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If charge distribution in a collision process becomes "statistical, " then the ratio ~+/m could be used
to measure the average multiplicity. A detailed mathematical analysis is given as well as a discussion of
physical limitations.

I. MOTIVATION

Recent high-energy Pp and P -nucleus collision
experiments' at the CERN ISR and at NAL have
shown that for large p~ the ratio s'/s is always
close to but greater than unity. This result is not
a Prim'i surprising since the collision presumably
produces several pions and a statistical distribu-
tion of charges would produce a v'/s ratio close
to unity. The positive charge excess in the col-
lision then explains why s'/s is greater than unity.
%e mant in the present paper to pursue this line of
reasoning, defining mhat the heuristic concept of
"statistical" distribution means Precisely and
raising the possibility of using the observed ratios
such as v /w, p/rs, and 2s'/(s'+s ) for possible
information on the average multiplicity of pions.

Before proceeding, it must be emphasized that
for some collision processes charge distribution
cannot be statistical. In fact, in typical fragmen-
tation processes, I transfer (hence charge trans-
fer) from one fragmenting particle to the other is
strongly inhibited. In such processes, therefore,
there cannot be an over-all "statistical" charge
distribution. The consideration of this paper
therefore only applies to a "violent" collision, and
one hopes that for an inelastic process with a par-
ticle emitted with a p, greater than, say, 2 GeV/c
the collision is violent and statistical distribution
of charges and I obtains.

II. STATISTICAL CHARGE DISTRIBUTION
Vf ITHOUT ICONSERVATION

Consider the process

pp violent NN(&) i

For a fixed final-momenta distribution of the nu-
cleons and the pions, the possible charge states
are listed in Table I for small values of l. As-
suming (for fixed f) each of these states to have
equal probability, the evaluation of the xatios
v'/ii, p/n, etc. is straightforward. (Notice that
the assumption of equal probability is the only
reasonable precise formulation of the heuristic
idea of statistical distribution. )

For larger values of l, these ratios are evaluated
with the computer, and they are tabulated in Table
II. It mill. be proved in Appendix A that

—=1+6(f-1)-'. (2)

The asymptotic form of other ratios mill be de-
rived in Appendix A. They are

p 3 9—=1+ —— + ~ ~ ~

n 2l 16l'

2m'
+ ~ ~ ~ + ~ 0 ~

m'+x 4l l

III. STATISTICAL CHARGE DISTRIBUTION
VfITH ICONSERVATION

For process (1) the total I is unity and the total
I, is unity. That should be taken into account in
the statistical consideration. There is a unique

way of doing this. Let O(I, I,) be the projection
operator for the state of the NN(s)' system, so
that in the representation where the total I and
total I, are diagonal O(J', J,) is diagonal and is
equal to 1 or 0 according to whether the equations

p 3 9—=1+ + e ~ ~

n 2l 16l' (6)

I, =Jg

are valid or not.
The operator O(l, 1) is then the density matrix

we mant for the statistical ensemble on the right-
hand side of (1), so that the average of any oper-
ator A, such as the charge of each pion, is

[TrAO(l, 1)][TrO(1, 1)j ' .
Notice that this quantity is independent of the
representation me choose.

The evaluation of the averages s'/w, etc. will
be detailed in Appendix B. The result is tabulated
in Table III and graphed in Fig. 1, Asymptotic
forms for large l are derived there also, yielding

3 9 81——1+ —+ + + ~ ~ ~

l 4l' 32l'
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TABLE I. Calculation of mean numbers of n+, n~, and n for l =1, 2, and 3, neglecting isospin conservation.

Possible final-state
charge configurations

Number of possible
charge configurations Mean number of Mean number of Mean number of

&i 0+2&r i+&i 2
m"s =m'(l) 7r 's=m (l) n' 's=7l (l)

ppo
pn+
np+

2

3
i
3

0

pp+-
PP-+
pp 00

pn+0
pn 0+

np+0
np 0+

nn++

PP+-o
PP+o-
PP-+o
Pp-0+
PP0+-
PP o-+
pp000

pn++-
pn+-+
pn+00
pn-++
pwo+0
pn 00+

np++-
np+ -+
np+00
np -++
np0+0
np 00+

nn++0
nn+ 0+
nn 0++

TABLE II. Numerical calculation for various mean
numbers and their ratios when isospin conservation is
ignored.

91,+ (7)

l n' n' n n'/r p/n 2nD/(71' +7t )

1.00
1.20

1.15
1.13
1.11

0 0 0 0 2 0
1 0.67 0.33 0 1.33 0.67 2.00
2 1.00 0.75 0.25 1.25 0.75 4.00 1.67

3 136 109 055 118 082 250 144
4 1.71 1.44 0.85 1.15 0.85 2.00 1.35
5 2.05 1.78 1.17 1.12 0.88 1.75 1.27

A comparison of these equations with (2)-(4) re-
veals that the most important change introduced
by isospin conservation is the elimination of the
l ' term in the ratio 2w /(w'+ w ) in going from (4)
to (7). This elimination is more explicitly trace-
able to the difference between the value of w'(f) in
(A9} and (B14). We shall return to this topic at
the end of Appendix B.

6 2.39 2.12 1.49 1.11 0.89 1.60 1.24
7 2.72 2.46 1.82 1.09 0.91 1.50 1.20
8 3.06 2.80 2.14 1.08 0.92 1.43 1.18

9 3.40 3.14 2.47 1.07 0.93 1.38 1.16
10 3.73 3.47 2.80 1.07 0.93 1.33 1.14

1.10
1.09
1.08

1.07
1.06

IV. DISCUSSION

Equations (5}and (7) [or, better, (B14)]can
probably be used to yield information on the multi-
plicity l of pions. In particular one finds, after
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l 7r' n' m p n x+/r p/n 2r /(g+ +g )

0 0 0 0 2 0
1 0.75 0.25 0 1.25 0.75 1.67
2 1.05 0.65 0.30 1.25 0.75 3.50 1.67

3 1.43 0.97 0.60 1.17 0.83 2.38 1.40
4 1.77 1.31 0.91 1.14 0.86 1.94 1.34
5 2.12 1.65 1.24 1.12 0.88 1.73 1.26

0.667
0.963

0.951
0.979
0.982

TABLE III. Numerical calculation for various mean
numbers and their ratios when isospin conservation is
considered.

Notice that, to the accuracy indicated, (8) is also
correct if one neglects isospin conservation, as
is obvious from (A9). A simpler argument leading
to (8), without detailed mathematical analysis, is
as follows. For large l, the average charge of
each nucleon is evidently —,'+O(l '). Thus by
charge conservation the chawge of the l pions is on

the average 1+0(l ). It follows then from the ob-
vious relations

w'+w'+w =l, w w=—1+O(l ')

6 2.46 1.98 1.56 1.10 0.90 1.58 1.23
7 2.80 2.32 1.88 1.09 0.91 1.48 1.20
8 3.13 2.65 2.21 1.08 0.92 1.42 1.18

0.988
0.991
0.993

that
w'=-,'(l - w')+ —,'+ O(l -') .

9 3.47 2.99 2.54 1.07 0.93 1.38 1.16
10 3.81 3.32 2.87 1.07 0.93 1.33 1.14

0.994
0.995

Further, it is clear that

w'= -,'l+O(1) .

averaging over all l both sides of (B14),

(8)

where the left-hand side is the w'/w ratio ob-
served at a fixed large p„and where (l) =average
number of pions in a collision in which one large
p~ pion is observed.

~ ~ s ~ I I I I ~ I ~4

~+a~ 2-

Equation (8) then follows.
What happens if another nucleon-antinucleon pair

is produced, i.e., for the process pp -NNNP(w) 'P

The average net charge of the additional pair (N5f)
is zero. Hence, by the argument in italic type
above, Eq. (8) remains valid.

What happens if strangeness WO mesons and
hyperons are produced, e.g., for the process
pp -NAK(w)'P The average net charge of N(AK)
remains 1+O(l '), since Nand Keach contribute
—,
' and A contributes 0. Thus the average net charge
of the (w)' system remains 1+0(l ') and (8) still
obtains.

In short, if the number of antinucleons and
strange particles in the whole collision is much
smaller than the number of pions, (8) remains
valid. This seems a safe assumption, and (8)
could be used to estimate the number (l) of pions
emitted in the pp collision if it were known that
one pion is emitted with a large p ~.

2

p/n I-

(b)

I ~ I ~ I I I I I I I

APPENDIX A

This is an appendix to Sec. II. We first define a
quantity N, , which is the number of possible ways
to distribute total charge q over l pions. We ob-
viously have

~ I ~ I I I I I I I I

(c) and

w'(l, q)+w'(l, q) +w (l, q) =l (A1)

21K

+1K

I.OO-

0.95-

IO

w+(l, q) —w (l, q) = q, (A2)

where w'(l, q) is defined to be the average number
of m" s per state in these N, , states. Similarly
we define m (l, q). The generating function for
N, , is

FIG. 1. (a) n+/x vs l, (b) p/n vs l, (c) 2m~/(n++7r )
vs l. The solid curves are exact calculations found in
Appendix B. The dashed curves are their asymptotic
limits [i.e. , Eqs. (5), (6), and (7)]. Isospin conservation
is considered in a11 three cases. Note the scale in (c).

(x+1+x-')~=+ N, ,~,
a=-l

which implies

N, , =S'.

(AS)
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To find w'(l, q), we start with the new generating
function

w (l, q) =IN. ../N, , (A4)

w'(l, q) =+ nP, „ Pl, „,

y—+ —+—-=Z P y"x'333. =~
Ngg

where P, „,is the probability of having n neutral
pions under the conditions (A1) and (A2). We then
have

Equation (A4) is easy to understand combina-
torially. It merely states the fact that if we add
one pion to l -1 pions, without changing the total
charge q, the added pion must be neutral. The
factor l is the number of possible choices for this
"extra" pion.

We can now obtain w" (l, q) by solving (Al),
(A2), and (A4) simultaneously. The only task that
remains is to find N, „which is straightforward:

The denominator is equal to the coefficient of x'
in the new generating function at y =1. Thus it is
equal to 3 'N, , The numerator is equal to the
coefficient of x' in

1 dx (x+1+x ')'
2ni x x'

r
d8 (1 +2 cos8)' cosq8 .

2m (A5)

Thus the numerat'or is equal to l 3 'N, , , Hence

It is useful to have an asymptotic expression for
N, , for l- ~, with q fixed. This is done by re-
placing the integrand of (A5} by

g2 g4 1 q2g2 q4g4 t -ie2(3 lg 13lg l gs q2e2 q4g4
1+2 1-—+—— 1- + eie 3 + + ~ ~ ~ 1» + ~ ~ ~

2 24 2 24 36 3240 2592 2 24

The result is

g
3 " 3 + 12q' 1 + 360q' + 144q ~4 —651q' —1260q4 —144qe

&.a 4&l 16l 512l 2 +
2048l 3N I

~~ 31

~

I I2

I »
2

~
2 4

~
~4» 2» 4» ~

~ ~ ~ ~
~ (AS)

The asymptotic forms for w" (l, q) are then found
to be

l 1 —6q 1 —4q'"('q} 2 12 221

3 27
4/ 22l '

3 27
4l 22l'

l 1 1 —4q'
w'(l, q) = —+- + +

l 1+Gq 1 -4q2
w (l, q)=-—

3 12 32l
+ ~ ~ ~

(AV) l 5 7
w'(l) =- +—— +

3 12 32l

l 1 5
w'(l) =—+- — + ~ ~ ~,

3 6 16l
We now have to average these quantities over

physically allowed values of q. Table I will be
helpful at this point. This is done as follows:

p (l}— 2N I,o + 2Nr ~ i
N, 0+ 2N, , +N$

l 7 17
w (l)=--—+ + ~ ~ .

3 12 321

There are a number of interesting identities
among the various particle ratios. They are

Ni, o+ 2Nr, x +Ni, 2

(AS)
w'(l) —w (l)

(I)
(A10)

( )
N, , Ow(l, 0)+2N, ,w+ (l, 1)+N, ,w+0 (l, 2)

N, o+2N, , +N, 2

w'(l)+w'(l}+w (l)
n(l) + p(l)

(A11)

where p(l) is defined to be the expected number of
protons, when there are l pions produced. Defini-
tions of n(l), w'(I), w'(l), and w (l) are similar.
They have the following asymptotic expressions:

w'(l) l + 2

w (l) l —1'
Equation (A10) is nothing but the conservation of

charge and the conservation of baryons. Equation
(A11) is also trivial. It derives from the defini-



POSSIBLE RELATIONSHIP BETWEEN THE RATIO m+/w 2509

l K-x„-i -&i-i..+x) (A13)

if q WO. From the definition of N, , it follows that

(A14)N1, e Nl -l,a+1 Nl -l, q N1 -l,a-l '

Equations (A8}, (A13), and (A14) imply (A12).
Since there are five kinds of particles, i.e., four
kinds of particle ratios, Eqs. (A10), (A11), and
(A12) fix the other three ratios whenever one ratio
is known.

APPENDIX B

tion of l and the conservation of baryons. To prove
(A12), we first note that an integration by parts
for (A5} leads to

III, to which this is an appendix, we include iso-
spin conservation. The state of the pion system is
then specified by its I and I„and the four states
of the two nucleons can be linbarly combined into
states of total isospin 1 and 0. There are then
seven ways to multiply the pion system with the
nucleon system to give the total isospin 1 and the
z component of isospin 1. These seven ways are
listed in Table IV, which is valid for arbitrary l.
To construct this table we first study the total I
and I, states of l pions.

Define a quantity M» which is the number of
isopin multiplets with total isospin I for l pions.
M» is equal to the difference between the number
of possible states with q =I and I+1, where q is
the third component of isospin:

In Sec. II we separated the final states into four
groups, according to the charges of the two nu-
cleons, as is clear by looking at Table I. In Sec.

M, q=N, ~-N, q+ (Bl)

where N, , is defined in Appendix A. We then have

M, z =—
I d8 (1 +2 cosa)' sin —,

' 0 sin(I +—,')e
7T

3 'i' 3 21+12I +12I2 6 581+032I+11'16I 22+8I8~+1 44I

512l ' (B2)

TABLE IV. Pion charge distribution in pp collisions.

Isospin
state
of NN

Nucleon
state
of NN

Isospin
state
of 7I'

o)

Weight for such a
NN-m' coupling

Mean number of
7Io's in each

state =m (L,I,q)

Number of isospin
multiplets in such a

7I' isospin state =M, z

1
(pn +np)

l 1
+ ~ ~ ~

3 Sl

pp
L 1

+ +0 ~ ~

3 4l

nn
l 3 + ~ ~ ~

3 4l

1
W2
—(pn + np) ko

l l 3 1/215 93 12061—+—+ ~ ~ ~ 3' — —1-—+ + ~ ~ ~

3 Sl 47I'L 47I' 16L 512L

io
l 3+ + ~ ~ ~

3 4L

1
~2
—(pn —np)

l + ~ ~ ~

3 Sl
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Numerically M« is computed by a recurrence
scheme.

M1, I Ml I, I+2 + Mt-l, l+ / I,I 1 if I = 1,

M&, r = M~-i, r+i 8 I=0

with the conditions

M, =0 if I&l,

Mo. o -1.

In each isospin multiplet with total isospin I,
there are (2I +1) possible q's. We now want to
find the mean number of neutral pions per state
under the following conditions: (i) The total num-
ber of pions is I, (ii) the total isospin quantum
number is I, and (iii) the third component of iso-
spin is q. Let this quantity by w0(/, I, q). It can be
obtained again by a recurrence formula as follows.

Suppose we have already solved the problem for
l —1 pions. By adding one extra pion, we can gen-
erate the desired s0(l, I, q). It is given by

I +i' 1 I
M, 1v (I, I, q) = ~ ~ M, , 1+1 . . [x (I —1,I+i, q+ j)+5)0], (s4)

with v0 (0, 0, 0) = 0.
Each of the nine terms on the right-hand side of

(84) consists of three factors. The first factor is
the weight given to each multiplet. The second
factor is the square of a suitable Clebsch-Gordan
coefficient. The third factor is the mean number
of neutral pions in the particular isospin configu-
ration.

Equation (84) can be greatly reduced because of
the relation

n' (I, I, q) = 2 I + [(I 2 +I —3q2)Z, 1/M, 1], (85)

Q Ml 1n(I, I, q) = IN)' (87)

Equation (BV) is true because both sides are

where 9» depends only on l and I.
To prove (85), we first consider the v0-number

operator for the ith pion, and split it into an iso-
scalar and an isotensor:

$0(l) 1 [I (l)]2

[ I(l)]2]. + ([I(l&]2 3[I (()]2]. (86)

The first term on the right-hand of (86) trans-
forms under isospin rotations as an isoscalar,
while the second term transforms as the zeroth
component of an isospin tensor. In fact, the iso-
scalar term is simply —,', because [T"']'=2.

Since w0(l, l, q) is just the expectation value of
g(w0") in the state ~I, q), we take the expectation
value of (86). On the right-hand side the first
term gives 3l. According to the Wigner-Eckart
theorem, the second term is proportional to I'+I
—3q' with a proportionality constant independent
of q. Hence we have proved (85).

Substitution of (85} into (84) results in a re-
currence formula which allows for a computation
of Z, r. A simpler recurrence formula for Zf
can be obtained as follows. We first observe the
sum rule

equal to N, , times the mean number of w0 [cf. (A4)]
with fixed I and q. (This becomes apparent when

one starts with the N, , states of the l-pion sys-
tem with total charge q and makes orthonormal
transformations on them to obtain states with fixed
total isospin. The number of states with isospin
I is M, 1.} We then substitute (85} into (BV), mak-
ing use of (Bl), to get

—,Q (I ' +I)Z, , —3 Q Z, , = I (t))'. ..—2N, ,)/q' .
r=q l=q

(86)

Subtract (86) from its corresponding equation
with q- q+1. The result contains a term

I~+I ~r r ~

Eliminate this term by using (88) again. The re-
sult obtained is now subtracted from the same
after the replacement q- q -1. The final equation
1s

(I -1)(3I-3)Z. ,.. (3I+3)(I+1)Z,,,
2I —1 2I + 1

—'M j.@l-) ~ 1-1 2 I .I-l} +)-1 1 2 I ~ I} (89)2I -1 2I+1

Equation (89) is legitimate only for I & 1. Setting
I =1, one obtains

1 I
Zl 1

—10@)10—2103111+2 ll).
(810}

A closed form for Z, r can be obtained by solving
Eqs. (89) and (810). The result is

l 1 1
1 I 3 I(3I 1) l-I I 1 I(I+1} l-l I

1
+ (3I+3)(I+1} )-1~ 1+)M
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with the asymptotic expression

St+i t' 2 )i/2
Z, ,=

p ~, ~

(2/+1)22P ~4v/j

12I'+12I +25
16/ j '

l 1 5
m'(/) = —+ —— + ~ ~

2 16l

ln'(/) = ———+
3 8$

1
w {l)=———+ + ~ ~ ~ .

3 2 16l

(B14)

or

1 1
Z» z- —M» rSl 4l

for all fixed I. Substituting this into (B5), we find
the asymptotic form for w'(/, I, q):

Equations (A10) and (A11) remain valid with
isospin conservation because they are only de-
pendent on nucleon conservation and charge con-
servation. (A12) is, however, no longer valid.

A numbex of intexesting identities are listed
below:

Equation (B11)and the definitions of / and q then
give

~»»=1,
M(, , = /-1 (/& 1),

»

g (2/+1)M, ,=2',
I =&

+ l q I +I-3@~
v(/ I q}= —+ ——

3 2 16l
+ ~ ~ 4

l q I'+ I—Sq'~-(/ I q)=- ——— + ~ ~ ~

3 2 16l

{B12}

+0 l g jl
~2I+ 1

Z, , =[2(2/-1)] ', (B15)

We now tabulate Table IV, which gives the seven
possible isospin configurations, their individual
weights, and the asymptotic forms of M», and
n'(/, I, q}. Only those multiplets with 2 & I& q
concern us. The fourth column is the square of
the Clebsch-Gordan coefficient which combines
the isospin states of NN and n into the initial iso-
spin state ~1, 1}of two protons. The seven groups
can be arranged into four classes. Different class-
es correspond to different sets of total isospin
quantum numbers of the NN and m' system. From
this table, it is easy to show that

—M —'M
(I )

E. 20E.l 2 E. 22 s(/)I» 0+2M» ~+M» 2

(B12)

Z. . .= (l -2)[2(2/-2)]-',
v'(/, 0, 0)=-,'I .

TABLE V. The average number of neutral pions per
state at fixed I and I,=O for l =24.

8.00
8.01
8.03
8.06
8.10
8.16
8.22
8.29
8.38

(/) =-
M», 0+ 2M», i+M», 2

xI M, ,[-', v"-(/, 2, 2)+ ~a"-(/, 2, 1)

+ ~0 m" (l, 2, 0)]

+M, ,[-,'~" (/, 1, 1)+ r"-(/, 1, 0))-
+M, ,r"-{/, 0, 0)I

Their asymptotic forms are

3 33P{'}= '4/ 22/''"' '

3 33n(/)=1 ——+ 2, + ~ ~

9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24

8.48
8.59
8.71
8.85
9.00
9,17
9.35
9.55

9.77
10.02
10.29
10.59
10.92
11.30
11.73
12.26
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Their proofs are omitted.
We also tabulate, in Table V, the result of a

numerical computation of v'(I, I, 0) for I=24. For
small I, v (24, I, 0) is approximately 8= ,'I, c—on-

firming (811}. Notice that the value of n'(I, 0)
without isospin conservation, as given by (A7), is
bigger by -~6 than this value. The meaning of this
observation is as follows: For q =0, charge con-
servation gives a slight edge to v' over —,'(w'+n )
if one does not consider isospin conservation, as
(A'I) shows explicitly. This favoritism disappears
when isospin conservation is considered, as (811)

and (812) show explicitly, because of the greater
symmetry between m', m and r .

If one now keeps q =0, but considers a value of
I comparable to l, then the favoritism for x' must
reappear, because the average of no(l, I, 0) over I
must give the same result as (A7). Indeed this is
so, since (815) leads to

v'(l, l, 0}= I'(2l- I) ' & pl .

The numerical value of w'(24, 24, 0) in Table V
agrees with this formula, as expected.
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Single-cluster formation in hadronic reactions is discussed, within the context of the statistical

bootstrap model. This process is analogous to compound nucleus scattering in nuclear physics, and

similar formulas hold for the formation cross section. If the average resonance width should rise

indefinitely with energy, the model will eventually run into conflict with unitarity; the trouble is traced

to a breakdown of the "narrow-resonance approximation. " The effects of angular momentum

conservation on the cluster decay are considered, and formulas are presented for the multiplicity and

single-particle momentum distribution as a function of the clusters spin. Brief discussions are given of
possible experimental tests of the model, including the annihilation reactions e+e hadrons and

NN -mesons, which are particularly favorable cases. In an appendix it is shown how to estimate

asymptotic parameters in a "realistic" model by analytic means.

I. INTRODUCTION

It is a familiar fact that low-energy nuclear in-
teractions are well described by the "compound
nucleus" model of Bohr, ' in which reactions are
assumed to proceed via an incoherent sum over

long-lived direct-channel resonances. The aver-
age behavior of the system (e.g. , momentum dis-
tributions, branching ratios, etc. ) can then be de-
scribed by statistical means, that is, by computing
ratios of the phase space available in the various
final states. In order to do this, one needs to know


