
PHYSICAL REVIE% 0 VOLUME 9, NUMBER 8 15 APRIL 1974

Bootstrap eflnations with restricted SU(3) symmetry and the Cabibbo angle
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The bootstrap equations e& = cd&&z{v&v&+ e&aI,}+ V;, a
&

= ~ed&»(u& q, + v&uQ-+A ~ for vector P)
and axial-vector (a} octet matrix elements, where Y andA axe driving terms, are studied.
It is concluded that the equations in their most general form always have solutions with at
least two free parameters, so that they may not be used to make unique physical predictions.
The need for completeness of sums over repeated indices is questioned. As an example of
what happens when the condition of completeness is relaxed, the equations exclusive of terms
which representweak neutral currents, and with no driving terms, are solved to give a
Cabibbo angle which is 0.28 without adjustable parameters.

I. INTRODUCTION

The idea' that spontaneous breaking of SU(3)
symmetry may be governed by a nonlinear equa-
tion in the relevant matrix elements has led to
investigations of equations of a common over-all
form by several authors. ' ' This form may be
summarized as

v, =cd,j~(vjv, +aja, )+ V, ,

1aj —Qed j gj( java + vjag) +A j

(I)

(3)

where v and a stand for vector and axial-vector
octet matrix elements, V and A are possible driv-
ing terms (nonzero if the symmetry breaking is
supposed to be induced rather than spontaneous),
and c and e are constants. The previous studies
have covered the general behavior of (I) for only
the vector octet, ' ~ with a&a„absent, the general
behavior of both equations without driving terms,
a particular model of the full set, ' and a particular
choice of driving term in (I), again with aja„ab-
sent. ' Interest in this problem has fallen off late-
ly following the establishment of two conclusions.
Firstly, general solutions have the habit of de-
pending on at least two free parameters as well
as c or e, so that unique predictions for physical
quantities such as the Cabibbo angle are not avail-
able. Secondly, with well-chosen driving terms
in the equation for a single octet, it is possible to
find estimates of a Cabibbo angle which are fairly
close" to the experimental value.

In Sec. II, we fill a small gap by examining
briefly the properties of the full set of Eqs. (I)
and (3), and observe that once again the presence

of at least two free parameters besides c or 8
means that no unique predictions are allowed to
arise without extra assumptions.

While the fact that some driving terms generate
good estimates of the Cabibbo angle is agreeable,
it does not throw much light on the origin of the
equations themselves. The extra physical as-
sumptions which lead to uniqueness of solutions
are all assumptions about V and A, and not about
the remaining parts of the equations. Thus the
question of how basic is the SU(3) content of (I)
and (3) is postponed. In particular, there is no

way to ask whether SU(3) is a foundation (axiom)
.on which the dynamics rest, or whether it is a
happy accident of the underlying dynamics that
pieces of what is derived from foundations not
expressed in this group-theoretic language never-
theless exhibit some fossilized fragments which
have SU(3) symmetry. If the first view is correct,
then the repeated indices in (I) and (3) imply sum-
mation over all members of an octet, and the need
to include all members is as pressing as, for
example, the need to sum over all four space-
time indices whenever one meets a repeated sub-
script in the special theoxy of relativity. Previous
work on (I) and (3) has taken this view for granted.
However, if the second view is nearer to the truth,
then the "accidental" or secondary constraints
stated by such equations may not apply to all mem-
bers of an octet. In other words, there is a chance
that invariance under SU(3) transformations here
does not have the same protected status as in-
varianee of form under Lorentz transformations
for equations in the special theory of relativity.
In Sec. III we investigate the situation in which
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the effects in (1) and (2) are spontaneous (i.e. , no
driving terms), and in which the contributions
that refer to weak neutral currents are absent.
This latter assumption, which excludes the indi-
ces 6 and 7, is reasonable in the sense that effects
of these currents on their neighbors in the octet
are generally regarded to be small. %e are pleas-
ed to find a solution where the Cabibbo angle is
approximately 0.28 compared to the experi-
mental value of about 0.25.' We present this
result, together with the assumption of noncom-
pleteness of (1) and (2) which produces it, as a
stimulus to further discussion.

(v+a) = (v+a/K) —(V+A/K),

(v -a)'=(v-a/K') -(V A/K)- (4)

from (2). The solution of (4) follows (in the case
of three-dimensional results, for the sake of
illustration) from the exhaustive description of
the combined V and A terms as

V+4/K = o.l + pz + ya ',
V A/K = a'1+ p'z'-+y'x",

II. PROPERTIES OF THE GENERAL EQUATIONS

Because the complete set of Eqs. (1) and (2) has
not previously been examined, we study a model
solution here far enough to show that it also suf-
fers from the same type of nonuniqueness as the
solutions obtained by Cronstrom and Noga' in the
absence of driving terms.

If a& and v& are numbers, either one of the two
bilinear terms in (2) may be discarded if the mul-
tiplier is changed from —,'e to e. The actual form
of (2) allows for the possibility that a, and v, may
be noncommuting objects. A treatment of a solu-
tion for that case is reducible to the treatment of
the commuting case, so that we consider an ex-
ample of the more general problem here.

Firstly, only one of c or e need appear in the
model equations, because we can redefine v, and

u& as the old variables dilated by the reciprocal
of the other constant. V& and A& can simultaneous-
ly be dilated in the same way. If we choose to
make c disappear, then (1) and (2) in a tensor
form [to emphasize the distinction between a&v,
and vga' ln (2)] are

k $ k
V ) =V kv g+8 kQ y+ V

a', = K(a', v', + v'~', )+A', ,

where v'& and c'& are traceless tensors, and
K =e/2c. In this new form (2), an absence of
driving terms means that V'& and A'& reduce to
multiples of the unit tensor 5'&. As matrix equa-
tions, we get

where e, P, y, e', P', and y' are numerical con-
stants, and z and z' are matrices satisfying

z =z, z'B=z' .
Thus z and z' are idempotents, and z and z' are
square roots of idempotents which are then used
to construct V+A/K and V-A/K. In the present
case it is evident that solutions of (4) can be ob-
tained in the form

v+a = $1+gz+$z

pl 1 + ~/xi + plzl2

where the six new quantities on the right-hand
sides in {6)are constants.

For comparison with the results of Cronstrom
and Noga, ' we first consider an absence of driving
terms (P = y = P' = y' = 0), and set K = 1. When K = 1,
the equations for v+a and v -a are independent,
and there is no reason why z and z' should be
related in any particular way. The constants P,
X, and P are given by

1 —2$, X=O

X&0,

A similar but independent solution exists in
g', X', and n.'. The three equations in (7) allow

P, g, and }( to be expressed only in terms of the
free parameter e. The question of how many
extra free parameters are necessary for the
specification of the solutions in (6) is answered
by examination of the solutions of (5). Here the
answers are of three types, according to rank.
The clearest statement of parameter dependence
is found in the skew solutions

0 -sx, Q.,
z =~ cX, 0 -~~3

0

of rank 2, where A.,'=1-A.,'-A.,'. Rank-1 solu-
tions, which are dyads ( x)(y ~

where (x ) y ) =+ 1,
and rank-3 solutions, which are adequately cov-
ered by %edderburn' and other authors of standard
texts on matrices, have the same free-parameter
content for our purposes. Hence we are left with
three free parameters e, A.„X„which are
analogs of the three free parameters which
Cronstrom and Noga6 have found in their general
scalar results.

%hen a c1, and there are still no driving terms,
it is a direct consequence of (4) that v and a must
commute, and z' can then be identified with z.
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Our statements about free parameters above are
unchanged, but nom the actual solution of the equa-
tions is formally the same as if a driving term is
present. We find the solution from the equations

'(4-+ 4 ')+ '(4-4-')l~+f,
0"=-'(0+0') --'(0 —0')l~+f',
3(4+ 4)x = l(x+x')+ l(x —x')l +g,
2(p' +0')x'=k(x+x') -k(x —x')l&+g',

x'+ 0'+ 34 0 = '(0+-0')+ '(0 -0')l—x+h,
x"+ 0"+ ~0 '0' = 2(4+ 0') -k(4 0')l-~+h',

f = k(n+ ~')+k(~ —~')l&,

f ' = k(o'+ n') -2(~ —~')I&,

and (g,g') and (h, h') are similarly related to
(P, P') and (y, y'). The analogs of (I), obtained
from (3) by elimination, are now quartics, from
mhieh numerical results may be computed. For
example, the equation for Q.is

2(1+~)4 -fN 4' '-(I+ ~)4--f--'(1--~')]

——,'(I -z)'P f' = 0, -(9)

and an equation derived from (9) by the interchange
off and f' holds for Q'. The effort required for
solution is at this stage rather great, but it suf-
fices for our discussion to note that the free-
parameter content of the general case is increased
over that of the simplest case considered above
by the presence of the constants P, P', y, and y'.
Of course, a particular choice of driving term
may fix these parameters along mith a and e',
but then there is still the degree of arbitrariness
specified by the 'two quantities X& [here identical
to the X', present in the solution of the second
equation of (5)] and A., (identical to A.,').

Our conclusion is that the arbitrariness of the
solutions of the model equations (1) and (2) re-
mains even in the most general case, so that the
prospects of finding unique predictions of phys-
ical quantities like the Cabibbo angle by this path
of increasing generality are dim. Therefore, in
the next section, me turn to a decrease of gen-
erality, by eliminating as much as is practicable
of (1) and (2).

III. THE RESTRICTED EQUATIONS
AND THEIR SOLUTION

Given the implications of earlier mork that
there are undetermined free parameters in solu-
tions of (1) and (2), where V, =A, = 0,' while a
Cabibbo angle may be determined uniquely by
suitable specific choices of V, or A&,"any anal-

ysis of the equations mhich excludes driving terms
and still arrives at results not containing free
parameters demands a little more respect than
an approach mhieh uses nonzero values of these
terms. Additionally, analysis mith V& =A& =0
more genuinely FepFoduees a spontaneous OF

"bootstrap" state of affairs, and concentrates
attention on the physical consequences of the non-
linearity and the presence of the symmetric SU(3)
structure constants d,». We believe that the
second is the stronger justification for excluding
the driving terms from our analysis, but also
that the first should not be overlooked.

If me return to our argument in See. I and wish
to examine the behavior of (1) and (2) with some
of the matrix elements removed, mhich of them
should be omitted'P The choice is not random,
because of the physical associations of most of
the members of an octet. Folloming Cronstrom
and Noga, ' me first mrite combinations of the
matrix elements whose SU(3)-transformation
properties are mell knomn because of analogies
mith the transformations of particle states:

=Q1+SQ2, % =Q~,0

K =Q4+f Qs, Q =Q6+SQ7,

qo=Q„

and remark that the corresponding combinations
mit v& may be put in terms of ~&, ~'„, X&, ete.
In this notation, if me assume that v& and Q& are
just numbers, the axial-vector Cabibbo angle is
given by

Kg Q4 +Qg
tan Hg =

'F 'P Q1 +Q2

and the corresponding vector angle by

2 2
V4 +Vs

a
Vg +V2

Thus me need indices i = 1,2, 4, 5 even in a re-
stricted set if me are to calculate the Cabibbo
angles mithout free parameters determined by
constraints external to (1) and (2). Further, we
have the familiar charge-hypercharge external
relation

(13)

mhich should hold exactly in the absence of meak
interactions, and approximately in general. Thus,
unless (13) is to be entirely detached from influ-
ence on the quantities in a restricted version of
(1), either one or both of i =3 and f = 3 must be
taken into account. We choose to include both
indices, retaining (13) as a possible device to
distinguish solutions of (1) and (2) later. If only
i=a or i=8 is included, the resulting equations
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give zero or contradictory answers.
The indices i = 6 and i = 7, w'hich refer to weak

neutral currents, remain unconsidered. Cron-
strom and Noga' use these currents merely in
the condition that

1&v I'« IIIvl'.

from (11)and (12).
From (1V), it follows that

(~s
vg -QgCS —vs(2c j

(19)

"I=cdIII (" 4I +a'Isa) (15)

Eo and Ez~ are outside the primary scope of the
Cabibbo theory in any case, and if we take the
view that (1) and (2) are secondary manifestations
of some underlying dynamics of a,ll those matrix
elements which are governed by the restricted
bootstrap equations, the scale of the weak neutral
currents may be fixed by a completely different
dynamical process. It is encouraging then for
proponents of (14) that K' and X„' can only be
built from the conventional weak-interaction La-
grangian by means of terms in C2 or higher orders
of the coupling constant. %e choose to exclude
i =6 and i = 7 from consideration.

The restricted set of bootstxap equations from
(1) and (2) is then

(20)

The equations (19}and (20} lead to two possibil-
ities: either

or

The ease (21) produces trivial results, but (22)
is more interesting. Its first by-product is that
(18) is a relation for a single Cabibbo angle 8.
Secondly, on substitution into the equation for
c, in (15) and (16), it causes a cancellation of all
factors with the subscript 8, leaving the equation

v3 4c, g 4c
4c 7S

"''
2c +M"''

with i,j,k H(1, 2, 3, 4, 5, 8). The two bilinear
terms in (2) are combined into one in (16) if III
Rnd Qg are numbex's.

Cronstrom and Noga' select only CP-conserving
possibilities by requiring that K' =E~, i.e. , that
a4+ is, = v, + iv„and then find that there are no
physical solutions for the unrestricted equations
unless e =2c. In (15) and (16) there is the possi-
bility of introducing parity-violating effects, which
are of at least second order in (e —2c) for small
values of that difference, and which may be made
as small as desired by comparison with parity-
conserving effects by appropriate choices of e/c,
but this leads to a dependence of results on free
parameters, which we are anxious to avoid. There-
fore we examine what happens when we impose
CP conservation and put e = 2c.

When written out in full, (15) and (16) contain a
number of simple correspondences. In particular,
v4 =a4 and v, = a, satisfy the equations for i =4
Rnd t = 5. Next, we may set v= vt = 82 Rnd 6 =cg =Q2,

which reduces the equations for i = j. and i = 2 to

2c 2c
v =~ (558+aas), a =~ (cas+afJS) ~

This simphfication also gives us

tan 8y = 84 /5I

tan 8~ =a4 /aI ='U4 /ag

ox'

4c ' 73 4 '

2 2 2 3
V3 -V4 Vs + 2=0 ~16c

(24)

At present, to obtain the Cabibbo angle, we are
interested mainly in v4, although we may later
wish to recover II, and v, to check Eq. (13). The
elimination of c, and II, from (24) produces the
single qua, rtic equation

16'3, 9, 31W3 935v4- c V4 — 2V4 + 3 V4+ 4=0.c 8c 8c

Regarded as an equation for cII„(25}has two
real roots at -0.154 and -0.432. From (24) it
may be deduced that the ratio of the sizes of v,

Next, we observe that the two i =3 equations in
(15) and (16) are consistent with II, =a,. Hence
w'e are left with three unknowns v„v4, and v„
and three equations (for II„ for u„and the equa-
tion originally written for a,). The system is thus
simplified to

2c
83 =~3 vsvs+ cc4
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and v, is not exactly W3 for either root. In fact
it is greater than two for the first root, but more
than an order of magnitude smaller (about vY/20)
for the second root. If the complex roots 0.689
+0.095i are admitted, then their performance
as judged by (13) is even worse. Thus (13) favors
the first solution. From (18) and (23) we then
find that

32 j /2

8 =tan ' —(-0.154)' = 0.28, (26)

IV. DISCUSSION

By supposing that the bootstrap equations (1)
and (2) without driving terms do not hold for all
matrix elements in an octet, but exclude control
over the matrix elements referring to weak neu-
tral currents, we obtain a Cabibbo angle which
is rather close to the accepted experimental val-
ue. The result does not depend on free parame-
ters. The choice of the angle is unique if we use
(13) as a means of expressing an external prefer-
ence about the goodness of a solution to the re-
stricted bootstrap equations. Otherwise [ e.g. , if
we are discussing just the axial-vector angle 8&,
for which there is no constraint analogous to (13)]
we find two possible Cabibbo angles, only one of
which is near the experimental value. It there-

the dependence on c having canceled. This value
of 0 is to be compared with the experimental val-
ue of about 0.25,' and the theoretical values of
0.26 (actually 15 ) given by Solomon and Ne'eman, '
and 0.14 to 0.22 given by Tanaka and Tarjanne. '

fore seems evident that some extra physical de-
mand [ like (13},but not necessarily this con-
dition] outside the range of the bootstrap equations
must come into play to establish uniqueness.

It may be argued that the truncation of (1) and

(2} to (15) and (16) is equivalent to a choice of
driving term which breaks the symmetry of the
full equations and gives the definite value (26)
of the Cabibbo angle. Starting from (1) and (2),
however, we have been unable to find any such
driving term.

The special interest of the result (26) lies in
the implications of what we have assumed at the
beginning. That is to say, we suppose that (1)
and (2) are not equations invariant under all SU(3)
transformations, i.e. , that they are not basic to
a dynamical theory. Instead, since we have ex-
cluded from consideration the terms involving
weak neutral currents, we are effectively saying
that those terms are governed by different dy-
namical considerations. The rest of the set of
eight vector or axial-vector matrix elements may
be presumed to have some basic dynamical prop-
erties which generate as a higher-level conse-
quence the traces of SU(3) symmetry which are
seen in (15) and (16).

Finally, we do not present the result of this
artificial model calculation from Sec. III as firm
evidence for the physical view advanced in the
previous paragraph. Rather, we would like to
suggest that Sec. III is evidence that such a view
deserves some consideration side by side with
the better-known alternatives.
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