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Particie in an electrouiagnetic field: The Lorentz-INrac equation
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A new method to solve the Lorentx-Dirac equation in the presence of an external electromagnetic
field is presented. The validity of the approximation is discussed, and the method is applied to a
particle in the presence of a constant magnetic field.

Recently there has been some interest' in the
study of the behavior of a charged particle in the
presence of a constant magnetic field when the
radiation effects are taken into account, sihce it
seems possible that, with the new generation of
accelerators and very high magnetic fields, there
are some possibilities to prove the validity of the
Lorentz-Dirac equation (we use the metric +---}

u=(a(+(L), '[ll+(uru)u] .
In this equation the dots denote derivatives with

respect to the proper time. The four-velocity u
is taken as a matrix column with comyonents
u "(7), while u corresponds 'to a matrix row with
components u„(r). The ~ is a 4x4 matrix with
components (d"„=(e/m)F"„, where F"„is the usual
electromagnetic field tensor. Finally &u, = Sm/2e,
which, for electrons, turns out to be ~0=1.5958
x10" sec-'.

As is well known, ' Eq. (1}presents the problem
of the existence of "run away" solutions which
must be eliminated through the use of the asymp-
totic condition. Equation (1) plus the asymptotic
condition is equivalent to the integro-differential
equation'

A(r}=~fdic e'b ',(am('r+~')

+(d, '[ur(r+ 7')u(r+ v')]

xu(r+ v')j . (2)

%Ye must notice that the main contribution to the
integral comes from v' ~ ~0 ', which is an extra-
ordinarily short time. Using a Taylor sex ies ex-
pansion for u(r+ r') and u(r+ r') and interchanging
the orders of summation and integration, we obtain

-n (n) ~ (™l}~(n+m+(+z)-„~, ~tmlhl

x[u(n+t)ru(ss+x)] uo)

From this equation we find that u = (a(+O(&do ').
Using this result and Eq. (2}, an expression for
ci in terms of I,up to terms of order +0 ' can be
obtained and the procedure can be repeated. %e
find, for instance,

u = (du+ (u, '[aPu - (u (d'u) u]

+(u, [2&d'u-2(u aalu) &uu]

+ &u,
~ [5(u'u - 5 (ur a) u) u+ 6 (ur(d'u)'u

-6(ur(u'u} aalu]+O((d, 4) . (4)

From its derivation it is clear that this equation
is valid for an arbitrary time-independent electro-
magnetic field. Furthermore we would like to
point out that Eq. (4) can be derived more easily
from (1) following a similar procedure.

Let us now consider the case of a constant mag-
netic field. %e will choose the third axis along
the direction of the field. In this case the matrix
(d can be written as (d = +~A, where

0 0 0 0

0 0 1 0

0-10 0

0 0 0 0

(5)

+a'(5+6S)(B+S)+...] u, (6)

where S =u, '(r)+u, '(r) and a = ~s (u, ', which, for
electrons, turns out to be 0. = 1.1021F10 "H.
From Eq. (6) it follows that u, (x) =uocosgy(x),
where vo is the modulus of the initial velocity, and

and &us=(e/m) H. For electrons u&„=1.7588X10'H
gauss ' sec '. If 8= -A' and we use the dimen-
sionless proper time x= (d~7; then Eq. (4) can be
written as

—=[4 —a(S+B)—2a (1+S)A
dQ 2

dh
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P is the angle between v, and the direction of the
magnetic field. Then S(z}= e y'(z) —1, where
t =1 —vo cos f.

If we introduce the dimensionless laboratory
time z = ~t we obtain the equations

—= —a(e'y' - 1)+a'(6dy4 —7e'y'+ 1) + ~ ~ ~
dy=
dz

v, (z) = v, sing exp[- h(z)] cosg(z),

v, (z) = —v, sing exp [-h(z)] sing(z),

where

h(z) = aI, —a'(6e I„-I,)+ ~ ~ ~,

g(z) =I
~

—2a z I+~ + ~ ~

(6)

I„= dz'y" (z') .
0

We would like to point out that in all these ex-
pansions the relevant parameter is, for large y,
(any)' and the series expansions will be useful
when (any)' «1. For electrons this implies that
Hy «10 gauss. The Lorentz-Dirac equation is
a classical equation which has no meaning when
the quantum effects are important. In order for

—=y '([- a+a'(62y'-1)+ ~ ~ ]dz

+io,[1-2e y'a'+ ~ ~ ~ ])v(z),

where v(z) is a matrix column with components v,
and v» and 0', is the usual Pauli matrix. Once the
first equation (7} is solved, the velocity is given by

the quantum effects to be negligible two conditions
must be satisfied'. The electron associated wave-
length must be small compared with the other
characteristic lengths of the problem, and the
discrete nature of photon emission must be in-
significant. The first condition implies that
y(y' —1)»R„, and the second implies that It „«1,
where It„= & y(e/m') H. For electrons the second
condition can be written as Hy«3 x10' gauss,
Therefore when the classical equation is valid the
expansion parameter is always very small
(a &10 '), and hence all higher-order terms in
(7) are practically impossible to detect

Since x is small we will solve the equation for
y(z), keeping only first-order terms; then we
obtain

(kayo+ 1) +(zy, —1}exp(- 2&az)
(cryo+1) -(kayo-1) exp(-2zaz) '

which is correct up to terms of a'; (higher-order
corrections can be calculated by Picard's Method).
In this case h(z) = ag(z) = aI „where now

I ~=cz

+ a 'In((2eyo} '[(zyo+1)+(kayo-1) exp(-2zaz)] j.

We would like to point out that the second-order
terms in the Shen paper' are incorrect, but never-
theless this is not too important since in the pres-

i ent experimental situation their contribution is
completely negligible.
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