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Gauge-invariant Lagrangians are studied using the method of 't Hooft and Veltman with a
particular type of noncovariant syTf1~etry-breaking term. A limiting case corresponds to the
formalism of nuQ-plane or light-cone quantization. Nard identities and a feature of di-
mensional regularization are briefly discussed.

The null-plane (or light front or the so-called
"infinite-momentum frame" }(Iuantization of fields
has been studied at length by several authors. ~ 2

In a previous unpublished report, me have stud-
ied Yang-Mills fields in this formalism. This
treatment has been extended to the case of the gen-
eral gauge-invariant I agrangian involving the
Higgs-Kibble mechanism. A study of light-cone
quantization and equivalence with functional for-
malism will be published elsewhere and presented
in a thesis by one of us (CK.). It is to be noted
that in the light-cone quantization" a minimum
number of independent fields survive, while un-
like the unitary gauge' the term k„k„/m' (trouble-
some from the point of view of renormalization) is
absent in the gauge-field propagator.

In this paper we propose to study the gauge fields
from the following point of view: We mill intro-
duce a particular type of noncovaxiant gauge func-
tion (or symmetry-breaking term) in the Lagran-
gian and then follow the general technique of 't
Hooft and Veltman. 4 Correspondence with the
above-mentioned formalism" will be obtained as
a limiting case.

I. THE NULL-PLANK GAUGE FUNCTION

Let us illustrate our method by an example,
namely the Abelian Higgs model. We might as
mell have started with spinor electrodynamics, but
it is interesting to display certain special features
arising in the Higgs model. The non-Abelian case
will be taken up later on.

The invariant Lagrangian can be mritten as

Z. „(x)=-a [sp A, (x) -e„Ap(x)]'+(D„Q)*(D)' y)

+ p'P*& X(P*.P)' -(Xv' = p,
' & 0), (1)

where D& -—8& ieA& and-(t) =(t), +i/2= (2)'~ (v+P+iy).
The vacuum expectation values are given by zero
values for all the fields except that

&P, ) = (&)"'v

Z. „can be separated into free and interaction

parts in terms of A„, y, and g.
To this we will add the symmetry-breaking term

——[n A(x}]',
2(x

where o. is an arbitrary gauge parameter and n is
a fixed four-vector. We will be principally inter-
ested in the case' n' = 0, with n = (-')'" (1, 0, 0, 1),
say (which is evidently indicated for correspon-
dence with the null-plane formalism), but let us
not exclude for the moment the cases n2=+ 1, with,
for example, n = (1, 0, 0, 0) and n = (0, 0, 0, 1), re-
syectively.

The above choice replaces the usual covariant
one6

—[a A(x)]'.
2&

Corresponding to the generalization of (3) as'

--,'~ s A(x)+ —q(x}

me might have chosen the gauge term
-2

--, ~ n A(x)+ —~(x)

with a view to study equivalence properties.
In the following we will restrict ourselves to

the case (2) (A=O).
Thus our starting point is the Lagrangian

g(x) =Z gx)- —[n.A(x)]'1
2Qf

and the generating functional for the Green's func-
tion

d+lf d X dg

xexp i d4 Sx+J& x x+J„xx x

+ Z„(x)A"(x)]I . (7)

Z generates the connected Green's functions.
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Our Green's functions will be defined as the
variational derivatives of W (see the remarks in
Appendix B of Ref. 8). For the model we are con-
sidering, the bilinear terms in JS(x)d'x can be
arranged as

to compare the case n'=1 (for a-0}with those for
the Coulomb gauge. (This point, however, does
not concern directly the null-plane gauge and will
not be studied here. ) For n'= -1 (and a —0) we
obtain the "axial gauge" of Fradkin and Tyutin. '

(b) Ward identities. We have from (9) and (10),
-', A" (x) ( + m')g„, - s„s„-—n„n„A"(x)

—a x(x) x(x)

—
~ m [A"(x}B„X(x)-X(x)S+"(x)]

——,
'

g (x}(CI+ 2p. ')P(x) (m= ev) . (8)

and

e"'*((n A(x)A„(0}),)(,I =

r e"'((n A(x)X(0)),)OS=—
(n k)

'

(13)

(14)

Let us first consider the case n2=0. We obtain
the following nonzero bare propagators:

e' ' A& xA„O &)d x

k2 m2

(9)

These are bare propagators. But the Ward identi-
ties assure that these two are not renormalized.

The result corresponding to Eg. (4.1) of Ref. 6
is for our case

1 5Z 5Z
~~() ' ~& ()

J f P eg i imam'"'"'" '}' &'I" "=k'-m' (n k)' '

e"'((4(x)y(0),)&,)d'x=k, 2„.. (12)

The subscript (0) denotes bare propagators. The
subscript + should be taken to indicate ordering
in the direction introduced in the asymptotic con-
ditions defining the in and out fields, the cor-
responding vacua defining the functional integral
of the action as (out~in). For the usual case the
asymptotic directions are t or x'-+ ~, and we
have the usual T (or rather T*) ordering. When

we want to compare our results with those of
quantization on the light cone" we should choose
the directions v =n x-+~. This is more fully ex-
plained in the point (d).

The complete set of Feynman's rules are easily
obtained. We will not, however, write them down.

Let us now note the following successive points.
(a) Comparison of the cases n' & 0, n'=0, and

n'& 0. For n' 40, the results (obtained through
straightforward calculation} become much less
simple. To give but one example, in (ll) we obtain
an extra term

-im2n2
(k'-m')(n k}2

'

For this reason we will henceforth consider ex-
clusively the case n'=0, instead of writing down
complicated general formulas. It is interesting

[In our notation

Z„(x)A" (x) =Z'(x)A„(x)+ @A-„(x)+ g P(x)A, (x),
I=a,2

with n'=0, n '=0, n n=1 ]
From (15}, exactly as in Ref. 6 we obtain that

(13) and (14) hold for the respective full propaga-
tors.

Thus in the limit n - 0 the propagators involving
n A(x) all tend to zero. (We will not discuss here
the effect of the singularity in the different prop-
agators for n k=0 and the mechanism of their
cancellation. In the covariant gauge a correspond-
ing problem arises for k'=0. )

Starting from (15}we can easily obtain (as in
Ref. 6) Ward identities satisfied by the generating
functional for the irreducible vertices.

(c) Physical sources and fields. The criterion
of 't Hooft and Veltman' gives (independently of
the choice of the gauge term} the following con-
straint for the physical sources for our Lagran-
gian:

mZ„(x)-s„J (x)=0.

Hence the physical states should correspond to
the fields

1
A„(x) ——S~ X(x}

and g(x). This is also brought out if in S(x) we
make the substitution

A„(x)=C„(x)+—„S(X)x.
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Then the free propagators for C„(x) and }t(x) are
calculated from

--,'[&„C„(x)-&„C„(x)]'+-', m'C„(x) C"(x)

1 1 2

n C(x)+ s s}|(x) . (18)2' m

We obtain (considering for brevity only the limit
n-0}

e"'d'x(( c, (x)c„to)), )(.) = - „,', (g„.— ",")

and evaluate n A(x} (with n'= 0, n n = 1) through
the consequent constraint equation' in terms of the
independent fields A, (x),A, (x), )((x), P(x), on which

are imposed equal-r (=n x) commutation relations.
The bare propagators of these latter fields can be
calculated trivially as v -ordered vacuum expecta-
tion values. Noting that, symbolically,

[s A(x)], =-, [S,A'(x)+ m)((x)], ,„,
(2o)

and that not only 8& but also n 8 can be taken out
of the r-ordering (since g„„=0), we can write
finally [consistently with (19) and (20)]

n A(x) =0 (19)

(18}

The other propagators are the same as before.
Thus we see that C„(x)has already the Peynman

propagator (17). It is interesting to compare the
role played by }t(x) in our scheme with that in the
covariant gauge, particularly for n-0 [compare
our Eqs. (10) and (11)with Eqs. (3.23) and (3.24)
of Ref. 6].

(d) Comparison sviN nul/-plane quantization. "
As is emphasized in Ref. 8, in de5ning the Green's
functions through the functional derivatives one

avoids from the beginning mutually cancelling non-

covariant terms in the formalism. Since in our
case the Lagrangian (6) is made explicitly non-

covariant, we do not avoid terms linear in n„ in
the propagators. %hat we do avoid, however, is
a term proportional to n„n„ in (9) [though this
would leave (13)unaltered]. This fact can be
traced more precisely to the absence of constraint
equations in our formalism as compared to the
usual treatment of null-plane quantization. "
Since we never formally set n A(x) =0, the Heisen-
berg fields do not satisfy any constraint equation,
though in the limit n-0, s A(x) can be shown to
decouple in a consistent fashion.

Let us examine this aspect more explicitly. To
start with, let us note that in the free part of Z - „
[Eq. (1)] the terms bilinear in A„(x) arid y(x) have

the same structure as the boson part of the gluon
model of Soper' [his field B(x) corresponds to }t'.(x)],
and that in Yan's formalism' the corresponding
fields are B„(x}and A(x). Thus certain features
can be compared directly.

Now suppose that instead of introducing our

gauge term (2) we put directly in {1), foQowing

Soper, '

e' '" A„x p 0, (0)d x

i -k„n„+k„n„ fs„n„( )k'-m' g~" s k (u k)' '

other propagators coincide with (10)-(12)for n =0.
Thus, as might have been expected, using the con-
straint equation in this fashion we obtain exactly
the boson propagators of Yan, ' who discusses the
effect of the presence of a constraint equation on
the variational derivatives.

Had we considered the vector-gluon model start-
ing with the Lagrangian of Soper [Eq. (1) of Ref. 1],
but introducing our gauge term (2), we would have
obtained apart from results like (9), (10), and

(11), the usuul spinor propagator iSr(x) for the
spinor field. At this point it is convenient to com-
pare with the corresponding results of Yan [Eqs.
(3.1), (3.38), and (5.1) of Ref. 2(b)]. Two extra
terms in his propagators (one for the boson, one
for the fermion) serve only to cancel the effect of
two terms in the Hamiltonian, which again are
consequences of the constraint equations.

The absence of constraint equations and the need
for such cancellations is a general feature of our
formalism.

A more complete study of the equivalence of the
two approaches by comparing the different vertices
and graphs will be presented in a thesis by one of
us {C.D.).

II. THE NON-ABELIAN CASE

Here let us note very briefly certain features of
the non-Abelian generalization of the Higgs mod-
el~' using our gauge &erm

1——[u A (x)]' (s =1 2 3)
2Q

Apart from the evident generalization due to the
internal indices, the propagators (9)-(12) remain
the same. But now there is a Faddeev-Popov
term,
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d@ exp iC *'(x) —n ()4'(x)
1

Dn

—ge'" ~ [n A(x)]'4'(x)

(g is the coupling constant), (22)

()y, =(r;,. y, +A;)&.

and in our case

& = (u )
'"n A (x)

and

(4g =A)', )(', 0),

(as)

and a ghost propagator,

r
I/2

e' '((4*'(x)4~(0)),}(„d'x= o„. (23)

M=(o. ) '/'(n ()+gn Xx).

III. DIMENSIONAL REGULARIZATION

(ae)

But the ghost is coupled only to n A(x) and in the
limit o. —0 both n A(x) and the ghost may be shown
to decouple in a consistent fashion. This intro-
duces an element of simplicity in the formalism.

In the covariant gauge our coupling term n„C *A"4
is replaced by (()„4*)A" 4 and the ghost is not
coupled only to ()&A" (Refs. 4 and 7). Thus even
in the limit of Landau gauge the F-P ghost is
presents

Following the method of Ref. 7 the Ward iden-
titites can be compactly displayed in the equation

d 'k
(k'+ ap k+1+i~) [n (k+p')]' (27)

As is known, dimensional regularization' is a
powerful and elegant tool particularly suited for
studying renormalizability of gauge theories.

Let us briefly note only one point concerning
this aspect. To see whether this technique might
be conveniently applicable with our particular
choice of gauge function (with, for example, the
Feynman rules in the limit o. = 0), we should first
consider integrals of the type

F +J Ib +Ah

x M ' — wJ=0,1 6
i 6J

(24)

where I'„and A, are defined through the gauge-
transformation properties

(we denote the dimension by l, and n is supposed
to be redefined in such a way as to conserve the
property n2= 0).

It can be shown that the lightlike nature of n

permits a relatively simple evaluation of this in-
tegral.

Using Feynman parametrization and the 't Hooft-
Veltman formula [for an integrand of the term
(k'+ 2p k+A+i )e], and n'=0, we obtain

/ e-4 m(m+ 8) p d& &n- /2 -x(1 &) 8-g[&(p A) +pit u(1 s)]i/ +a+ 8)

(pj's

p pI)r(~+ p 'f)--
r((r) r(p)

t/2 -) w(n+ 8) ( 2f } fw2 a 5-(a-t/2) I, ~yah-s=zm e (as}

It is quite interesting to derive this result by a
method which does not involve Wick rotation and
exploits directly the particular structure of I
[Eq. (27)] concerning the components k„and k„-.
Let

„-(,')'/'(1, 0, . . . , 0, 1)

and

n=(-,')'/'(1, 0, . . . , 0, -1),
with (l-2) transverse components and

to permit it} and integrating over the Euclidean
transverse vector k we obtain from (27)

-3 Wo-2)/2 v(l-2)/2 A + 2(f 2))
r (o')

d k„d k-„

[ak„k--(P'-A)+i@]"" ' '(n k-I p")s '

(30)

At this point, in order to carry out the k-„ integra-
tion we note the result of Yan, ' namely,

k = (kop kzt . ) kJ -z) (29)
~

~

~

dy iaw
( )

(xy —C+ie)' C
(31)

so that d'k=dk„dk —„d' 'k, where d' 'k=g' 'dk„
(we have a similar definition of p). Now shifting
the variable (the values of l, u, P being supposed

If we formally differentiate both sides with respect
to C a suitable number of times and then use it to
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evaluate (30), we get exactly the result (28).
We will not study here the consequences of the

possibility P'"n=0. (See, however, Lee's re-
marks' concerning the k'= 0 singularities in the

covariant gauge. )
We hope to discuss elsewhere more fully many

points discussed briefly or touched upon in this
paper.
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