jectures. In particular, hadron plateaus are uni-
versal (independent of the initiating hadron). Sim-
ilarly, plateaus initiated by qua, rks are universal
(independent of quark type), and dependent only on
triality. However, there is no required connection
between the triality zero and triality nonzero pla-
teaus, suggesting that the coefficients of the log-
arithmic multiplicities in PP collisions and e'e
annihilation may weQ be different. The two dis-
tinct cascade types —triality zero and triality non-
zero —play a fundamental role in the description
of a variety of high-energy processes.

Within the context of our models, all of which
have logarithmic multiplicities, Feynman's quan-
tum-number-retention hypothesis for parton frag-
mentation need not necessarily hold. A weaker
form [see Eq. (22)] is obtained, which would re-
quire, for example, that the electric charge in
the 6'-quark fragmentation region be one greater
than that in the X-quark or X-quark fragmentation
regions. In all our models, I, is retained in the
fragmentation region, unlike F and B. Again,
triality seems to play a central role in determining
that quantum numbers must be retained in the
fragmentation region of a hadron, but not neces-
sarily in the fragmentation region of a quark.

While it is encouraging that a framework con-
sistent with many postulates of the parton model
can be produced, the far more difficult problem
of understanding the actual dynamics remains.

The average value of some additive quantum num-
ber carried by the cascade is

(e&=PP, e, , (A2)

where the sum is over quarks and antiquarks.
Under what conditions does ( Q) vanish so that
Feynman's conjecture is satisfiedP Obviously it
suffices to have P~ =P~, I'„=P„-, and I'„=P»
i.e., CP=P. If we consider only I, and F, it suf-
fices to have P~ =P„=P~, etc , i.e.., SU(3) sym-
metry.

We recapitulate the Farrar-Rosner counterex-
ample of Feynman's conjecture in this formalism
as follows. The gap between a q and q arising in
e'e annihilation is filled in with isosinglet qq
pairs. Neighboring pairs recombine to form me-
sons which break up the isosinglet pairs. Thus, for
the cascade initiated by a q we have q, (qq), (qq},
. . . , (q [q), (qq), . . . . The quarks to the left of the
break form the residue of hadrons, and the first
antiquark to the right of the break is the cascade.
Thus the probability vector is
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APPENDIX

We display here a class of models different from
those in the main text. Here we assume all quarks
and antiquarks act independently. This scheme is
a specific type of Markov process called a discrete
branching process. It suffices to consider the
number of the various kinds of quarks in the cas-
cade at each step. We find that Feynman's con-
jecture is satisfied as long as there is baryon pro-

Clearly Feynman's hypothesis fails for B and is
satisfied for F only in the SU(3) limit (though, of
course, always working for I, in any event).

Suppose, on the other hand, that there is some
baryon emission. Thus, in addition to processes
in which a quark is transformed into another quark
with meson emission (q-Mq), there are processes



QUANTUM NUMBERS AND QUARK-PARTON FRAGMENTATlON. . .

in which a quark turns into two antiquarks with the
emission of a baryon (q-Bq q), and possibly more
complex processes (e.g., q-~qqq, q-ffqqqq,

- etc.). If we suppose that each quark cascades in-
dependently, the development of the cascade can
be described by

(A10)

where T is a 6x6 matrix. By C invariance of the
strong interactions, T is necessarily of the form

T, T2'I

T, T,] ' (A4)

where the rows and columns are labeled by 6', I,',
a, 6', %, and X. By isospin invariance, T, (i=1, 2.)
is of the form

for all N except the initial state.
It is straightforward to find the eigenvectors ez

(which are not orthogonal in general) and eigen-
values A, of a matrix of the form (AS). They are

c,=(6'-X), X, =a- f),

v, = 6'+ St+—(e —a —b + [{e—e —f))'+ Scd] '~'),

(AS) z, = —,'(a+ 5+ e+ [(e —a —f)')+Scd]'~'], (All)

Using the orthogonal 6~6 matrix

~1/~ 1/W l

we have

(AS)

u, =6'+ X+—(e- a - S —[(e- e - f))'+ Scd] 'i'],

X, =2(a+i)+e- [{e-a- f))'+Scd]'~'/.

Thus the eigenvectors of T' are

g~+ g~+

(0 j' 0)

(A7)
0 ( 0

)v,(-)J 4,(-))

(Au)

T'= UTU '

(T, + Tm 0

0 T, -T, j
(AS)

where u, (a) is given by (A10), with 6' replaced by
(4'+6')/W, etc. , a replaced by a, ~a„etc Now.
if the initial probability vector is

UPO=P0=+a; u, ,

In this representation, Feynman's hypothesis is
satisfied if as g (A 14)

p

0

whQe the Farrar-Rosner model yieMs

(AQ)

where q, are the eigenvalues )h =a,(+), )i, = A (+),
)7, =z,(+), )i, =x,(-), )i, =z,(-), and q, =x,(-)

The Feynman hypothesis is satisfied if the dif-
ferences 6'-5', &-&, and 4- A. tend to zero asymp-
totically, i.e., if q~, q, are less than unity. Since
g6 &g„ it suffices that

q4 —a~ —a2 —b~+ b2 &1
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lf$5=2/a, —a, + b, —b2+e, —e,

+ [(e,—e, —a, + a, —b, + b, )'

+«c3- c3}(d3-d3)]'")
(A16)

The significance of the elements of Ty T2 can be
determined by considering what happens to a 6' or
A quark after a single cascade step. We have for
these one-step processes

for 6' quarks. Additionally, we expect that aa(6'}
&0 and na(A. ) &0, i.e., A and (P quarks produce
more baryons than antibaryons. From the ex-
pression for g5 we see that the introduction of a
small amount of baryon production reduces q5
from unity to a value less than unity, thus guar-
anteeing the success of Feynman's conjecture in
these models.

The eigenvalues g4 and g, can be expressed sim-
ilarly:

0

T
0

ag 0 ci

C)

eg

C2

C2

I

T
a2 0 (A17)

3}~ = 1 —2m I,(6'),

q, = 1 ——,[d,Y(6') + 2 I3B(d') —hY(A)+ EB. (A.)]

——,'{[~Y(tP }+2~(d') —~Y(z}+na(z}] '

—12 [ha(A) 6Y((P ) —AB((P)6Y(A)] j '

(A22)

e2

From these vectors we calculate the average
baryon number emitted by a 6' quark per cascade
step:

d.a( p) = 3 -3(a, + b, + d, —a, —b, —d, ) . (A18)

b,a(A.) = 3-/32c, +e, —2c, —e,),
2 2

SY(Z) =-3-3(c,—e, —c,+e,) .
(A20)

In terms of these quantities,

3i, =1 —', [d.Y(t)+ 2r B(d') —S-Y(Z)+ B(Z)]

+ —,'({[aY((P) + 2na(lP) —hY(A) + AB(A)] '
-12[6B(A )a Y(6') —AB(6')aY(Z)] }' I') .

(A21)

We can expect quite generally that EY(A)&0 and
d, Y(6') &0, i.e., quarks produce more negative
hypercharge hadrons than positive, and vice versa

Similarly, the hypercharge of the hadrons emitted
by a 6' quark per cascade step is

SY(p)= 3 3(a, +b, —2d, —a3 —b3+2d ) . (A19)

In the same fashion we find

where AI, (d') is the average z component of iso-
spin of the hadrons emitted by a 6' quark per cas-
cade step. Of course we expect d, I,(6'}&0. We
see now that the requirements g4 &1, g5 &1, and

g, &1 are met quite generally. Of the. six eigenvec-
tors, only u4 carries I, t 0. Thus the equilibra-
tion of I, is governed by g4. Since u5 carries both
B and Y and since g5 &q„ the equilibration of these
quantum numbers is governed by g5. Since g5 is
reduced below unity only by the strange-particle
and baryon production, we anticipate that g, +g4,
and thus I, should equilibrate more quickly than
Y or B.

ln the Farrar-Rosner model AB(6') = 0 and ~(A.)
=0, so that g5 =g2 = 1. Here we have two degener-
ate systems which are completely independent:
the system initiated by quarks and the one initiated
by antiquarks.

When g5 &1 we have also g2 &1, so that the num-
ber of quarks in the cascade grows as (3i3}". Con-
sequently the number of hadrons emitted per step
grows as (q3)". This geometric particle growth is
incompatible with a flat plateau and is the primary
motivation for constraining our cascades discussed
in the main text to have a bounded number of
quarks at each step.
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