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We present here an extension of the maximum-likelihood method. We demonstrate that the estimation
of certain parameters, which are important in the analysis of multibody final states in nuclear
interactions, is equivalent in power to that of maximum likelihood. We indicate how this new method
gives valuable guidance in improving the nature of the hypothesis under test, and how the method can
be interpreted as a technique for separating a body of experimental data into a number of resonant
channels on an event-by-event basis.

INTRODUCTION

In this paper we present an extension of maxi-
mum-likelihood analysis which we believe is par-
ticularly well suited to the analysis of multibody
final states. We present first a heuristic develop-
ment of the technique, second a derivation of the
important equations of the technique from the pos-
tulates of maximum-likeLihood ana1.ysis, a very
brief discussion of some problems not covered in
the derivation, and finally a description of a com-
puter program which applies the ideas presented
here We em. phasize that the second part of the
paper is a derivation from the accepted principles
of statistical inference, so the other discussion in
the paper is an illustration of, rather than experi-
mental evidence for, the validity of a mathematical
theorem. In subsequent papers we will present
the results of some applications of this technique.

HEURISTIC INTRODUCTION OF CHANNEL LIKELIHOOD

In the analysis of multibody final states an im-
portant problem is the determination of which
resonant channels are present and the relative
contribution of each channel to the total body of
data. (In addition to resonant channels, one would
include a nonresonant phase-space channel. ) It
would be desirable, if possible, to identify for
each event the channel which was responsible for
the production of that event. We feel that-the
technique described here comes very close to
achieving this goal. This is possible because dif-
ferent channels populate different regions of al-
lowed phase space differently. In the extreme, un-
realistic case where each channel populates a dif-
ferent (nonoverlapping) region of phase space,
there is no problem in seeing that an appropriate
partition of phase space will separate events by
channel. Unfortunately it is not that simple in
reality. There are regions of phase space which
are populated by more than one channel, and we

must consider how to handle the events which oc-
cur in these regions. We will work in a full set of
phase-space variables, so that the regions over-
lap must be smaller than in any possible mass
projection. In this way we retain the fullest pos-
sible information about each event. In a region of
overlap, we try to apportion an event between the
overlapping channels, giving some percentage of
its full weight to each of the channels. Since, in
general, all channels overlap to a small extent
everywhere, this apportioning is really done for
every event in the data and it is therefore crucial
that it be done rationally. To do this we introduce
some notation.

There are N events of data. Each is described
by a full set of variables, which we think of as a
vector, or point in phase space. R,. is the phase-
space point of the i th event in the data.

There are M channels in our hypothesis (includ-
ing phase space). For each channel j we have a
phase-space density function denoted by p, (R).
These functions usually are Breit-Wigner resonant
shapes, but they can include factors accounting
for angular dependence. The normalization of the
p,.(R) is

p, (R)d R,

where LIPS indicates an integration over Lorentz-
invariant phase space.

The number of events which are produced via
the jth channel is¹.There is a constraint that

'We attempt to find the "probability that the ith
event came from the jth channel. " This depends
on the magnitude of phase-space density p~ eval-
uated at the point R, , which is to say p,.(R,.). It
also depends on the relative sizes of the N~. Sup-
pose an event were found with an H,. such that

p,.(R,.) = p,(R,) for k g j (different channels, but
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same event) and suppose we already knew from
other information that there are nine times as
many events in channel j as in channel k. %6 mould

say event i is 90% channel j and only 10% channel
k. We define f„=p~(R, }for conciseness of nota-
tion. %6 have then that

is the relative probability of event i having come
from channel j. %'e normalize this for each event,

phase spclce} alld will distort the dlstrlbutlons ill

thRt chRQD61 ln R vlslble may» glvlng R strong ln-
dieation that another channel should be included in
the hypothesis. If a channel is included in the
hypothesis mhich is not present in the data, the ¹

for that channel mill be driven to zero in the itex'a-
tion.

Since the plots of meighted or selected events
approximate data samples from pure resonant
channels, one is able to see directly in the histo-
grams any features of the data mhich mere not in-
cluded in the original hypothesis. Thus, unlike
the standard maximum-likelihood technique, the
channel-likelihood approach gives useful indica-
tion as to horn the structure of the hypothesis
might be improved.

so that the w„have the property Q", ,u „=1for
every event j. This ggj,- is the "meight" of event i
ln chRDD61 j. Notice thRt lf there mex'6 Qo ovex'1Rp,
fox' 8Rch eveDt i Rll of ce ji mould be zero except fox'

one channel j such that sg,.&

= l. A Qem estimate of
the number of events in channel j is a sum of ggji»

N

+~ = Qll'1a ~

and always has the property that Q, X,'= N. .
By computing the sy j, and by meighting each event

by se j& me expect to get enriched samples of events
for channel j. %'e sum this enriched sample to get
a bettex estimate of horn many events there are in
the channel. %e itex'ate the procedure by using
¹ in the place of N& and repeating the computa-
tion of the syj, . The iteration converges to a set of
Nj mhich are the solutions of a set of equations,

DERIVATION FROM POSTULATE
OF MAXIMUM LIKELIHOOD

The solution of Eqs. (5) is an estimation of pa-
x'ameters, N, , in R hypothesis. We miD shorn that
these equations are a subset of the full set of equa-
tions mhich must be solved to find a maximum-
likelihood fit of a hypothesis to the data. The
llkellhood function g ls defined as a product over
the data:

In this expression the adjustable pax ameters are
the N, and the 0,. The o, are "shape parameters"
mithin each channel. %'e display them explicitly
so as to distinguish them cleaxly form the "size
parameters, "¹.

The maximum of g must be found subject to the
constraint given in Eq. (2). We use a Lagrange
IQultlplier» g» to lntx'oduce the constraint into RD

equRtloQ fox' the maximum of in@:

After this solution has been found, me use the
%j; to melght events mhen IQRklng invRx'lRnt-IQR88

and angular distribution plots. These plots of
meighted data should have distributions somemhat
like the density function used ln selecting theIQ

but need not agree exactly. ff a slightly wrong
IQass or midth is used in selecting a resonant chan-
nel» the 8v811t8 froIQ that channel mill still be 86-
lected and mhen plotted mill display the actual
mass and width of the resonance. (At least, they
mill be closer to the true value than the initial as-
sumption was. )

If a resonant channel has been left out of the
hypothesis, the events due to that channel mill be
picked up by some other channel (probably pure

I ~S,
8i 5¹i i

i

fil
A» j 1» ~

~

~~j
Multiply by N,. Rnd sum these equations to detex"-
XQlne A.:
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However, THE COMPUTER PROGRAM

so

QN~ =B-;,
i

The set of equations (8) reduces to the set (6'),
thus completing the proof.

Here we have shown that, given a set of hypo-
thetical resonances, the number of events attrib-
uted by this technique to each resonance is pre-
cisely the same number as determined by maxi-
mum likelihood. Concerning the shape parameters
and histograms made using the weights sgz, we can
make the following comments:

If, for example, one makes a histogram of the
invariant mass of a pair of particles that are sup-
posed to form a resonance and in the histogram
weights the events by the sv~, corresponding to the
resonance, one sees a resonant shape in the plot.
Keep in mind that what is plotted is real events
(but weighted),

One might ask whether the apparent shape is a
result of an actual resonance or of the method of
weighting. Ne have already shown that the Nz is a
best-fit value, so if the resonance is not actually
there we expect that the corresponding N& would
be quite small, and even if the histogram shape is
only a reflection of the hypothesis the small N~
value allows one to reject the hypothesis without
being confused by the histogram. If, on the other
hand, the N,. value is large, indicating the reso-
nance is actually there in a best fit, then, for
every event in the histogram, there is one less
event in the histogram of some other channel.
Thus we ean see that if the resonant shape in the
histogram were purely an artifact of the weighting
technique, there would be a dip in the histogram
of some other channe1. .

If the resonance is actually present in the data,
but the mass value used in selecting it is slightly
wrong, the histogram of data wi11 be biased away
from the true value toward the value used in mak-
ing the selection. The maximum weight mill be
given to events with mass at the peak of the selec-
tion function, and mill decline for mass values
beyond this peak. Thus the apparent peak can at
most be pulled to conform to the hypothesis and is
actually never pulled this far. Instead the histo-
gram is always a plot of the se1.ected events, but
is biased somewhat toward the possibly erroneous
mass hypothesis. Similar comments apply for the
resonant width and for angular factors.

The elements of the simple computer program
necessary to employ the channel-likelihood tech-
nique are briefly described here.

The computer program used to analyze bubble-
chamber data reads a tape of preselected, fitted
events, solves the coupled equations (6) for the
number of events in each channel N~, and creates
histograms of the real data for any desired quan-
tity. The input hypoihes'is for each channel in-
cludes a mass distribution for a particular group
of particles and possibly production and decay
angular distributions. The first step generates
Monte Carlo events and uses them to integrate the
matrix elements for each channel according to
Eq. (1). Next, every event is read from the tape,
the matrix elements p~(R, ) for every channel are
computed at the coordinates of the event, and the
table of i'l„=f„/II is saved. This array can be
rather large, N'xM, for %events and M channels.
Starting from an initial guess for the values of N~,
values of nl~,. from Eq (4) a.re computed and new
values for N, are obtained from Eq. (5). When
Eqs. (6) are solved, by either the iterative method
or a more conventional minimization technique,
the weight so~, of each event in each channel is
computed from the final values of N~ using Eqs.
(4).

The channel-likelihood method has been tested
on several samples of data from a p-p exposure
in the 30-in. BNL bubble chamber. The iterative
procedure for solving the coupled equations (6)
was used to determine the N&. It is an extremely
simple method and converges quickly (less than
20 iterations) when the number of channels is
small (less than six). It is as efficient in time
and number of iterations as the more general min-
imization procedures when used on a large number
of channels.

The simplest task for this procedure to accom-
plish is separating the events by channel under the
assumption that the matrix elements are complete-
ly known. This is illustrated using a sample of
two-prong events with a vee which fit the hypothe-
sis K'm'K~. Five possible channels were consid-
ered. The events with K'x were not distinguished
from those having E m' and were considered to-
gether as part of a %~0 channel. Similarly, the
E~m' and E~w events were considered together in
a channel defined for K*' production. Both of
these were analyzed for E*(890) and X*(1420).
The final channel was simple phase space. No
evidence for X*(1420)was found.

A channel is defined by the matrix element corn-
puted at the event coordinates. In this case, the
matrix elements used were the simplest form for
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the Breit-Wigner shape with values from Ref. 2:

M M
f(M, M„r)= l+

2

with Mp = 0 8917 GeV and P = 0 0501 GeV The mR

trix element for phase space is just 1. The angu-
lar distribution included was flat.

After the fit had been made to find the best val-
ues of¹,the number of events in the jth chan-
nel, the weight or probability that the i th event is
in that channel is found from Eci. (4). To find the
distribution of events in the j th channel the kine-
matic quantities are plotted for all of the given
events, but weighted by w;;.

The mass distributions in Figs. 1 and 2 obtained
from events at two different energies show the
characteristic shape of the Breit-Wigner ampli-
tude. The plots contain exactly as many events as
occurred in the channel. No cuts were necessary
to obtain these estimates of pure and complete
samples of K* events.

No attempt to adjust the shape parameters was
made in this example. ' From the plots shown, the
agreement between the hypothesis and the data
can be evaluated. The plots made using weighted
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FIG. 2. Mass of K~ in 124 K'Kzm' events at 0.926
GeV/c (see Fig. 1).

data are not necessarily identical to the initial
hypothesis. Note that the widths of the matrix ele-
ments in Figs. 1 and 2 are somewhat too small to
describe the data accurately. Either the reso-
nances are somewhat wider than the published val-
ues or a measurement error should be taken into
account.

The phase-space plot in Fig. 3 contains both w-K
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FIG. 1. Mass of K~ in 132 K Kz~ events at 0.0862
GeV/c The mass distribution of all events is shown,
and underneath it the mass distribution of the same
events weighted (see text) for (a) the K* channel and
(b) the K*' channel. The curves represent the matrix
element hypothesis for each channel.
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FIG. 3. Mass of K ~' in 132 K Kz~' events at 0.862
GeV/c weighted for phase space. For comparison, the
phase-space mass distribution is shown (dashed line)
generated from a Monte Carlo program.
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mass combinations of the real events w'eighted

by their weight for pure phase space and, for
comparison, the same quantity plotted for Monte
Carlo events. Notice that the resonance has been
removed by this weighting.

A second example used a sample of four charged
m events. By extending the method further, pa-
rameters in the matrix element can be determined
from the data with corresponding distributions
created from Monte Carlo events. An extremely
simple method for improving the mass and width
parameters of the matrix element was found to
work well. A parabola was fitted to both the data
and the Monte Carlo mass distribution near the
resonant mass. The difference in the values of the
parameters was used to estimate a better mass
and width for the matrix element.

It is not guaranteed that the parameters calcu-
lated each way are identical to each other, and in
general they will not be. The data "pull" the dis-
tributions determined by the input matrix element
toward more correct values, that is, away from
the parameters put into the matrix element. After
a few tries, using the fits to parabolas to quantify
the disagreement and make a reasonable correc-
tion, the distributions did converge to a stable
limit, which presumably corresponds to the best
values. The general agreement of the actual dis-
tributions with the input matrix element can be
compared if it is felt that some confirmation of
the form of the matrix element is needed. For ex-
ample, the various forms for a mass- or momen-
tum-dependent width produce markedly different
agreement. Angular distributions can also be de-
termined by starting with a flat angular distribu-
tion and fitting the resulting angular distribution
to Legendre polynomials, for instance. Putting
this hypothesis into the next iteration will cause
the angular distribution to change further until it
converges to a stable limit after several steps.

DISCUSSION

We set out to find a way of identifying which
channel was responsible for each event in a body

of data. In our examples we did find that usually
for each event, i, there was one channel, j, for
which the weight w~, was much larger than the
weight for any other channel. We identify event t
as having been produced by channel j.

Our claim that this most probable channel is the
channel causing the event is in our opinion no dif-
ferent in principle from the claim that the values
of parameters found by maximum likelihood are
the values which should be used in describing na-
ture.

Unlike the usual way of presenting mass plots,
this technique does not cut the data and throw away
what fails the cut. All data must be compared to
some part of the hypothesis, and one is not fin-
ished until all comparisons show consistency. Our
feeling is that the technique offers valuable guid-
ance to the experimentalist in improving the form
of the total hypothesis under test. In addition we
have proved that, given an hypothetical form, the
fit is the best (i.e., maximum likelihood).

The present work was inspired by the paper of
Bran et al. ' on "prism plots. " However, we do
not use prism plot variables, nor, in fact, do we
use any special set of variables. When doing chan-
nel likelihood analysis, we use a variety of vari-
ables, mostly invariants masses, choosing at each
stage the variables most convenient for that part
of the computation. Our method of computing a
channel likelihood for each event seems to be heu-
ristically similar to the event tagging mentioned
in their paper. There are four significant differ-
ences. We are able to connect our method with
the established method of maximum likelihood.
We use Monte Carlo techniques solely for the
purpose of integrating over phase space; there is
no underlying hypothesis about the nature of the
interactions taking place (such as the supposition
that they are highly peripheral). It is now seen
that the N,- are a solution of a set of equations for
maximum likelihood, and can be solved by any
method, such as common minimization proce-
dures, and not just by the illustrative iterative
procedure developed heuristically.
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