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Their proofs are omitted.
We also tabulate, in Table V, the result of a

numerical computation of v'(I, I, 0) for I=24. For
small I, v (24, I, 0) is approximately 8= ,'I, c—on-

firming (811}. Notice that the value of n'(I, 0)
without isospin conservation, as given by (A7), is
bigger by -~6 than this value. The meaning of this
observation is as follows: For q =0, charge con-
servation gives a slight edge to v' over —,'(w'+n )
if one does not consider isospin conservation, as
(A'I) shows explicitly. This favoritism disappears
when isospin conservation is considered, as (811)

and (812) show explicitly, because of the greater
symmetry between m', m and r .

If one now keeps q =0, but considers a value of
I comparable to l, then the favoritism for x' must
reappear, because the average of no(l, I, 0) over I
must give the same result as (A7). Indeed this is
so, since (815) leads to

v'(l, l, 0}= I'(2l- I) ' & pl .

The numerical value of w'(24, 24, 0) in Table V
agrees with this formula, as expected.
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Single-cluster formation in hadronic reactions is discussed, within the context of the statistical

bootstrap model. This process is analogous to compound nucleus scattering in nuclear physics, and

similar formulas hold for the formation cross section. If the average resonance width should rise

indefinitely with energy, the model will eventually run into conflict with unitarity; the trouble is traced

to a breakdown of the "narrow-resonance approximation. " The effects of angular momentum

conservation on the cluster decay are considered, and formulas are presented for the multiplicity and

single-particle momentum distribution as a function of the clusters spin. Brief discussions are given of
possible experimental tests of the model, including the annihilation reactions e+e hadrons and

NN -mesons, which are particularly favorable cases. In an appendix it is shown how to estimate

asymptotic parameters in a "realistic" model by analytic means.

I. INTRODUCTION

It is a familiar fact that low-energy nuclear in-
teractions are well described by the "compound
nucleus" model of Bohr, ' in which reactions are
assumed to proceed via an incoherent sum over

long-lived direct-channel resonances. The aver-
age behavior of the system (e.g. , momentum dis-
tributions, branching ratios, etc. ) can then be de-
scribed by statistical means, that is, by computing
ratios of the phase space available in the various
final states. In order to do this, one needs to know
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the level density of excited nuclear states (reso-
nances) into which the compound nucleus may de-
cay. Bethe s model~ which ls employed for this
purpose, is again statistical in nature. Compari-
sons of the resulting predictions with experiment
provide the most important tests of both models.

It is natural to expect analogous phenomena to
occur in hadron physics. That is, a certain frac-
tion of the reaction cross section in any "nonexot-
ie" channel may be attributed to incoherent direct-
channel resonance fluctuations, whose average be-
havior may be described statistically. We shall
refer to such processes as "single-cluster forma-
tion, " to distinguish them from the exchange-type
(coherent) processes which are apparently pre-
dominant at high energies, and which will general-
ly lead to the production of senora, l "clusters. " By
analogy with the nuclear case, it is likely that ex-
perimental studies of single-cluster formation will
provide the most stringent tests available of any
stat1st1cal model of had ons.

Suggestions of this sort were already made sev-
eral years ago by Ericson. ' More recent discus-
sions have been given by several authors, ~ ' within
the context of the statistical bootstrap model of
hadrons developed by Hagedorn' and Frautsehi. '
It has been pointed out by Frautschi, ' in particular,
that the relevance of a statistical approach in the
hadron ease has been less obvious than in the nu-
clear ease, simply because the widths of the had-
ron resonances are much greater in comparison
with the spacing between them. This makes it
harder to disentangle individual resonances with
the naked eye, and increases the relative impor-
tance of the coherent terms built up by the overlap-
ping resonance states. Nevertheless, it is clear
in principle that analogous methods should be ap-
plicable ln both cases.

Our purpose in this paper is to carry these dis-
cussions somewhat further, and to derive predic-
tions from the statistical bootstrap model which
can be compared with experiment in some specific
situations. In Sec. II formulas are set down for the
single-cluster formation cross section in terms of
the resonance partial widths. For the Inost part,
these are precisely the same as those of the old
Bohr model. " However, they do show the inter-
esting fact that the usual assumptions of the statis-
tical bootstrap may come into conflict with unitar-
ity if the average resonance widths increase with
their mass. This point is discussed further in
Sec. III. A better understanding of these widths
and their effects is necessary for further develop-
ment of the model.

In Sec. IV the effects of angular momentum con-
servation on the cluster decay characteristics are
dealt with. The multiplicity of the pions emitted,

and the single-particle momentum distribution, are
derived. Section V discusses experimental tests
of the model, with emphasis on the two most im-
portant situations, namely e'e annihilation into
hadrons via the one-photon process and NN anni-
hilation into mesons. In the first case angular mo-
mentum conservation can be essentially ignored,
while in the second case polarization effects are
important.

In Sec. V our results and conclusions are sum-
marized.

II. SINGLE-CLUSTER FORMATION CROSS SECTION

Expressions for the single-cluster formation
cross section can be taken straight from the com-
pound-nucleus model. "' %8 shall ignore all in-
essential complications, such as the spins of the
initial and final particles, and terms in the scat-
tering amplitude other than the incoherent reso-
nance fluctuation terms. These complications have
been treated by Ericson, s who showed how the par-
ticle spins can be taken care of by adding angular
~omenta, while coherent terms in the amplitude
simply give rise to additional terms in the cross
section which can be considered quite separately.
The coherent terms naturally tend to become more
predominant as the energy increases.

The reaction cross section for spinless particles
can be expanded in partial waves:

o„.(Z) =v+,' g (2I, +1)~S,',. (', (&)
L=0

where Sz~; is the partial-wave amplitude for i-f
corresponding to total angular momentum L. The
partial-wave amplitude at energy E can be written

sy((E)=i g & &c,
tl

if we assume it to be dominated by a number of
narrow resonances, labeled by the index n. The
residues c „are equal to products of the couplings
to initial and final channels

L L I+ fthm + fff

Now let us average over an energy interval EE
which is large compared with the average reso-
nance widths and spacings. The average cross
section will be

(oq, ) = v+, ' Q (2I, +1)

By integrating in the complex energy plane3 and

applying the theorem of residues, this can be re-



C . Z. HAMZH

(ay, & =wk, 'Q(2L+1) ~ ~, (6)
L

where D is the average spacing between reso-

nancee

s of angular momentum I- in the energy range
considered, I' is their average width, and
( ~s ~'& is their mean square residue. This last
quantity can be reexpressed as follows:

& I
s' I'& =

& I ~g. ~.'g I'&

=& I ~y. I'& & I ~.'g I'&

=«;)«;) .
Here it has been assumed that the correlations be-
tween the couplings to exit and entrance channels
are also random, and an expression in terms of
the average partial widths ( I'~~&, ( I' f& has been ob-
tained.

If one now sums over all exit channels f, the re-
sulting total cross section is

{o',&...= w +,.' P (2L + 1) —,( I ', ) . (8)

This is the quantity wh ich we have called the
cross section for single -cluster formation. lt is
the analog of the "compound nucleus" cross section
in nuclear physics, and Eq. (8) may be found in any
elementary nue lear physics text.

Note that the ratio (I' f&/D must obey a restric-
tion if Eq. (8) is to be valid; it cannot increase in-
definitely with energy, or partial -wave unitarity
would eventually be violated. %e shall return to
this point in Sec. III, but let us ignore it for the
moment.

Now

L ~

D
—.= P

' (E;L.=0),

where p~(E; L, = 0) is the density of resonance
states with spin I- and I., = O at energy F.. Further-
more, in a statistical model one may assume that

y, (E, L.-0)
yL (E.L 0) (10)

where P~~(E; L, = 0) is the phase space available in
channel i for energy E, angular momentum L and

and p I~f is the phase space summed over all

written

2 7ri gL gLW
(o~~& =vW~'Q(2L+I) Q ~~

"
~ . (5)

I tlat ~ tl

%e now assume only random correlations between
terms with m W n, which thus do not contribute to
the average; that is, we consider only the

incohere-

ntt piece of the cross section due to resonance
Que tuations, which we shall henceforth label o~.
The remaining diagonal terms in Eq. (5) then give

channels . Finally, the assumption specific to the
statistical bootstrap model is that

p'(E; I., = 0) = p'-, (E; L, = 0) (E large),

i .e ., the density of re sonance states is equal to the
total available phase space, "if the latter is com-
puted within a box of volume V equal to the aver-
age resonance volume. This assumption is the
analog of Bethe' s model" in the nuclear case.

Substituting Eqs. (9)-(11)in Eq. (8), it follows
that

(o, &... = 2v 'y, 'g (2L + I)y', (Z; L = 0)r' . (12)

This is the final result, unless one is willing to
make an assumption about how the resonance
widths depend on I.. The simplest assumption is
that they are independent of I., in which case

(o', &...=2w'~, 'rg(2L+I)y', (Z; L =0)
L

= 2v'", ry"'(Z) . (18)

As E»" k, 'P"'(E)- constant; therefore the ener-
gy dependence of the single-cluster cross section
is the same as that of the average width I'. The
widths must again obey certain restrictions if
these equations are to be valid. Unitarity will not
allow either I' in Eq. (12) or F in Eq. (13) to in-
crease indefinitely with energy. This point will be
discussed further in the next section.

III. RESONANCE VfIDTHS AND THE
STATISTICAL BOOTSTRAP

In this section we would like to return and con-
sider the implications of Eqs. (8) and (13) of Sec.
II, and their possible conflict with unitarity.
Nahm' has suggested that the trouble lies in the
assumption of Eq. (10) describing the decay of the
resonances, the so -called principle of rec iproe i-
ty." %e shall employ an argument similar to his,
but arrive at a somewhat different con clus ion.

Consider a quantity of hadronic material with
total energy Z at equilibrium within a certain vol-
ume, which for simplicity we shall suppose to be
the standard resonance volume V (although this as-
sumption may be changed without affecting the ar-
gument). Then the principle of detailed balance
states that

PA(E)PA 8 PB(E)PB-A &

where A and B are any two states, P„~ is the
probability per unit time that state A will make
the transition to state B within the volume V, and
p„(E ), p~(E) are the phase-space densities of
states A and B within V. Now suppose that 4 de-
notes the average one -particle resonance state of
mass E, and we take the sum over all states B
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consisting of 2, 3 ~ ~ ~ particles into which the res-
onance A may decay. Then Eq. (14) leads to

p&(&) g ps(&). (16)

That is, the density of resonances at a given en-
ergy is just equal to the density of available decay
channels, counted in the volume V. It is clear that
this will eventually conflict with unitarity [Eq. (15)]
if the average resonance width (F„)-=F rises in-
definitely with energy. This is a parallel conflict
to the one arising in Eqs. (8) and (13) of Sec. II.

The alert reader will have noticed, however,
that Eq. (15) contains an approximation, in that we

have set

dt Pg g(t) =t
T F~T

0

The correct expression is
T

dt p„(t)= 1 —e rare
0

(15)

mhere me have integrated over a time interval 7,
and the final inequality follows from unitarity.
Now the statistical bootstrap assumption" [Eq.
(11)]for the density of states is just

that the resonance density times the average width

should be proportional to the density of decay
channels, i.e.,

p.(E) & F.) g p.(E). (I~)

Sertorio, Toiler, and Bassetto" have discussed
this sort of proposal. However, the correct pro-
cedure is still unclear to the present author.

The question is clearly not an academic one, be-
cause the widths of the particles listed in the Par-
ticle Data Group tables" show a general tendency
to rise linearly mith their mass. If this tendency
were to persist indefinitely, the statistical boot-
strap model as presently formulated would neces-
sarily fail. Eventually one mould run into a theo-
retical conflict mith unitarity, as outlined above,
and Eq. (13) would predict a large and increasing
single-cluster cross section, in contradiction mith

experiment. On the other hand, a recent analysis
of fluctuations in vN scattering at 5 GeV/c by
Schmidt et a/. "has suggested that the average
resonance midth has become relatively small at
this energy. Further analyses of this sort are ur-
gently required.

For the remainder of this paper we shall assume
that the present formulation of the statistical boot-
strap is valid.

IV. EFFECTS OF ANGULAR MOMENTUM
CONSERVATION IN CLUSTER DECAY

One can use the first-order approximation to this
expression only if the resonances A are narrou,
so that "absorption" of the initial state is negligi-
ble within the given time interval. It seems clear
that our treatment of Sec. II implicitly involves a
similar assumption, and is only valid in a "nar-
row-resonance approximation. "

Nom in fact the statistical bootstrap model for
the level density itself, Eq. (16), also relies on
the narrow-resonance approximation. "The mod-
el treats both resonances and stable particles on
an equal footing, as independent particles, when

computing phase-space densities. For this proce-
dure to be valid, the resonances must be nar-
rom. "'2 Dashen, Ma, and Bernstein, "for in-
stance, give as a requirement that

I'&kT ~ constant in the statistical bootstrap.

(18)

This requirement is clearly broken if I rises in-
definitely with energy. It is no longer possible to
count each resonance as an independent state.

Hom should one change the assumptions of the
model if the average widths do indeed rise with
energy'? One possibility is Frautschi's suggestion'

Having discussed the formation of the cluster,
me must now consider its decay into the observed
final states. The average behavior of the system
ean be predi. cted by statistical means, once the
resonance spectrum is known. Within the context
of the statistical bootstrap model, several treat-
ments of this process have recently been giv-
en."""" So far, angular momentum conser-
vation has been neglected in these treatments, yet
in a high-energy tmo-body collision very large an-
gular moments are involved and are likely to pro-
duce important effects. " In this section, me set
out to remedy this neglect.

The decay of the cluster is determined by phase
space, and folloms the same pattern as the decay
of an individual resonance of equal mass, in this
model. Methods have nom been developed for de-
riving the asymptotic behavior of the resonance
spectrum, '0" and of the moments of various dis-
tributions over this spectrum. "" A useful picture
is to regard each heavy resonance as being com-
posed of a large number of the "input" states or
constituents (such as pions) into which it ultimately
decays, all crammed into a volume V. The distri-
bution of input states inside the box is a thermody-
nam. ic one, controlled by the "limiting tempera-
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turn of the constituents is not sensitive to their en-
ergy, so that the larger the number of constit-
uents, the larger the angular momentum of the as-
ymptotic state. In such a case, the asymptotic
form (23) is not very useful. We shall continue to
treat d as a positive quantity for the moment.

Next, let us consider the multiplicity of pions
resulting from clusters formed in a two-body col-
lision. We shall again make the simple assumption
that the resonance widths are independent of J, so
that Eq. (13) may be used. Then the probability of
forming a cluster with a given angular momentum
J is given by

P (E) dd'- (2j+ 1)P; (E;j,= 0) . (25)

For the purposes of calculation, we shall also as-
sume that the resonance volume V is Gaussian in
shape, "i.e., that integrals over V take the form

d'r- fd're ' '+,
~V

(26)

so

~ = I(v)'"R)'. (27)

~ 1/2 2 2
e "g (2j+1)fd+„, aE

-d J2/E

We can get an approximate expression for this
sum by setting

(29)

Then the phase space for given angular momentum
can be computed"'":

d(did, =d);=de ee exp( — )e,e,( ),
(28)

where E„E„and P are the c.m. energies and
momentum of the initial particles. Using (23),
(25), and (28), the mean multiplicity of pions re-
sulting from single-cluster formation can now be
computed:

( )
Q P (E)n(E, j)

P, P'(E)

1 p 2+2

P)2 exP
2

j PR

(
p 2R2

IJ+1/2 2 0, otherwise

and converting the sum into an integral, giving

4az dR2 ~

n(E) ~, 1 —exp
E dR

(30)

Thus the multiplicity is less than the result aE one
would have obtained by ignoring the conservation
of angular momentum, but still rises linearly with.
energy. We shall endeavor to make realistic esti-
mates of the size of this effect in Sec. V.

Let us now go on to consider the momentum dis-
tribution of pions emitted from the cluster. For
the purposes of this exercise, we shall ignore the
question of particle statistics, and consider only
the simple case where the input spectrum consists
of a single neutral "pion. " Then if angular momen-
tum conservation is ignored, one expects the sin-
gle-particle inclusive distribution to take a simple
Maxwell-Boltzmann form'

d 3gF
p, (rn; p, )= r 2E, d30' d

~2E, e 808& in the limit m-~, (31)

where J, is the z component of the spin of the ini-
tial cluster and M is the angular momentum com-
ponent in the z direction of the emitted pion. In
Appendix A2 it is shown that this is indeed the
case. The single-particle inclusive distribution
function is (summing over M)

where m is the mass of the cluster; p, is the mo-
mentum of the observed pion in the center of mass
of the cluster, and E, its energy. If angular mo-
mentum is included, and one specifies another ad-
ditive quantun" number J, as well as the energy,
one might expect (semiclassically) that the corre-
sponding form should be"

p, (m, j„p„M)~2E,e &'"" as m-~, (32)

p (m j 'p ) ~ ' d're " ~" e 80& "0»i e'"0"P
m 2Eg

(E) h~Z N

Jz /m small

Here P„ is an operator which projects out states
with angular momentum component M, and the
resonance volume has been given a Gaussian shape
as in Eq. (26). The constants involved are (from
Appendix A and Ref. 18)

Z =—Z (Po(ho), h, )—= 2ln2 —1,

ho = —ij,(E)/m (j,') .
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The distribution in square brackets in Eq. (33) is
normalized to give unity after an invariant inte-
gration over momenta p„so the over-all multi-
plicity of produced pions is m/(E), as expected.

Now, following Cerulus, "the projection operator
P„can be written

p d~ -igg i K($) ~ r

where

k(g) =(p xz) sing+(p xz) xz(1 —cosP). (36)
Therefore

p, (m, Z„p,)
78~ ~

Jz /m small

2 z, -80(ho) E2mE, e
d && e ryH-~ ei &ON d~ e-see esK(I) r

m 2E,V e 'o'"-O'E~
dp e '" expI --,'R'(p»' sin'p+p„'(I —cosp} ],

in
Af

(37)

where P» and P„are the transverse and longitudinal projections of p, . For h, very small, one can
expand in powers of h„make the replacement

g e '"' -2z6(-y},

and eventually obtain

m 2EiVe '" »»» (&.')
p,(,J, ;p,), 1 ——h, RP, ~ —,h, ,

' E). ,(~) &m&
J' /fn small

Using Eq. (34) and the fact that"

«.') =-'R'(P'),

the result can be rewritten

(38}

(39)

&z /haft small

m 2E, Ve ''
1

9 J,(E) ' 1 p»' 1E,
(E) Z h' 2R'(p') m 2 (p') 3 (E) (40)

Note that this quantity is averaged over states of all total spins J& J, .
Next, consider the limit m- ~, J, /m finite but very small. In this situation,

pl(ms ~ dg ~t pl) pl(mt ~g i pl)

m 2E~Ve E & o1 9 J(E) ' 1 p, r' 1 E,
m- (E) Z h' 2R'(p') m 2 (p') 3 (E)

J'/m small

That is, J= J„because ((8,') +(J,'))'" -(m)"' only, "and can be ignored. Then one can estimate
(semiclassically) that

1
p, (m, d; J, =O;p, ) = — dP p, (m, J, Z& =J;p, )

277 Q

(41)

(42}

m 2E&Ve ~DE& 9 J(E) ' p, ' 1+cos'e 1 E&

m- (E) Z;„h' 2R (p ) m (p) 4 3(E)
Z/m smail

Finally, the single-particle distribution resulting from single-cluster formation can be estimated in sim-
ilar fashion to Eq. (30}:

E 2E Ve EOE' 9 (E)~ p& 1+cos28 1 E,
(E) Z. h' 16 (P') (P') 4 3 (E) (44)
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This equation comprises our final result. Some of
the steps between E(ls. (40) and (44) are of slightly
dubious validity, but we believe that the result
makes good sense physically. The distribution
peaks in the forward and backward directions, and
is symmetric about 8=90, as one would ex-
pect. "' It approaches a Limiting shape, which
can also be understood easily: The average angu-
lar momentum in the two-body collision increases
linearly with the energy, but so does the multiplic-
ity of decay products, so the angular momentum
carried off by each final-state pion approaches a
constant. This implies a constant limiting shape
for its momentum distribution. Finally, if one
integrates ovex the distribution, the multiplicity
turns out to be m/(8 & as we expect [note that the
calculation of the momentum distribution has not
been taken to the same order of accuracy as the
multiplicity calculation, E(l. (23); no account has
been taken of the variation of multiplicity with J'j.

where p„(s"') is the density of vector-meson
states at energy s"'. This formula is the same as
E(ls. (6) and (7) of Sec. H, except for an extra fac-
tor of —,

' accounting for the spins of the initial elec-
tron-positron pair. Now one can also write

r(V- e'e-) =

where em~2/f „ is the usual y-V coupling constant.
Thus

(( /P (sl/2)) e (sl/2) x 5v 2sl/2p (sl/2)

(45)

V. EXPERIMENTAL TESTS

A. e+e annihilation into hadrons

where o», (s"')=41/a'/Ss is the usual reference
cross section. Summing over final states f, one
obtains

eF+ -(sl/2)) o„(sl/2) xgw2sl/2 p (sl/2)
1

Assuming that this process goes predominantly
via the one-photon process at presently accessible
energies, e'e annihilation is the first place to
look for single-cluster formation. Since only a
single angular momentum (J= 1) contributes, the
"incoherent" piece of the cross section due to res-
onance fluctuations should be a larger proportion
of the total than in other processes. ' Also, since
the total angular momentum remains fixed and
small as the energy increases, polarization ef-
fects will be negligible and the cluster decay dis-
tribution should rapidly become isotropic in the
center-of-mass system. " Thus the energy distri-
bution in the center-of-mass can be directly com-
pared with a simple Boltzmann or Bose-Einstein-
type distr ibution.

The annihilation cross section due to noninter-
fering vector-meson states has, in fact, already
been written down by Sakurai and others, "within
the context of a generalized vector-dominance
model. For a given final state f, the cross sec-
tion is

2'
( 1/2) 12w ~ 2 r«r(V e+e )

s ~ " (s-m„')'+my'r„' '

(45)

When averaged over a suitable energy interval,
this becomes

(49)

which is the total cross section for single-cluster
formation.

The decay of a cluster formed in e'e annihila-
tion, as predicted by statistical models, was first
discussed by Bjorken and Brodsky. " The statisti-
cal-bootstrap-model predictions have recently
been treated in detail by Engels, Schilling, and
Satz22 (see also Frautschi and Hamer"), and we

have little to add to that treatment. It is worth
pointing out, however, that the fluctuation or sin-
gle-cluster cross section 0~ is only expected to be
a Past of the total cross section. In general, one
expects dynamical and coherent resonance terms
to appear in the reaction amplitudes, giving rise
to another piece of the cross section o' (e.g. , pro-
duction of "jets"). This coherent term may be
presumed (by analogy with the nuclear physics
case) to dominate when the center-of-mass energy
gets large, or when the momentum of a produced
particle gets big.

The question then arises, how can one isolate
the cluster term cr~ from the coherent term o''tl' It
is doubtful whether they could be separated by
looking at the multiplicity distribution, especially
if neutral pions are allowed to go undetected. In-
stead, one should look at the single-particle inclu-
sive momentum distribution in the center-of-mass
system. The term cr~ should give rise to an expo-
nential rise at low momentum,
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dsp "'xp ur (50)

1/2 const.
Teff (s ) To 1/2

s
(51)

In the old Fermi model, Sby way of contrast, it
would be predicted to behave as

where 7 is the effective temperature. One
should look for this effect at energies high enough
that a statistical treatment should be roughly ap-
plicable (say s"' = 2 GeV and up), and out to mo-
menta of order 1 GeV/c, beyond which the coher-
ent term o' might be expected to take over. At
some still higher energy, a' may be expected to
take over entirely, and the exponential peak should
disappear.

If such exponential behavior is observed, the
next question is: How does the temperature 7 vary
with s'"'P In the statistical bootstrap model it is
predicted" to approach a constant of order 160
MeV'.

these ideas to annihilation in flight. The data on
cross sections for individual annihilation channels
show a rapid exponential-type decrease with ener-
gy,

"inconsistent with coherent Regge behavior, up
to quite high energies (several GeV). Such behav-
ior may easily be explained in a statistical model,
as being due to competition among a rapidly in-
creasing number of final states. This suggests
that single-cluster formation may remain domi-
nant over this whole range of energies. "

As the incident antinucleon momentum rises,
however, the average angular momentum of the
cluster will increase rather rapidly. The effects
of this may be estimated using the results of See.
IV. The average multiplicity, for instance, ean
be computed from Eq. (29). To determine the pa-
rameters involved, we set the volume V to the val-
ue found previously' to fit NN annihilation at rest.
The corresponding values of a and d are computed
in Appendix 8 for our "realistic" statistical boot-
strap model, ' and are found to be given by

T,«(s'/2) ~ const. xs"'. (52) n(m, 0) =0.29 +0.7-am
mr

(52)

Analyses of the above sort will provide us with

the most direct and important tests of the statisti-
cal bootstrap model that one ean presently foresee.
They should be supplemented by Quctuation analy-
ses'" in various individual annihilation channels
(see, for instance, the recent predictions for e'e
—ff+w of Margolis, Meggs, and Rudaz"). The co-
herence width of these fluctuations should also
provide us with one of the best available estimates
of the average behavior of the resonance widths,
albeit for only a single value of angular momentum.

We note in passing that there is no reason to ex-
pect the single-cluster cross section to "scale, "
and it should be subtracted out from the total an-
nihilation cross section before looking for scaling
behavior.

B. NN annihilation

The next most obvious place to look for single-
eluster formation is in nucleon-antinucleon annihi-
lation, where again the energy released is high,
the angular momentum is relatively low, and res-
onance fluctuations should play an important xole.
Annihilation at rest has already been treated from
the viewpoint of the statistical bootstrap by the
present author, ' with reasonable success. The
model provides a natural explanation for the high
multiplicity of produced pions, and the low branch-
ing ratios into individual final states. The pre-
dicted relative rates of resonance production were
of about the right order of magnitude.

Let us now consider briefly the extension of

(for nonstrange annihilations), and

(54)

(units 8'=c = m, =1). Hence the multiplicity for an-
nihilation in flight can be predicted.

Unfortunately, though, the parameter d has again
turned out to be negative, so that judging by the
example of Sec. IV our asymptotic formulas (23)
and (29) are useless. At energies of interest, the
multiplicity is likely to decrease with J as in Fig.
1, rather than increase as the asymptotic formula
would predict. Thus we expect that the effect of
angular momentum conservation will be to lower
the predicted cluster multiplicity by amounts of
the order 20%, but we are unable to compute the
effect without a long and detailed numerical pro-
gram along the lines of Ref. 5, which we do not
propose to carry out here.

It was shown previously' that if one neglects an-
gular momentum conservation, the multiplicity is
expected to increase linearly with energy, with a
slope of about 2.1 GeV '. Experimentally, a slope
of 1.3 GeV ' has been measured for nonstrange an-
nihilations in flight by Fields et al. ,s~ while Oh et
a/. "measure a slope of 1.8 GeV ' for pions pro-
duced in association with a KK pair. We feel that
these results are in qualitative agreement with tAe

statistical bootstrap model, once one allows for
some reduction in slope due to angular momentum
conservation.

Finally, we may predict the single-particle in-
clusive momentum distribution, using the results
of Sec. IV. Since this has not been calculated in
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such detail as the multiplicity, it is perhaps worth
reemphasizing the qualitative conclusions first.
The distribution is expected to approach a limiting
shape, with formard-backmard symmetry, of
roughly a Maxwell-Boltzmann type (this seems to
be in agreement with current experimental evi-
dence"). The detailed form we obtained was

8 @ pg 1+cos 8
p, (Z; p,)"Z, e- "~ 1+c 2

3 (Z) (55)

C. Other reactions

In general, one expects to see single-cluster
formation in any reaction where resonances may
be formed in the direct channel. Annihilation re-
actions are the best places to look, because coher-
ence betmeen different partial waves is less im-
portant there; but similar effects should also be
seen in ~'p reactions, etc. When the direct chan-
nel is "exotic" as in pp or K'p reactions, on the
other hand, these effects should be absent.

The characteristic feature of single-cluster for-
mation will again be the presence of an approxi-
mately isotropic, exponentially peaked single-par-
ticle distribution at low center-of-mass energies.
Erwin et al. '4 have already reported seeing just
such behavior in K'P scattering at 11.8 GeV/c.
But this is an exotic channel, where we have just
said that single-cluster formation would not be ex-
pected. One can interpret the experimental result
in tmo possible mays:

(i) At these energies (s'"=-4.8 GeV) a spectrum
of exotic baryon resonances exists, giving rise to
true single-cluster fox mation.

(ii) The reaction is actually giving rise to one or
tmo fast particles together with a heavy cluster
moving slowly in the center-of-mass system, so
that we are seeing cluster "production" rather
than "formation. " Only a detailed experimental
analysis can decide between these tmo possibili-

where p„E, are the momentum and energy of the
observed particle in the center-of-mass system,
(p'), (E) are the single-particle averages of the
momentum squared and energy, and the constants
P, and e can be estimated from the results of Ap-
pendix 8 to be

Po= 1.2,
c= 0.5

(units g = c = m, = 1). It would be interesting to
know if Eq. (55) can provide at least a, rough de-
scription of the data.

ties, but we feel that the second is the more likely
explanation.

VI. SUMMARY AND CONCLUSIONS

This paper has been devoted to a study of single-
cluster formation in hadronic reactions, a process
analogous to "compound nucleus'* scattering" in
nuclear physics. The statistical bootstrap model"
mas used to describe this process. It mas pointed
out that experimental studies of single-cluster for-
mation are likely to provide the most stringent
tests available of the statistical approach.

In Sec. II the single-cluster formation cross sec-
tion mas derived, and its energy dependence was
found to be the same as that of the average reso-
nance midth 1 . This immediately raises a difficul-
ty, in that if the resonance widths should rise in-
definitely with the energy, unitarity mould eventu-
ally be violated. The source of this trouble mas
analyzed in Sec. III, and it mas concluded that if
the widths increase with energy then the "narrom-
resonance approximation, ""' which is implicit in
the statistical bootstrap model, breaks domn. It
is no longer possible to count each resonance as
an independent particle. What the correct proce-
dure should be in such a situation is still unclear.

The experimental information available on aver-
age resonance widths mas brieQy discussed. Very
little exists at intermediate energies, and further
fluctuation analyses'4 of the sort carried out by
Schmidt et a/. "would be very welcome for this
purpose.

Next, the effects of angular momentum conser-
vation on the cluster (or resonance) decay were
considered. They are basically rather unimpor-
tant. The mean multiplicity of pions produced by
a resonance of mass m and spin J, for instance,
mas found to be

J2
n(m, J) ~ am exp -d

fft~ o
m' (23)

where a and d are constants. Since the average
resonance spin is only proportional to m'", it fol-
lows that the multiplicity becomes essentially in-
dependent of J for very large m. This can be quite
simply understood. In this model, the massive
resonances are built out of a large number of con-
stituents, each of which carries a fixed average
energy and angular momentum, after the fashion
of a random walk. '"" Thus, as a first approxi-
mation, one expects the density of states as a
function of spin to follow a Gaussian distribution,
mhile the multiplicity of constituents is independent
of the spin.

For clusters formed in a tmo-body collision,
however, the average spin increases like m (that
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is, if one makes the natural assumption that the
average impact parameter for these collisions ap-
proaches a constant —which is equivalent to our
assumption that the resonance widths are indepen-
dent of J). Then the angular momentum depen-
dence does have non-negligible effects. One ex-
pects that the cluster decay multiplicity still rises
linearly with its mass, but at a slower rate than
one would obtain by neglecting angular momentum
conservation. The magnitude of this effect was
roughly estimated to be of the order 20%%uo'for NN
annihilation in flight.

The single-particle inclusive momentum distri-
bution of the decay products was also considered.
The distribution peaks in the forward and backward
directions, and is symmetric" about 90'. It is ex-
pected to approach a limiting shape, because both
the average spin of the cluster and its decay multi-
plicity increase linearly with the energy: There-
fore the average angular momentum carried off by
each final-state particle approaches a constant.
The specific form obtained is given in Eq. (55).

Finally, some experimental tests were dis-
cussed. The prime example is e'e annihilation
into hadrons via the one-photon process. ""Since
the total angular momentum remains fixed and
small in this reaction as the energy increases, the
piece of the cross section due to direct-channel
resonance fluctuations (i.e. , single-cluster forma-
tion) ought to be relatively large; and furthermore,
angular momentum conservation should have neg-
ligible effect. Comparison of the single-particle
inclusive distribution at low momenta with a ther-
modynamic form should provide a crucial test of
the statistical bootstrap model.

The other main example touched upon was NN

annihilation into hadrons. "' In this case the ef-
fects of angular momentum conservation should be
included as outlined above. Present experimental
results seem to be in qualitative agreement with

the predictions of the statistical bootstrap, but
further comparisons remain to be done.

As a final comment, it is perhaps worth remark-

ing that the resonance fluctuations and cluster for-
mation phenomena which we have discussed might
alternatively be described by a dual resonance
model. " Several approaches of this sort have ap-
peared already. " It will be of great interest in the
future to compare and contrast the predictions of
the two models, "and to see which has the greater
success in fitting experiment.
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APPENDIX A

In this appendix formulas for the angular mo-
mentum dependence of the resonance decay multi-
plicities and momentum distributions are derived,
within the statistical bootstrap model. The meth-
ods to be used were described in a previous pa-
per, "and employ techniques due in particular to
Nahm2 and Montvay. '

1. Decay multiplicity

First of all, let &T(E) represent the total density
of single-resonance states of energy F. within the
volume V, given by"

1(E)=„,Jd'(
J

dmp(m) (E —()(m'+p')"'),

where p(m) is the density of states with mass m.
One can then project out'4 the density of states
o~ (E) with a specific spin component J, in some
arbitrary direction z—we will not need to know its
specific form for the present.

Next, let p(E, J„N) be the average probability
that a state with energy E and spin J, will ulti-
mately decay into N pions. The prototype statisti-
cal bootstrap equation for this quantity reads

(7~, (E)P(E, J, , N) = [F~, (E)P(E, J', , N) i

(A2)

where the subscript "in" denotes an integral over
input states, and the right-hand side includes a
sum over n=2, 3, . . . , ~ constituents of the boot-
strap states. This equation can be solved by tak-
ing integral transforms with respect to E, J, , and
N. Define

(y(E, hz, h„) = g g oz (E)P(E, J„N)
J' =-~ N=0

ihJ Jg ei hNN

take the Laplace transform

(AS)
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Z(dh, h„) = Jdh e *d(dh, h„), (A4) 2,0 (E) (A12)

and solve Eq. (A2); one then finds" that asymptot-
ically

(y(E, h~, h„) ~ c(h~, h„)E "' exp[P, (h~, h„)E],

(A5)
etc .

1 2 (EN&(Jd & &EJd & (N)
(E& '

&E& &E)

, &E'& «.'& &N&

(E&'

=-2 ln2 -1. (A6)

Now define a characteristic function for the as-
sociated spin and multiplicity distribution:

$(E,h, h„) =o(E,h, h„)/r(E) . (AV)

This can be expanded in the usual way" in terms
of absolute moments F, (k) of the distribution,

where the function P,(h~, h„) is determined by the
sum rule

z. (p2(hz, hh)), hz, h„)= Jt
dEe 2()("d "N)eo. (E,hz, h„}

Neglecting all moments with /&2 and m &1, it
follows that the spin distributions are Gaussian,
so that one can write down the following forms:
The number of states with spin projection J, is

d, (m)"1~2

p~ (m) p„,(m) ' exp(-d, (m}J,'),
m ~ eo

(A13)

correspondingly the number of states with total
spin J is""

d, '(m) '~2
pg(m) ~ p...(m)

' (2~+1)'t t
t g

x exp(-d, (m)J'), (A14)

t,m=p

and in terms of "cumulants" f, (E),

$(E,h~, h~) =exp g f, (E)
1,m=p

[f, ,(E)=—0]. (A9)

It follows from Eq. (A5) that the asymptotic form
of this function is

n(m, J) ~ a(m) exp(-d, (m}J2). (A 15)

The cumulants of the associated spin and multi-
plicity distribution can be calculated from Eqs.
(A13)-(A15), and one obtains

d, (m)
f2 1(m) a(m) ~) ( )

and the average decay multiplicity can be written

Therefore

(A10)

$(E,hz, h„) ~ exp[[ P,(h~, h„) —P,(0, 0)]E). 1f. .( ) 2d( ),
d g) 3/2

f, ,(m) —,'a(m) „~)' „( )

(A16)

s" fio(h~ hN)
ah 'BhN h~ =AN=0 g~~

1 1

d, (m) + d, (m) d, (m)

=—Ci, m ~ (A11)

Using Eqs. (AV)-(A11), one can substitute in Eqs.
(A6) and expand in powers of h~ and h„. Compar-
ing the two sides of (A6) term by term, one then
obtains relationships between the asymptotic mo-
ments and partition averages" over the input spec-
trum, denoted by (F, ) as in Eq. (21). Finally,
note that E/m- 1 as E-~ for the average state in
the asymptotic spectrum. Hence we arrive at the
final results:

-f, ,(m) -
(N&

m (E&'

Cl, p y

1&2&(2&(N&2(NE&(N
&E&

Comparing these equations with (A12), it follows
that

d, (m) ~ 1 1 (E&
„2C, ,m 2m & Z, 2& '

a(m) ~ C2,m= (E&(N),

and
(A17)1 C2.1

2m C2 1(C2 ())

1 (E& (EN& &EJ
2m & J, ) (E&(N& (E)(J, &

& Z. 'N& &E'&

&N&(~. '& &E&'

This completes the required derivation of Eq. (23).
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2. Momentum distribution

Next, let us consider the momentum distribution
of decay products concomitant with a given angu-
lar momentum. Again, we use the same methods
and notation used previously. " Let

pN(zt ~E t pit ' t pN)

be the average inclusive probability density that a
single-resonance state with energy E and spin pro-
jection J, will decay into a final state including N
pions with three-momenta p„.. . , p~ plus anything
else. Write down a generating functional for the
momentum distr ibution:

(A18)

(E, ~.; [0])= ~ (E}4(z J.' [0]) (A19)

and carry out a Fourier transform with respect to
J, and a Laplace transform with respect to E as in
Appendix A1:

Z(P, I; [t]) = dEe gt"e(Etta,'"; [ ]),,t
(A20)

where h is the. parameter previously designated
h~ and should not be confused with Planck's con-
stant. The statistical bootstrap equation for this
quantity will have exactly the same form as pre-
viously, "and gives rise to a similar solution:

o(E, i'I; [(t)] ) c(h, [g] )E 'i' exp(p, (II, [p] }E),

(A21)

where the functional p0(i'I, [p] ) is determined by the
sum rule

Z (p0(h, [(t)]), h. i [p])= dEe ()" ~ o (E, hi [p]).

where the p» are correlation functions, and fdpI
stands for the invariant momentum integralf d'p, /
2E, . Now, define

[where i]0 -=$0(0, 0)], and performing the inverse
Fourier transform with respect to h, we see that

r(z, Z, ; [y]) r(z)—1
Q -+m

x dhe '"~2exp po h, -Po E ~

(A24)

The single-particle inclusive distribution, by
virtue of Eq. (A18), can now be found by taking a
functional derivative with respect to (t)(pl):

p, (E, d„p,) o(E)
E~~ 0'g

2

5P.(f], [y])

xexp((P, (il) —P,)z) (A25)

Now for E very large and J, finite, we need only
consider very small values of h. The integrand in
the above equation has a saddle point where

=—2 ln2-1 (A22)
E 'J —0

~h
(A26)

From Eq. (A21) it follows that the transformed
density of states is asymptotically given by

o(E, h; [P]} (T(E) exp/(P, (h, [y] }—P,)E)

l.e.)

i J, -id (E)
Esm~ /sij]0i E(g 0) 0 (A27)

(A23)
Distorting the contour of integration, and perform-
ing a saddle-point integral, it follows that

o(E) E5p, (iI„[(i)]) (E) ' ' J, '(E)
o (E) 5y(p ) 2)l(J ')E 2Z(J ') (A28)

(A29)
E6P,(f „[y])

54 (pl} /=0

Now 5p0(h0t (p])/dg(pl) can be found from the sum rule (A22). ' Performing a functional differentiation,
one obtains
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&E) pa( 0~[4]) ( (p h ))
pl 4=0

In the simple case where the input spectrum consists of a single neutral "pion, " we have"

(p,(p, ho; p,))

1
dE e ~0 0~ dmb(m —m„)—, d~p e'"0 "P„[2E,5'(p- p, )] 5(E —(m, '+p')'~')-g (k )S

ln 0 Oy 0

1 1 d're ' " e '& 2(m ' ~ i')' 'g '"8"I'2 2 2 2 1/2
Z. (po(ho), ho) h'

(A30}

(A31)

(As2)

where P& is an operator which projects out states
of angular momentum M in the z direction, and
we have assumed a Gaussian "shape" for the vol-
ume V as in Sec. IV. A more realistic input spec-
trum will lead to a somewhat more complicated
form for the single-particle distribution. We re-
strict ourselves to the simple form (A32) for the
purposes of discussion.

APPENDIX B

Here we shall try to estimate some asymptotic
parameters for a "realistic" statistical bootstrap
model (case 5 of Ref. 8). This introduces one im-
portant complication: One has to insert a restric-
tion that forbids states with exotic SU(3) quantum
numbers, which results in more involved bootstrap
equations. To reduce the complication we shall
here deal only with mesons, and ignore the ex-
istence of baryons. Following Hamer and Frauts-
chi, ' we shall take as input states the J =0 and
1 meson nonets (namely ii, K, ii, q', p, K*, id,
and ip), and we shall allow only singlet and octet
SU(3) states to be generated.

To treat this problem, we again follow the meth-
ods of Ref. 18. Whereas for the unrestricted case
the statistical bootstrap equation for the partition
function Z(P) reads"

The coefficients c"' are the squares of the appro-
priate SU(3) isoscalar factors. ' The partition func-
tions Z'(P) will have a square-root singularity" at
some P =—Po, and in that vicinity power-series ex-
pansions may be made":

z'(p) =g b„'s",
n=o

z'(p) =g a' s" + s' & g ci sn
n=o n=o

where

(Bs}

g c'I g g c g gc l a l a ~
o o & o o 3l 0 0 0

0 i i i jA ii
[ i iik kim i sl1

3)

(B4)

etc.

+2c c ~ a c a j&- ~ ' ~
0 0 OJ

(B5)

(we make use of the symmetry c'~~ = c'" ). Now de-
fine the matrix

A~~ =Qjj Cjjkgk
0

S=P-Po

Substituting into Eq. (B2) and solving term by term,
one obtains

Z (p) =1+2Z(p}—exp[Z(p)], (Bl)

in the present case, the corresponding equation
will be

( ij l ~ig +2ciiks c t s )0 0 0 0

(B8)
z'. (p) = z'(p) ,'c"'z'(p—)z—'(p)

——c'"Z'(P)c"' Z'(P)Z (P) —~ ~ ~, (B2)3t
where the indices i,j,k, . . . run from 1 to 4, de-
noting the four possible SU(3) isospin multiplets:

[(1),I =0, Y=O],

[(8),I =0, Y=O],

[(Sj,I =-,', Y=-l],
[(8},I =1, Y=0].

Then the condition for Eq. (B5) to have a solution
is that

detA =0.
Furthermore, once the volume and the set of input
states are specified, the coefficients bo=Z. (P,) are
a function of P, alone. Therefore, Eqs. (B4) and
(BV} form a set of five simultaneous equations in
five unknowns, a,' (i=1, . . . , 4) and P,. These equa-
tions can be solved by a numerical least-squares
fitting program. Then the coefficients c 0, and
higher coefficients, can be found by ordinary ma-
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trix algebra. Thus a solution to the Eqs. (B2) can
be obtained.

Next, one wants to know the asymptotic moments
of various distributions over the resonance states.

Take the multiplicity distribution, for example.
Transforming with respect to both the multiplicity
and energy as usual, "one forms the partition func-
tion

ZI(p, h) = dEe ~s dmpI(m) , —d'pp pI(III, N)eI 5(E —(III'+p')' '),V

N=O
(B8)

where p(m, N) is the probability that a resonance
of mass m will decay into N pions.

The statistical bootstrap equation for this quan-
tity is the same as (B2), and again leads to Eqs.
(B4) and (B5), where the coefficients a„, 5„, and

c„are all now functions of h. Next, expand in
powers of h." The zeroth-order term gives the
density of states, as above. The coefficients of the
first power of h can be equated in (B4) and (B5),
giving

g~o
8h „- 8h 8h

f

» a=o'

—(det A) =.0,8

a=o

Now

(B9)

(Blo)

e'(d)= fdde e!+~ dmp' (m)—, d'd d! (m, !e)e' "6(d—(m'+p')'!')V

=0
(Bl1)

so

Sb' 8P h
(E& ho(0) .

8h ~ o — 8h

Therefore (B9) becomes

(B12)

states in the bootstrap. ' Secondly, the resonance
volume was assumed to have a Gaussian "shape"
as in Sec. IV. This affects the calculation of spin
distributions; for instance, it leads to the result '

«.'& = -'(& 8.'&+R'& p'&) (B15)
A" 8af

&~&i &E)I ~ -1 to + . -1 0» ao &o» I o
(B13)

After Eqs. (B4) and (BV) have been solved, Eqs.
(B10) and (B13) form a set of five simultaneous
linear equations in the five unknowns i SPo/Sh,
i 's a ~0/s h (j= 1, . . . , 4), which can be solved by
ordinary algebraic means. Thus one deduces im-
mediately the first moment of the asymptotic mul-
tiplicity distribution, as in Appendix A:

(B14)
8h ~ „- m

Similarly, one can go back and look at second-or-
der terms in h to find the second cumulant of the
multiplicity distribution, and other distributions
can be treated in the same way. We shall not in-
Qict any further details on the reader.

The results of these calculations are shown in
Figs. 2-4. After we have chosen a definite set of
input states, the only adjustable parameter re-
maining in the model is the resonance volume V,
or the corresponding radius R'(V=+IIRd3). Two
additional choices were made in order to carry out
the calculations. The first decision was to trun-
cate the exponential series in Eq. (B2) at the third
term; that is, we allow only 2- and 3-particle

I I I
I

I I I
I

I I I
I

I I I
I

I I I
I

I I I

0.6—

04—

0.2—
300

0 I I I » I I I I I I I I I I

0.6 0.8 I.2 1.4
I I I I I

1.0
R'

1.6

FIG. 2. Coefficients ao characterizing the density of
states, as a function of the resonance radius A' [cf.
Kq. (B.3)]. Units k= c= m~= 1.

(note the distinction between R and R'). Alteration
of these two decisions is not likely to affect the re-
sults by more than a few percent.

In Fig. 2 the coefficients ao (i = 1, . . . , 4) are
plotted against R'. Figure 3 shows the inverse
temperature Po, and its derivatives as defined in
Appendix A, as a function of R'—these derivatives
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Nucleon-nucleon scattering near 50 MeV. II. Sensitivity of various n-p observables
to the phase parameterse
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In the first paper in this series, we reported on a phase-shift analysis of existing p-p and n-p data
in the energy range of 47.5 to 60.9 MeV. Two results were emphasized. The first is that the available

n-p data leave &, undetermined within the range —10' to +3', resulting in a range of phase-parameter
solutions, rather than a single solution. The second result is that while a, is very poorly determined,
5('P, ) is rather well determined, but at a value which appears to conflict not only with values

obtained at adjacent energies, but also with the value (or narrow range of values) predicted by
meson-theoretical models. In that paper it is reported that the Harwell n-p d r/d 0 dataare responsible
for this value of 8('P,). The remaining data, consisting only of cr„, data, polarization dat~. , and other
d cr/d 0 data, are consistent with the theoretical predictions. In this paper we look more closely at the
sensitivity of experimental observables to variations in the partial-wave parameters. We extend the
number of experimental observables under study to twenty, and consider the effect on these of varying
seven different phase parameters: 5('So)„~, 5('S&), e,, 5('P, ), 5('D, ), 5('D,), and 8('D,). We discover
that the best observable to fix 8('P, ) is still the differential cross section, and recommend, as in the
first paper, that it be measured both at extreme forward and extreme backward angles. We also
discover that the reason e, is very poorly determined by the present data is that neither o.„„dcr/d 0,
nor P is sensitive to changes in c,. We find that the experimental observables which are sensitive to 61

and can fix this parameter are, in order of decreasing sensitivity, A „, C, A,', C«, A „D„C„„,
and A„„.

I. INTRODUCTION

In a paper by Amdt, Binstock, and Bryan, '
hereafter referred to as paper I, a phase-shift
analysis of n-P plus P-P elastic-scattering data
in the laboratory energy range 47.5-60.9 MeV
was carried out. Charge independence was as-
sumed for all but 5('S,), and F waves and higher
partial waves were set to the OPEC (one-pion-
exchange contribution) values. It was found that

the available n-P data leave e, undetermined with-
in the range -IO to +3, resulting in a range of
phase parameter solutions rather than a single
solution. Furthermore, although e, was poorly
determined, 5('P, ) was found to be rather well
determined by the data, but at an anomalous
value. In particular, for e, fixed at a reasonable
50-MeV value of +2. I8 (taken from Ref. 2),
5('P, ) searched to -3.52 + 1.04' at 50 MeV, in
conflict both with theoretical expectations of


