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amplitudes. If SU(3) interaction symmetry is
assumed also, there are only two solutions for the
interaction ratios; in each of these all the ratios
are determined. Data on the N-Z processes are
in strong contradiction to both these solutions.

Clearly, if the linear-zero postulate were not

applied to any amplitude, the SU(3) violation would

be less clear-cut. This is because the data ana-
lyzed by Odorico contain experimental uncertain-
ties, so that if no supplementary postulate were

used, the N-Z predictions would not be so pre-
cise. The significant thing about our results is
not the SU(3) violation, but the experimental sug-
gestion that nature prefers the less-mell-known
linear-zero postulate to SU(3) symmetry for spin-
independent amplitudes. More data and phase-
shift analyses of the KN xZ and miV KZ ampli-
tudes are needed to test this suggestion more
thoroughly.

*Work supported in part by the U. S. Atomic Energy
Commission.
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Previous work on the dual resonance model in inclusive vector-meson production is ex-
tended to include both abnormally coupled trajectories and trajectories with positive inter-
cept. Differential cross sections and density-matrix elements are obtained and compared
to those of the previous calculation. The single-particle spectrum for spinless mesons is
also obtained and compared with earlier results.

I. INTRODUCTION AND NOTATION

A. Introduction

In a previous paper' the predictions of a standard
dual resonance model (DRM) for inclusive vector-
meson production were obtained. The calculation
had two major shortcomings which one could ex-
pect to overcome within the framework of a DRM.
The first is that the B, which was usecP contains
only normal [for 1+2-3, q, =g,g„where q&

=(-1}~~P&]couplings. Consequently, for wN- pX,
where X is anything, only w exchange is included
in the t (wp) channel. But at very high energies
one would expect A, exchange to become increas-
ingly important (due to its higher intercept), and
we would therefore like to include abnormally

coupled trajectories in the calculation. The sec-
ond unpleasant feature was the use of only one
internal trajectory, the "w-p" trajectory o.(s)
= -m„'+s. While this is not expected to be a fatal
flaw, it is desirable to investigate the predictions
of a more "physical" model, for the sake of com-
parison to both experiment and to the predictions
of the simpler model.

In this paper we remedy these two ills. Using
the kinematic superstructures of Canning and
Jacobs, ' we construct an amplitude with abnormal
coupling to accommodate the A, trajectory. Pro-
vision for trajectories with positive intercepts is
made by using the tachyon-free amplitude of
R ittenberg and Rubenstein. The one-particle
spectra and density matrices of w and A, exchange



PHYSICAL THA JECTOHIES IN AN INCLUSIVE DUAL. . .

are compared, and the effects (if any) of including
positive-intercept trajectories are examined. This
latter comparison should provide some indication
of whether inclusive predictions made with a sim-
ple DHM, such as that used in Ref. 1, contain all
the basic features of more detailed models. In
this connection, we also calculate the one-particle
spectrum for spinless mesons using an amplitude
with physical trajectories.

The body of the paper divides roughly into three
major sections. In the first part, an eight-point
amplitude with the A, in three-pion channels is ob-
tained, and then used to calculate cross sections
and density-matrix elements. In the second part
(Secs. III and IV) we do the same for pions in the
three-pion channels. (In both cases, trajectories
have physical intercepts, 0.5 for the p and As and
-m„s for the |v.) Finally, in Sec. V, we compare
the results of the hvo calculations to each other
and to previous calculations and discuss our find-
ingS e

8. Notation

The notation is essentially that of Hef. 1. For
a+5 -x+X we define the usual invariants

s ={P.+P.)', t={P.-P.)', s={P.-P.)',
~' =p»' = (p, +p, —p„}', s ' = (p, +p,)' .

%e also use

o'.s = c'((P. +Ps)'),
~.;= o'((P. +P;}')

= ~({p.-p.)'},
(1.2)

etc., and let a = a(Ms}.
In dealing with the antisymmetric tensor &""P,

we use the less cumbersome notation

Pgj Pavpspp4o —~ Pj Pl psP4 ~

II. AMPLITUDE VfITH ABNORMAL COUPLING

A. Obtaining the amplitude

Since the A„p, and m have spin-parity 2', 1, 0,
respectively, the pxA, coupling is essentiaQy dif-

ferent from the pm coupling. The pm@ coupling is
normal, whereas the A, couples abnormally to
the pm system. The standard DRM N-particle
amplitude includes only normally coupled trajec-
tories. ' One way to introduce abnormal couplings
is to multiply the B„by a factor (called the super-
structure) constructed of e""s"s and external mo-
menta. Then, since this factor affects asymptotic
behavior due to the dependence on momenta, the
trajectories in the B„are altered in such a way as
to preserve the proper asymptotic behavior.
Bardakci and Buegg used this method on the five-
point amplitude. ' Abnox mal coupling in the six-
point amplitude was studied by Dorren et al.,' and
in the six and eight-point amplitudes by Canning
and Jacobs. '

There are two ways to detex mine the amount by
which each trajectory in B„must be lowered in
order to maintain proper asymptotic behavior.
One way, used by Dorren et g/. ,' is to write the
superstructure in terms of the invariants of the
problem, imposing the constraint that the Gram
determinant vanish. The behavior of the super-
structure is then studied in all the Hegge limits,
and trajectories in the B„are depressed by what-
ever amount is necessary to ensure leading Regge
behavior in all channels.

For large N (& 6) this method becomes unwieldy.
An alternative method that was proposed by
Canning and Jacobs' is more suitable for use in
our work with eight-point amplitudes. Bather than
consider the asymptotic behavior of the super-
structure in each Hegge limit, they consider the
spin structure at the first resonance in each chan-
nel. That this method automatically yields proper
leading Hegge behavior may seem somewhat mag-
ical at first, but is due to the fact that the angular
momentum in one channel determines the limiting
behavior in the dual {crossed) channel.

The spin structure of the superstructure in a
certain channel is determined by its transformation
properties under O{2) in the channel's rest frame.
As a simple example we consider

p ~ ~ ~ ~ ~ e p ~ ~ ~ ~ ~ ~

PxPsPs ~ PePsPe Bs(+si +as~ +]4~ +tet +hei oesi %42 %52 &262 Wvy &s42 +5» +sey &svy

+es~ +es~ +evi ass| osvs &ev) (2.1)

(For further examples and full development see
Ref. $.) The dot notation indicates that the P's
are contracted into the a""P in the order they
occur. At a» =0 there is no spin structure in the
12 channel from the B,. The superstructure can

be written

Qv I'p&""'Ps ~"' ' 'P~P5P~, (2.2)
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(2.3)

Since Q" transforms as a vector and P" as a scalar
in the 12 rest frame, the superstructure describes
production and decay of a spin-one object. If par-
ticles 1 and 2 are both 0 mesons, it is a 1 -me-
son. As it stands then, expression (2.1) leads to
a spin-one resonance in the 12 channel at a» =0.
By lowering the u» trajectory by one unit

[B,(c», . . .) -B,(a„-1,. ..)], we remedy this.
The spin-one pole now occurs at o.„=l. (There
is no o» =0 pole. ) This analysis is then repeated
for each of the trajectories appearing as argu-
ments of the B,. The amount by which a, &

is low-
ered is denoted m&~.

A further complication arises due to parity
doubling. It is quite possible that in some channel
the superstructure will contain both parities for
the leading spin present. [In the 24 channel, for
example, expression (2.1) has both 2' and 2

pieces. ] To ensure leading trajectories of def-
inite parity we depress such channels —we use
(a,4

—3) rather than the (a,4
—2) needed to give

leading behavior.
We now construct our eight-point amplitude. We

require that the amplitude "cover" all possible
Feynman tree graphs for eight external particles.
The amplitude covers a tree graph if it covers
each of the graph's resonant channels. A channel
is covered if in that channel the amplitude has a
leading Regge trajectory of definite naturality,
provided the first physical resonance in that chan-
nel has not been eliminated by our program of
maintaining proper asymptotic behavior (by lower-
ing certain trajectories). For example, in a chan-
nel with negative G parity and unnatural parity we
require the presence of a spin-zero pole (the w)

in our amplitude. For natural parity, positive G

parity, we require a spin-one pole (the p), but do
not require a spin-zero pole. There is one other
consideration which we use to simplify matters
somewhat. We intend to use the amplitude we
develop to study inclusive p production at large
incident momentum and missing mass squared.
We can therefore use the fact that only certain
orderings of external particles contribute in our
limit, ' and that we have resonant p's in two dipion
channels to limit the tree graphs we need cover
to those having resonances in the 12 or 23 channel
and the 67 ox' 78 channel.

The next step then is to analyze the 23 super-
structures of Ref. 3(b) to see which tree graphs
each covers. Having done so, we choose a set of
superstructures which will cover all the tree
graphs with resonances in the 12 or 23 channel and
the 67 or 78 channel. The set we choose is com-
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prised of

K$(1, 2}=e p1p2p3p4C fp5p8p7p8,

K18(» 2) - 8 f11P2P3 & &5P6&7

K22{1l } e ~1~2~3 ~ j 13P53

P&4P68 ~ Pe P7 ps

K23(11 } e PXP2P3 P13P58

x c ' '
pggP57 E

'
p5 p6p7

(2 4)

and the permuted forms K,(4, 5},K,(6, 7),K,(3, 4),
K$(8, l), K$(6, 5},K$(1, 8),K3(8, 7), K$(3, 2),K,(5, 6},
K„(8,7),K„(8,1),K„(3,4),K„(6,5),K„(1,8),
K„(8,1),K„(5,6),K„(7,6),K„(8,7),K„(2,3). The
numbers in parentheses following the E's indicate
the first two momenta to be contracted into the
first e. The other momentum subscripts follow
in either increasing or decreasing order, depend-
ing upon whether the numbers in parentheses in-
creased or decreased. For example,

The behaviors of the superstructures of Eq. {2.4)
are given in Table I.

The presence of the B trajectories [I =1',
J2=(-1}~",C=(-1)~] in certain channels may
seem undesirable at first since it is not one of the
leading meson trajectories. However, since in
our work the subenergy of these channels is large,
the low intercept of the I3 trajectory should not
matter. The trajectories for the various channels
were dictated by our intention to use this ampli-
tude in studying m p-p X. Our choice of a set of
superstructures covering all the necessary tree

graphs is not unique. In choosing superstructures,
any which would require elimination of tachyons
were discarded. This was a matter of taste; we
felt it desirable to avoid any such complications
which were not strictly necessary, After imposi-
tion of this criterion, from the remaining super-
structures those covering the most tree graphs
were chosen.

%e are now almost ready to add up 311 the terms
to get the amplitude. Before we can, however, we
must face one more question: With what coeffi-
cients do we add the terms? The ratios of the
coefficients of various superstructures will de-
termine the relative amounts of different couplings
of internal trajectories. Since our interest does
not lie in different internal couplings, we make
all coefficients equal to unity (to within a sign).
The effect of changing the coefficients will be con-
sidered later. The sign preceding each super-
structure is determined by positivity conditions
on the residue at the multiple pole I + 2 + 3 + 4
-A+3+4-B+4-C-B+4-A+3+ 4-1+ 2+ 3+4.
The final consideration is that we want our am-
plitude to be invariant under inversion of the or-
dering of the external particles [F(1,2, 3, . . .)
=E(8, 7, 6, . . .)]. The ambiguity of whether to
count symmetric terms (K»'s) twice is lumped
with the coefficient question.

The amplitude we use is then

E(1,2, 3, 4, 5, 6, 7, 8) = E (1, 2, 3, 4, 5, 6, 7, 8)

+ E8(8, 7, 6, 5, 4, 3, 2, 1),
(2.6)

E8(1, 2, 3, 4, 5, 6, 7, 8)=[F,(1, 2)+F,(3, 4)+F,(4, 5)+E,(5, 6)+E,(6, 7)+E,(&, 1)]+[E„(1,2) +E„(3,4) +E,8(8, 1)]
+-,' [E»(l, 2) +E»(5, 6) +E»(8, 1)]—[E»(1,2) +E»(2, 3)], (2 7)

E$(1, 3+1)=K3(373+1)B8{Q12—t1l (411 &13 —Pig (~21...1 +3-773g41 ~21. ..)~ g =2-3 mod 8
~ ~ rw I'

E3(Z 3 —1) =K$( 3 — )B8(912 —&8 8~11 13 8 1 8+11 l +3 8 1 8l +4 ™82 8 1

(2.8)

@=1-j=—1 —i mod 8 (2.9)

and similarly for the other superstructures, where the m&& are read off from Table I. For example,

23{ & } ~7P6~5 ~57~8$ ~ ~47~13 ~ PS~2~1

B8(+12 1 +13 1 +14 1 15 1 16 1 23 0 24 1 25 ! 28

o27 2 IX34 3 1235 57 1236 5 CR37 3 c145 2 (248 3 CR47 1, a58 —1, u57 —1, n87 —1}. (2.10}

The factor of 2 preceding the E» terms in Eq.
(2.6) is to ensure in the total amplitude a coeffi-
cient of 1 for the F» terms, which are symmetric
under inversion of external ordering.

8. Calculation

Now that we have an eight-point amplitude with
abnormally coupled trajectories, we can follow the
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N
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ab a b~aba b

p bi p

A B D
FIG. 1. The four DRM diagrams vrhich contribute to

a+5 —x+ X in the fragmentation region of a.

N =P Disc„2 (aM(A.) I T I aha(A. )) (2.11)

and

procedure used in Ref. 1 to obtain expressions for
inclusive p-production cross sections and the den-
sity matrix due to A, exchange. For a+5-x+X,
where for our case x is a vector maison, we know

in the limit s,M' -~, small t that we only need to
keep certain orderings of external particles in our
eight-point function. The graphs we need to con-
sider are shown in Fig. 1. The density matrix
elements are computed from Fig. 2, where

FIG. 2. Diagrammatic representation of density-
matrix elements.

1 d'o I'(u„„+1) (2.12)

The next step is to calculate A, B, C, and D in
the manner of Ref. 1. For A, we first take the
residue at the n» Qg6 1 pole. This gives us the
first graph of Fig. 1, with the propagator denom-
inators for x and 7 removed. It contains contribu-
tions from the spin-zero daughter of the p in both
x and x channels. We eliminate these and factor
off the p ww vertices (as explained in detail in Ref.
1) and are left with our expression for A:

A =6 ' ' E'p-p 6 p —pj, 6 pgpg»6 ptip»

x(B (a,"——1, a~ —1, a,—",—1, u~, —2, ai& —1, u.—', —2, a:&q —3, u ~ ~
—3, u".;—4)

—B,(u,",——1, a~- 2, a,"—,—1, a[~
—2, a~,——1, u~~ —2, u,'~~ —3, a,—"g g

—3, a~ -4))
p' p,

' e' e~ p-,
'

p,'—e'*'BP,(a,„——c1—1, ar, —2, u„—1, u"„——1, u,—,—1, a,'gg-, —2, argy —2, u"„——3)

p pr e + e~ PaPae Be(aax
P c2—1, u~~ —li a~& —1, u&y —1, a~~ —1i aayy —2i uasb 2s uxx

(2.13)

where

e= e(X), e' '= e(X')'. (2.14)

The superscripts on the n's indicate which tra-
jectory the superstructure places in that channel.
(v is the vacuum trajectory. ) The brevity of this
expression relative to the corresponding expres-
sion in Ref. 1 is due to the spin-one structure in
the 12 and 78 channels being contained in the
superstructure. Consequently, taking the residue
of the B, leads to a spin-zero form and not to the
proliferation of terms obtained in the earlier case,
where the spin-one structure was contained in the

Bs. The paucity of terms which appear in the ex-
pression for A compared to the number in E is
attributable to three causes. Some terms did not
have a» =1 and Q.g6 =1 poles and hence could not
contribute to A. Some were parity-doubled (and
therefore depressed) in the 45 channel, which
would lead to them being down by one power of
M'; these were neglected. And finally, many
terms went to zero when we went forward, setting
P; = -P„etc.

Now, using the results of DeTar, Kang, Tan,
and Weiss' (DKTW), we can take the discontinuity
in M' and obtain

—Disc~2A = e" ' ' ' p.'p, E' e~" p„-pj's" 'p~ pg,—e''' 'p, p, e' ~

P

+[&" ' ' , ppe e"'' 'p, pg 6'*'+e" ' 'p, p„e'*' e"' 'p,'p~E J
B

us (M') —1 as (M') —1 (2.15)
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where

(2.16)

y 2p ~20 sy ~3% yy y p +2% ~2% 3t ~st yp
Qgb Q@b

(2.17)

The same procedure is followed for 8, C, and
D. The expressions obtained are somewhat length-
ier and are found in Table II.

C. Numerical evaluation of A2 exchange

The expression for Discs' (A+B+C+D) can now
be evaluated numerically, and cross sections and
density-matrix elements obtained. The results
are summarized in Figs. 3-7. In Fig. 3 the cross
section du/dtdM' is plotted as a function of
t' = (t —t;„)for large s and various values of M'/s.
(At large s the cross section only depends on the
ratio M'/s and on t.) The forward dip is expected
(for a Heggeized A, ) since the A, only couples to
the pw system for helicity-one p's, and this am-
plitude is down by a factor of (1/cosa, ) in the for-
ward direction. ' This dip becomes increasingly
dramatic as M'/s decreases as is expected since
cos&, increases as s/M' does. There is no dip-
shoulder structure at larger (--0.5 GeV'/c') t',
nor is it expected for A, (positive-signature) ex-
change. Figure 4 shows the dependence of
E„d'o/dp, ~ on p» for fixed p, q/ph,

The density-matrix element p, , in the Gottfried-
Jackson frame is displayed in Fig. 5. The elements
p„and p~ are not plotted; they are constant at
0.5 and 0, respectively. For natural-parity ex-
change in the t channel we expect poo

= 0 and gg
—p, , =0 for large cos8, . However, near the for-
ward direction, cos8, is not large, and p, , is
forced by kinematics to be zero at the forward
point. Away from this point, cos8, is large if
s/M' is large. We see in Fig. 5 that as M'/s be-
comes smaller, g, approaches p» =0.5.

Another matter worth studying is the contribu-
tion of depressed terms. Terms with parity dou-
bling on the t-channel trajectory had this trajec-
tory lowered by one unit. However, since s/M'
is not necessarily large, we could not neglect
these terms. Their size can now be checked nu-
merically. Figure 6 shows the relative size of
the pure A, versus the parity-doubled parts for

particular values of M'/s. As can be seen, even
at rather modest values of s/M', the parity-dou-
bled part is negligible except in the very forward
direction, and even there it accounts for less than
half the cross section.

The effect of varying the coefficients of the terms
which went into the full amplitude should now be
dealt with. Fortune smiles upon us in this case,
and we find that the shape of our results does not
depend strongly on these coefficients. This occurs
because one term is clearly dominant and also
because all the terms have similar t' dependence.
Figure 7 demonstrates this, comparing the cross
sections for the cases where the coefficient of the
dominant term is 5 and then —,', instead of the
original choice of 1. The curves are normalized
to agree for larger

~
t'~ to facilitate comparison

of the shapes.

III. NORMAL COUPLING WITH PHYSICAL
TRA JECI'ORIES

A. Obtaining the amplitude

We now turn to the task of constructing a more
physically realistic DBM amplitude for pion ex-
change in inclusive p production. In particular we
wish to allow for internal trajectories which are
not pion trajectories. We would like the p trajec-
tory to have intercept —,', and we would like a vac-
uum trajectory with intercept 1 in order to simu-
late Pomeron exchange. However, introduction of
trajectories with positive intercepts also intro-
duces the problem of tachyons which must be elim-
inated.

To handle this difficulty we refer to the paper by
Rittenberg and Rubenstein. ~ They attempt to con-
struct amplitudes which have (obey) (a) all the rel-
evant singularities, (b) Hegge behavior in all chan-
nels, (c) the bootstrap condition, and (d) absence
of tachyons. All the "relevant singularities" are
poles. Condition (b) is self-explanatory, as is
condition (d). The bootstrap condition is that one
obtains the (N- M+1)-point amplitude when one
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TABLE II. Expressions for Disc&2 of the terms B, C, and D for abnormally coupled internal trajectories.

1
-Discjt2(B +C) =B&+B2+B3+B4

n
p (S) 2 a A(t)-& nA(u ) —3 a A(t)-&

B =-2&~" p p ~ e~v"p -p ~' "p p ea "pp E'*'cos[xn (t)]1 a x ax b b a'R x {M') — (M')—
P P

np (I ) 1 np (Nl ) 1 /

xDI, ; nA(t) —1, nA(t) —1, nA(t) +nA(s') —2, nA(t) +nA(s') -3, -nA(s') -1,0
eA(u) —3 ' np(s)-2 '

=[6~ ' p'p'6'6~ "p'p 6v ''p'p'6a'"p'p'6 +'e ~A +6~'''p'p'f +'f~V'' p'p'6 a''p'p'6 "'p p e e'" A t ]2 a x a x b x b x a x a x b x b x

n
p (s) —2 aA(t)-~ nA(u) —1 aA(t)-5

np(M 2) —4 np (M2) -4
e {M ) -4 n (M 2) -4xDI,

{ ) 1,nA(t) —3, A(t) —,nA(t)+nA(s') -4, nA(t)+nA(s') -2, -nA( ') —2, o
P

np (S) 4 aA(t)-& n A(u ) —1 aA(t)-4

n(M) —2 n Qf) —2

np (M ) 2 np (I ) —2
xDI, ; nA(t) —1, nA(t) —4~ nA(t) +nA(s ) 3 ~ nA(t) +nA(s ) —1, -nA(s ) 2 Qn (s) -4 '

eA(u) —1
P

np (s) 1 aA(t) 2 nA{u ) —1 aA(t)
[fp .+ ~ * ~ & + ~ Qp. ..p, p .f .e 4%aA(t) + Qp. ..p .p, Q ~ Qp. ..p p ~ & + et waA(t) ]a b x a a b n(M) —1B n (M') —1B

B(M2) 1 nB(M ) —1
xI, ; nA(t) -2, nA(t) —1, nA(t) +eA(s') -3, eA(t) +nA(s') -2, -nA(s') -1,0n

p (s) —1 '
nA(u) —1

np (s) 1 aA(t) -& n A(u ) —1 aA(t) -2
B =-[e~" p p ~ f'f~" p p ~ &I* e &~A(t)+&~ "p ~ p ~ &Ie ~ &P "p.p ~ f et~aA(t)]

4 a x b x a x b x n(M) —1B ngf) —1B

nBgf ) —1 nBgf ) —1I, , eA(t) —1, eA(t) —2, nA(t)+nA(s') -3, nA(t)+nA(s') —2, -nA(s ), Qnp(s)-1 '
nA(u) —1 '

1—Disc&2D =D&+D&+D3

nA(u) -2 aA(t) -& nA(u) —1 aA(t) -2
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evaluates the N-point amplitude at the spin-zero
pole in the subenergy of M external particles. The
manner in which they approach the problem is to
look for generalizations of Lovelace's" solution
for the four-point case. Standard B„'s are multi-
plied by factors of a, ~ to eliminate the tachyons at

a&, =0. The n's in the BN are then lowered by
amounts (easily determined by the methods of Sec.
II) to preserve proper Regge behavior —or, equiv-
alently, spin structure at poles.

The solution found in Ref. 4 for the case of eight
external particles is

F8 =g (a gga45a87 Bg(a 73~ a 73, &4
a—1, a &5~ a M

- 1, agg —1, ag4 —2, agg —1, a$8 2i a37 —1, a$4 —1, agg, a38 —1,

a45is a48 —1, a47 —1, a58 2, a57 ly a87}

a74agga87BS(aug 1, a», a,4, a», a„—1, agg, a,4, agg —1, n„—2, ag7 —
q $4 & a$5 2~ a38

a ua34a58B8(aug~ a 73
—1, a~4 —1, a 75

—1, am —1, agg —2, ag4 —1, agg —2, a38 —1, ag7 1,

a34& a35 I a38 & 37& a45 I a48 & a47 & a 581 a57& a87 8 i (3 1)

where the sum is over all permutations compatible
with duality rules. It should be noted that Eq. (3.1)
is not fully (all channels) Regge-behaved term by
term, but only when all terms are taken together.
The negative sign preceding the last term insures
that the three terms add in all regions of interest.

Is Eq. (3.1) suitable for use as our eight-point
functions Not quite. As it stands, the F, so de-
fined is not symmetric under inversion of the or-
der of the external particles. To remedy this, we
define

F =F8(1, 2, 3, . . . ) +F8(8, 'I, 6, . . . )

= g(Fr +F&087)+2Fu m Fuui87&} (3.2}

where F» F,» and Furr are the first, second, and
third terms of Eq. (3.1). The "(inv)" indicates that
the ordering of external particles is reversed, and
we have noted in writing (3.2) that F„and F«& „&

are identical.
The amplitude defined by Eq. (3.2) still does not

cover (in the sense of Sec. II) all the tree graphs
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of interest. We are, however, fortunate in both
the magnitude and the manner of this failure. Of
the 56 tree graphs to be covered, only the three
of Fig. 8 are not covered. Also, in each case the
failure is expected to be inconsequential. Figure
8(a) would be covered except for the fact that term
F, has a p trajectory in the 56 channel whosefirst
resonance is at J~ =2'. While this would be suf-
ficient cause for consternation in other kinematic
regions, it is not expected to have much effect on
our own calculation, where

I sse I
will always be

very large. Similarly, Figs. 8(b) and 8(c) would

be covered by F», and F»«;„„&except for the lack of
the n4, = 1 pole. This does not worry us since the

a4, trajectory will always be evaluated at s4, =0
and our amplitude is constructed to have the proper
asymptotic behavior in channels dual to the 45
channel. In fact, since we intend to use n„(0)=1
to simulate Pomeron exchange, we do not want a
pole with spin one. Hence, Eq. (3.2) is quite ac-
ceptable from the standpoint of covering tree
graphs.

Equation (3.2) will serve as our eight-point am-
plitude in this section. The results of DKTW re-
garding which orderings of external particles con-
tribute in our region of interest still apply, since
noncontributing orderings are damped exponential-
ly; and consequently the results will not be affect-
ed by lowering some trajectories and multiplying

by some subenergies. And so we now proceed as
in Secs. I and II to compute the cross section and

density matrix.

B. Calculation

can contribute to A. Consequently, we can write

A" = F,+F~(mv) +2F». (3;3)

A A I +A I( ) +2A» y

where

(3.4)

IO
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Pure A2

Parity —doubled

I I I
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-t (GeV /c )
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To obtain A from A" we proceed as before: Take
the residue at the ny2 1 @78 1 poles, eliminate
the spin-zero daughter contributions, and factor
off the pmm vertices. This yields

As before, we must calculate A, B, C, D shown in
Fig. I, now using the F defined in Eq. (3.2) instead
of the F of Eq. (2.5). Considering first only/I, we

see that the terms F», andF», &- „& in F can be ne-
glected in computing A, since neither has spin-one
poles at both a»=1 and z»=1, and hence neither

IO

IO

I I

M /s=0. 2
(b)

Tota I

Pure A2

Pari t y
-doub led

I.O

0.8—

' 06—

0.4

I I & I

——-- M /s-0 052

= O. I 0
= 0.25

O

CU

b
C3

10—

0.2

I I I I

0.2 0.4 0.6 0.8 I.O 1.2 I.4

I

0.2
I l

0.4 0.6
-t (Gene/ce)

I

0.8

( Ge'P/c )

FIG. 5. pt ~ in Gottfried-Jackson frame at M /s
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FIG. 6. (a) Pure A. 2 versus parity-doubled contributions
to do'/dt dM atM /s =0.1. (b) PureA2 versus parity-
doubled contributions at M2/s = 0.2.
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A, =(-a")a~, e-' '& p;( e p, B,(a,„&a-—1, a,—„a„-1,a„—„a„—-1,a(, () & a;))(, —1, a;)& —2)

+e P~Be(a ——1, a —1,a,—,, a, , —1, a,,(, &
a„——1, a~~, a,,—, ——1,a,—~

—2}

+ e pr B8(a,, ——1,a —2, a;, , a, q
—1, a,qq, a „——1,a qq & a ,qq

——1, a,—r—2)

+ e P;B,(a ——1, a —2, a —„—1, a, (,
—1, a, b(, &

a„——1, a ~~, a,~~
——1, a, ~

—2}) (3.5}

= (-a ' &)a e p e ' + p —, B (a „—,a, a-, , a q
—1, a qr —2, a„——3,

aqua

—1, ao))(, —2, a ),
—1) .—

One obtains A,&. „& by the substitution

(&, e ' &', a, b, x, a& b, x)- (e ' *, e, a& b, x, a& b, x)

in the expression for A, . Taking the discontinuity one obtains

(3 6)

~
~ ~Disc„2A = 2e -~ P,e' ~ P,(a —1) ' 't I

7TQ

+(e 'P(&e *'P(&+6 'P(&e Pb)( a(&(&
(a.(

—2)(a~( —1

Q-1
y &i ™ary ™axt Qax + y Qax y

Qab

))
='

Q-1 Q-1
Qah Qab

,», ,„&( &)
( . — )( . — ))

(a -2)'
Q 2 Q 2

Qab —1 Qab —2

&~ax Q-2E' 'P 6 'P Q I ~, yQax~QaxyQax —yQax, -2y0
Q Qab 1 Qab

(3.7)

All two- and four-pion channels contain the p tra-
jectory except channels with vacuum quantum
numbers, in which we use a„„(0)=1. Three-pion
channels contain the pion trajectory. Expressions
for the discontinuity in the other terms are found
in Table III. The functions Bf„, and Df„, in Table

III are used to denote respectively the (B +C) and

D obtained using an unmodified B, instead of I'.
The expressions are lengthy and are found in Ref.
1.

C. Results

V)

t:

O

J3
O

10

0.1—

Numerical evaluation now takes place as before.
Figures 9, 10, and 11 display respectively the t'
dependence of do/dtdM', the p, distribution of
E„d'o/dp, ', and the t' dependence of the density-
matrix elements. Results here are less satisfac-
tory than in the abnormal-coupling case and the
simpler normal-coupling calculation of Ref. 1.
The cancellation problem encountered in Ref. 1 is
even worse now. That problem is that near the
dip at t = -1 (GeV/c)' cancellation occurs among
the terms leading in s and M'; and since we ne-
glected nonleading terms the results are unreliable

.01 I I I I I I

0.2 0.4 0.6 0.8 1.0 1.2 1.4

t(Gev /c }-
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6
(b)

6 5

(c)

4

FIG. 7. Comparison of predictions for c& =0.2, 1, 5,
where c& is the coefficient of the most important term
in the amplitude.

FIG. 8. The tree graphs not covered by the amplitude
for normally coupled physical trajectories.
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TABLE IG. Expressions for Disc&2 of the terms 8, C, and D for normally coupled internal trajectories.

Discus(B + C) =Q 8 (

Bf DiSCg2Bfoig(no» y u ly gx y uab 1y nbby 'ubx 1y ne Q y IL 1y 'uo x)

I n b 1 og ub CXa»

B2 = -4u 6 Po d + Pa cos (Fnay )ux

' nax nex-1 nax +™o
uob —1 ubx

n- +no p, —ngx —1, 0

«ab-1) (nbx) ~a x u u : nox ~ uax ~ nor+no» 2 uox+uox ~ ~ox ~ 0
n nab

—1

] cxex ub Ex

u ng(6'ep E' 4ep g ax +qeP q 4sP 8 ax)

u
nob 1 ubx

uab cxox 2 . ub c, i
B4=n'2n'u be'+'Pb& 'Pb t2 cos(7t'uo-)leb b b n —1 u —1

u —1 u —1
nob

'
ubx

u —2 ub-

~ax '
ut2u 7r(q ~p ql g ~p g s Tlcf, ~+ g ep g~ 4+p g ex)

(n —1)2

n —1 n —1
ueb

'
ubx

(-nbx +2)(n~-2)
B8=2xn'2(n —l)cos(mn -)e p e'* pox a a (n -1)2

n-1 n —1XI i uax ~ uax & uax +uox 2 ~ uax +uex 1& ~ex & 1
uab 2 ubx

Disc&2D =D&+D2+D&

D~=2noisc/Dfor. (uex ~ n nex ~ ubx neo» -1 neo -1 nbb-1 neex -1 ubx)

(ubx 1)(ubx 2) "ax u —1 u —1
(n -1) bx be

(nb-» —1)(nb-x —2)
Pe ( ubx 2)

(u -1) - —1'

bx 1 ox bx 2 o»
] 1 I 1& 2& no% 1~ nexus nax'» nag~ 1 0n —1 u —1 bx bx

(nb-x —2)(nb-„—1) a „
(n —1) nb- —1

(nb- —2)Wb-„—1)

bx bx

nbx 2 ~ox ubx 1 ~op & n -1 u —1
Pb ex ex ax ~ oxu —1 u —1 ub- —2 nb- —1
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when these smaller terms are important, as they
are in the vicinity of the dip. This shows up in our
results as unphysical values for the density-ma-
trix element p«. Compaxing these results of the
modified amplitude for normal coupling to the re-
sults of the previous analysis, using an unmodified

Jj„ indicates that the results are quite similar
qualitatively, the main difference being that in the
modified calculation the dip structure develops at
smaller values of M'/s than it did in the original
calculation. The similarity of the two sets of re-
sults for vector-meson production is to be expect-
ed since we have not altered the txajectoxy in the
t channel.

IV. PHYSICAL TRAJECTORIES IN mn ~ nX

A. Calculation

IQ

Q.Z Q.4 0.6 Q.8 I.G I.Z

P~ ( GeV/c)

FIG. 10. E d30/dp„3 for x exchange at p„ll/p; =0.95,
0.7.

%e are also in a position to study a DRM with

physical trajectories in inclusive reactions with a
pseudoscalar meson as the observed particle in
the final state. These results can then be com-
pared to those of a DRM with unphysical trajecto-
ries. A substantial change can be expected in the
t' distribution, since we are in effect changing the
trajectory in the f, channel from a w to a p when we
include physical trajectories.

For the amplitude we take the six-point ampli-
tude of Ref. 4 and symmetrize it under inversion
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of ordering of external particles. The symmetrized amplitude is

+s alsa45Bs(am~ a|s, au —1, ass —1, ass —1, ass —1, ass —1, ass, ass)

+assassBs(ass I~ a|si ni4~ ass ass ass 1 ass ass nss

We can now take the discontinuity for the four orderings of particles (A, B, C, D) and we obtain

(4.1)

a„(-a„—+1)Disc„s(B+C)=-2va„—a cos(va -)

; e —,n —,o.,„-—1, o. —,n —+1, -2, 0, 4 2
&aa

xE, ;~ —,z —-1,z~ +a -1,a~ +e, -z -1,0Q Q

&nx 1 &os

-2va„—a cos(va -)

Q QxI
1

1 Q + Q +Q 1 Q -1 0
& nx &aa

(4 2)

as'(as~ -1) ~ a a
Q

(4.4)

Taking propex account of the Chan-Paton factor"
to ensure correct signature, we use

1 d 'o I"(a„„+1)E, , = "" Disc„s(A -B -C+D).

(4.5)

In the numerical evaluation of this we use the p
in two-~ channels, the ~ in three-7t channels, and
the simulated Pomeron for our vacuum exchange.

those which would be common to most Regge mod-
els. In order to take the discontinuity in M', we
went to the asymptotic limit in M' (and hence s).
In doing so we lost some detailed information (such
as most of the resonant structure) and are using
the DRM primarily as a Regge model with pre-

B. Results

The effects of including physical trajectories are
greater for production of pseudoscalar mesons
than they were for the vector-meson production.
In the calculation using an unmodified B, the /-
channel trajectory was in effect the pion, whereas
now we have a p trajectory. Figures 12 and 13
point out this difference both in the position of the
minimum and in the behavior at small f' (or Pi),
which is not at all the steep exponential of the ear-
lier case. For comparison the two results for
M'is = 0.2 are shown in Fig. 14.

IO

. .... ... M is =0 .4

V. DISCUSSION AND CONCLUSIONS

DRM calculations are often done using the un-
modified B„in the spirit of trying to abstract from
the calculation yroyerties or features which are
general features of the DRM and not merely pecu-
liax to the particular amplitude used. Our calcula-
tion can serve to demonstrate which features are
common to different DHM amplitudes. In this re-
gard, the predictions on the firmest footing are

IO ( I l I ) I

Q.Z 0,4 O.6 0.8 I.O I.2

-t (GeV'ic')

FIG. 12. de/d t dM2 for spinless meson production at
M2/s =0.4, 0.2, 0.1.
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scribed residues —and, of course, with a definite
prescription for handling unstable particles.

The inclusion of positive-intercept trajectories
for m exchange in vector-meson production does
not lead to any new and interesting behavior. This
is due to the fact that the t-channel trajectory (v)
was handled satisfactorily in the unmodified Be.
Besides not introducing any new features physical-
ly, it does introduce more computational head-
aches due to its greater complexity and its propen-
sity toward emphasizing the breakdown of our ap-
proximations in the dip region. In all fairness it
should be mentioned that inclusion of positive-in-
tercept trajectories does allow us to use o,„„(0)= I,
which leads to more reasonable M' and s depen-
dence. However, if only (I/c„)E,d'a/dP„' is con-
sidered, as in Ref. 1, this dependence on the vac-
uum trajectory is effectively removed. It appears
than an unmodified B, is preferable for vector-
meson production since it contains all the main
features and is easier to work with.

For the production of pseudoscalar mesons, the
situation is different. Now inclusion of positive
intercepts allows us to put a realistic p trajectory
in the t channel instead of the hybrid ~-p used be-
fore. This affects the position of the minimum and

also the slope in the forward direction. When
comparison to data is intended, the modified B6
with physical trajectories should be used for the
one-particle spectrum if we are going to be fair to
the DRM. Its use is no more difficult than that of
the unmodified B6.

For abnormal coupling (A, exchange in p produc-
tion), simple kinematics force us to use a relative-

p& (GeV/c)

FIG. 14. Comparison of predictions for spinless meson
production with and without physical trajectories.
(Curves have been normalized to start at same point. )
Predictions are for p„jj/p; =0.7.

ly complicated model. The amplitude we used was
highly nonunique; however, most of the general
features are expected from any Regge model and
therefore are not peculiar to our choice of an am-
plitude.

Clearly any attempt to study the production (in-
clusive or exclusive) of spinning particles must al-
low for different types of exchanges. As can be
seen from our calculations, the "hallmarks" of
particular quantum-number exchange, such as
dips and relations between density-matrix ele-
ments, carry over fairly closely from the exclu-
sive to the inclusive case. One must be prepared
to devote the same attention to kinematics as in the
exclusive case if any serious study of reaction
mechanisms is to be attempted.

Present data for exclusive p production in
charge-exchange reactions do not show any appre-
ciable A, -exchange contributions. " Because the

A, trajectory is higher than the ~ trajectory, the

A, should dominate at sufficiently high energy. The
large coupling of the pion to the pm and to the pn,
however, requires that the energy be very high be-
fore the A, finally gains the upper hand. The situ-
ation may be better in inclusive reactions. The
reason for this is that instead of a mpn vertex ver-
sus an A, Pn vertex, we will have the ~ and A, total
(off-shell) cross sections on protons. If the ratio
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of these is not so large as the ratio of their re-
spective (squared) couplings to pm, the A, would
make its presence felt earlier.

Counterbalancing this there is a drawback of
looking for the A, exchange in inclusive reactions.
This is the fact that the quantity which must be
large for A, to dominate over v exchange is s/M',
where M' is the missing mass squared. If we need
to go to large M' before c„"'„(M')/ct'„'(M') (for off-
shell v and A, ) becomes appreciably larger than it
is at M'-1 GeV', then we mill have to go to a cor-
respondingly higher value of s to maintain the val-
ue of M'/s which will assure A~ dominance (or
competitiveness). If the gain discussed in the pre-
vious paragxaph can more than offset this, then
the A, -exchange contribution should become notice-
able at a lower incident energy in inclusive reac-
tions than in exclusive reactions. And as we have
seen in our model calculations, the presence of an
appreciable A, -exchange eon@.ibution should be de-
tectable just from the shape of the differential
cross section —particularly at smaller values of
M.

Distributions in the central region would be de-
sirable. The present absence of these distribu-
tions is mitigated somewhat by the fact that on the

basis of what has been done me have a good idea of
what the central-region predictions must be. For
A, exchange, the density matrix elements p» and

p, , both stay constant at 0.5. The cross section
continues to decrease, but becomes a little flatter.
The small bumps die away. For w exchange, the
situation is similar to that of Ref. l. As ~t ~

in-
creases, p~ increases to a value consistent with
the results of Fenster and Uretsky" and Kang and
Shen. '4 For p exchange in m production, the re-
sults should be similar to those of DKTW. ' Only
one ordering survives in the central region and
our modified amplitude has essentially the same
asymptotic behavior (as s, M', (f(, (u(-~) as their
amplitude for this ordering of external particles,
the difference being that our vacuum trajectory
has intercept unity. But they found this intercept
to have small effect on the t or p~ distributions.
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