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The low-energy limits of the single-fermion-loop contribution to the reactions e te ~ —y — wtmw =,

K+*K~7n° wte—o'#°, wto—ntw-,

K*K ~m°n° and K *K K *K ~ were calculated without any

adjustable parameters. Results were found to be comparable to recent experiments. This model’s
significance and its possible modification were discussed.

It is well known that the 7° decay into 2y is
suppressed in a standard current-algebra calcu-
lation.! This discrepancy is resolved by the intro-
duction of the so-called Adler-Schwinger anomaly,?
which arises in the triangular fermion-loop dia-
gram as shown in Fig. 1. This diagram gives a
finite though arbitrary result that is dependent on
the average charge of the fermion quarks circula-
ting the loop. In practice, this picture is not
much different from Steinberger’s® phenomeno-
logical calculation of 7° decay using the same
diagram with the nucleon only. Subsequently,

a series of papers*® treated the possibility of
testing the anomaly directly in the processes
yy-n"n 7° and 37°. Based on the anomaly, the
low-energy relation of these processes to the 7°
decay is derived, which in principle can be tested
experimentally. In terms of the perturbative field
theory, e.g., the linear 0 model, the above con-
siderations can again be realized explicitly® in the

one-loop diagrams, in which the fermion loop is
a major contribution. In a more phenomenological
approach,® it is found that when the fermion-loop
model is suitably modified for weak interaction it
provides a qualitative explanation for K] -yy,
77"y and K * ~7*1% decays with no adjustable
parameters.

Recently, data”® on

ee =11t (1)
and

ete” = mta1° (7t 7 1°7°) (2)
became available. It is assumed that e*e” first
annihilate into an off-shell photon, which decays
into the appropriate hadronic final states. What
will be the contribution of the fermion-loop model
to these exclusive production processes? We can

consider the following: (a) In any simple field
theory, the lowest-order approximation to the

TABLE I. Low-energy-limit prediction of the photon-meson vertices in a fermion loop mod-
el. The virtual photon carries a momentum p. ¢’s are the mesonic momenta.
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FIG. 1. Single-fermion-loop contribution to 0 —yy.

direct emission of mesons from a single photon
comes from one-loop diagrams, in which the
fermion loop is a major contribution. Thus pro-
cesses (1) and (2) offer a chance to test whether
the fermion-loop model is able to give a global,
qualitative result for different classes of prob-
lems. (b) When the total e*e” c.m. energy is
above the production threshold of kaon pairs, no
compelling separation of pions from kaons has
been made in experiments. In the model we con-
sider below, it is simple and straightforward to
calculate the kaon pair production as well, which
offers an estimation of the kaon contamination.

The results of the model calculation are sum-
marized in Tables I and II. They are found to be
comparable to the experiments.
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The effective interaction Lagrangian is
£,=-V2gf Tr(Biy,, BIM)+V2gdTr({Biy,, B}M)
-zeA" Tr(By, B]Q), (3)

where B=)\; /N2 (Ref. 9) is the traceless baryon
matrix, M=, ¢;/V2 is the traceless Hermitian
meson matrix, and @ =X, +A;/V 3. As in Ref. 6, we
use g°/4n=14.6 and d/f=1.8, where d and f are
the symmetric and antisymmetric MBB couplings,
so that there are no adjustable parameters in our
calculation.

We will discuss the construction of the amplitude
ete"=y-7nta"r* 7" in detail. To the lowest order,
the (direct emission) vertex y—-u"7"7* 7" is given
by the sixteen sets of Feynman diagrams in Fig.
2; each has a definite charge state running along
the fermion loop, and each gives rise to a definite
SU(3) factor. For example, Figs. 2(a) and 2(b)
have a factor of 16 g*(3d?~f2)?, Fig.2(c)hasa
factor of 4 g*[(f+d)* +4(3d? + f?)?], and Fig. 2(d)
has a factor of 4 g*[(f-d)* +4(5d? +f?)?] coming
from a product of the four MBB vertices. In the
low-energy limit, the basic tensor structure of
the loop is fairly simple. We define a quantity
I, in accordance with Fig. 3(a):
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FIG. 2. Single-fermion-loop contribution to y—m*n™n*r",

4)

For simplicity, we neglect the mass difference
among the fermion octet and assume an average
fermion mass m=1 GeV. When the energy of the
virtual photon is not much above production thresh-
old, we shall neglect ¢,° g, as compared with m?.
Thus in this low-energy limit we have

__1 1
L= 127%im? [(‘11—44)—5(q2—q3)]u . (5)

Supplying the other factors and summing over all
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FIG. 3. (a) Basic fermion-loop diagram for y—4
mesons. (b) Basic fermion-loop diagram for y—3
mesons.
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TABLE II. Cross sections for e*e™—y — mesons predicted in a fermion loop model. 1 nb
=107 cm?. The second column, ¢, is the absolute prediction, and the third column, oy, is
normalized to ¥ decay into 2y. For the 4-meson final states, cross sections are evaluated
with a Monte Carlo program with 5000 points and the errors represent the estimated statisti-
cal error. In the experimental values, the number in the parentheses represents the system-
atic error and the second number represents the statistical error.

2E (GeV) o (nb) o, nb) O exp (nb)
Lok ot sl 0.8 2.05 0.73
1.0 11.07 3.96
1.2 36.12 12.94
1.35 72.93 26.12
1.50 132.54 47.48
K*K™n0 1.2 0.00 0.00
1.4 0.29 { 0.10
1.6 2.60 0.93
1.8 10.67 3.82 =6 (Ref. 7)
2.0 30.23 10.83
Lak b 0.8 0.70+0.01 0.25+0.00
1.0 4.85+0.06 1.74+0.02
1.2 14.46+0.17 5.18+0.06
1.35 24.76+0.30 8.87+0.11
1.5 38.65+0.48 13.65+0.17
Fak 0.8 2.75+0.01 0.98+0.00
Lol ot d 1.0 15.92+ 0,06 5.70+0.02
1.2 50.58=0.17 18.12+0.06 (30£2)+15
1.35 97.69+0.30 34.99+0.11 }Ref. 8
1.5 171.19+0.48 61.13+0.17 (30+4)+11.
Tt 0.8 2.80+0.03 1.00+0.01
1.0 19.4410.21 6.96+0.08
1.2 56,65+ 0.62 20.29+0.22 (3+3)+3
1.35 98.11+1,07 35.15+0.39 }Ref. 8
1.5 152.97+1.67 54,79+ 0.60 (18+3)+3
K*K 1070 1.4 0.01+0.00 0.00
1.6 0.36+0.00 0.13+0.00
1.8 2.07+0.02 0.74%0.01
2.0 6.02+0.07 2.16+0.03
2.2 13.04+0.16 4.67+0.06
K*K~n*n™ 1.4 0.04+0.00 0.00
1.6 1.80+0.04 0.64+0.00
1.8 10.88+0.28 3.92+0,08
2.0 31,76+ 0.76 11.36+0.28
2.2 65.16+1.64 23.36+0.60
K'KK*K~ 2.0 0.00 0.00
2.2 0.20+0.00 0.07+0.00
2.4 2.67+0.03 0.95+ 0,01
2.6 11.33+0.13 4.06+0.05
2.8 30.29+0.34 10.85+0.12
permutations, we find that the vertex is given by The invariant amplitude for e*(p’, s’)+e”(p, s)

- - -y=7"7" 1" 71" is then!®

Aply=1* (g, )17 (-, )1 (g, ,2) 77 (g- ;)] T 18 then
.2 4 = =% _5(» u

=-i g i (at s Rav 19 M=~ o5y 00, s'mul(p, 5)A* (7)

X(q4,1+9+,2=4-,1=4-2) - (6) and the cross section ¢ is given by
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1 m,m, f 2 dqy 4 g, —d. —d. —
7= ,V v'l E,E, <2|2'> 2 lMl (2w, )(2m)? (@m78(p +p 9179427901 q"z)’ (8)
with three times larger than the experimental value

m? 1 -
o 72 [nuatP=5a+4,7). (9)
ss’

The phase-space integral is evaluated by a
Monte Carlo!! program with 5000 points. The re-
sult is given in Table II. At 2E =1.5 GeV, the
cross section is about nine times larger than the
experimental value. Notice that when we general-
ize Steinberger’s calculation of 7°—y(up)y(vq) to
SU(3) we get an amplitude

2za

dEu s D q (10)

which gives a decay rate IT'y, of 20.1 eV, almost

1

Tep =7.2 eV. We would like to argue that the
cross section normalized to 7° decay may be more
meaningful. We then define the normalized cross
section '

o,,=0<r?°;’4>. (11)

This is also listed in Table II.

The other amplitudes for different four-meson
final states are similarly constructed. They are
summarized in Tables I and II. For complete-
ness, we have also calculated y—7*7"7° and
y-K*K™7° in this model. Here the basic box
diagram is given in Fig. 3(b). We define

1
Iy= f @) Tr[”‘ S E—pom Ty t—pra)—m

1
= 24r@m? Epukapuq:‘qg .

With this low-energy result, the y—3-meson ver-
tices are constructed; these are given in Table I.
The phase-space integral near the threshold in
this case has been worked out by Aviv and Zee.?
Using their result, Eq. (A20) of Ref. 12, we have
calculated the corresponding cross sections as
listed in Table II.

As can be seen in Table I, the vertex for four-
charged-meson production has a quite different
momentum dependence than the two-charged-two
neutral-meson vertex. Also, the latter does not
vanish when ¢,~0, while the opposite might be
expected from current algebra. Our model also
predicts that the kaon production vertex is of the
same order of magnitude as the pion vertex. How-
ever, they are not related to each other in a
simple way. From Table II, the absolute predic-
tion of our model is typically 10 times larger than
the experimental value, while the normalized
cross sections are typically 3 times larger, so
that the amplitudes based on a fermion loop alone
do have the right order of magnitude. We empha-
size that this model is the most economical one
that gives both an anomalylike contribution and a
simple generalization to kaon pair production. If
we were to work out all the one-loop contributions
systematically, e.g., in a linear 0 model, we
would have other classes of diagrams like Fig.
4(a), whose contribution is of the same order of

1 1 ]
v U—p+q,+q)-m P y-t-m

(12)

magnitude as the fermion loop, and perhaps with
opposite phase. This possible destructive inter-
ference would easily bring our result closer to
the experiment. Also, both functions I, and J,
defined in Eqs. (4) and (12) could be evaluated
exactly with numerical methods, and this should
give a more reliable result. Moreover, a com-
plete one-loop calculation will definitely include
diagrams like Fig. 4(b), where the ynm vertex
should be renormalized properly. In this respect,
a renormalizable, unified gauge theory will be a
perfect model to work with. This is currently
being investigated.

We thank Ronald Rockmore and Loh-ping Yu for
many helpful discussions and Craig Harrison for
his advice in numerical calculation.
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FIG. 4. (a) A possible one-loop diagram for y—47 in
a linear o model. (b) Another possible one-loop diagram
for y —4wn. The ynm vertex is divergent.
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Within the framework of Cabibbo V' —A4 theory bounds are obtained on the pseudotensor form
factor which is induced by SU(3) violations. Such an estimate is necessary to distinguish second-class
effects from effects of SU(3) violations. It is argued that calculations based on an analogy with the
dispersion-theory evaluation of the nucleon anomalous magnetic moment are suspect since the vector
and axial-vector currents have very different structures. A different dispersion-theory calculation
involving only the matrix elements of the axial-vector currents is presented, which predicts the F/D
ratio of the pion-nucleon octet coupling to be +(3)"2 It is concluded that, if the controversial large
experimental value of this term is confirmed, this would then require the presence of a second-class

current.

I. INTRODUCTION AND SUMMARY

The concepts of first- and second-class currents
were introduced by Weinberg,! following the in-
vention of G parity by Michel? and Lee and Yang.?
Recently there has been renewed interest in the
possible existence of second-class currents, fol-
lowing experiments of the semileptonic decays of
the A hyperon* and measurements of the ft values
of the decays of mirror nuclei to a common
daughter nucleus.® The relevant matrix element
of the weak current may be written in terms of
spinor functions and form factors. In the limit of
exact SU(3) symmetry, the symmetries of the
currents represented by the various form factors
are known precisely. However, this relationship

between the symmetries of the currents and the
form factors is less precise the more SU(3) is
broken. In order to establish the origin of a form
factor which in an SU(3)-symmetric world would
represent a second-class current, and which is
nonzero in fact, one must estimate the size of the
form factor obtained by assuming only first-class
currents in the SU(3)-symmetric world and ap-
propriately modifying the matrix element for SU(3)
violations.® Recently, attempts have been made
to estimate such induced effects.” In this work it
is argued that these previous calculations are sus-
pect. Implementation of the indicated modifica-
tions yields effects which are somewhat smaller
than those obtained previously.

The semileptonic Hamiltonian density is



