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We ex~m~ne the maximum-rapidity-gap distribution as a proposed means of determining the
amount of diffractive dissociation (d.d.) (Pomeron exchange) in the data. We find that a clear
measurement of d.d. is not possible but that the distribution does separate into two regions
where either the diffractive or nondiffractive mechanism dominates. This separation occurs
at 6=4.0.

I. INTRODUCTION

The precise definition and means of measuring
diffractive dissociation have always been some-
what of a problem. We study the possibility of
using a new quantity, the maximum-rapidity-gap
distribution, as an energy-independent method of
determining approximately the amount of diffrac-
tive dissociation (Pomeron exchange) in the data.
This approach has been proposed by Chew and co-
workers' and now we undertake a more serious
study of it. The ideas presented here use the lan-
guage of the two-component (diffractive plus non-
diffractive) models, but are not at all limited to
this framework.

The maximum-rapidity-gap distribution is ap-
propriate for semiinclusive processes, where all
charged particles are measured, but neutrals are
summed over. For each event, the observed par-
ticles are ordered in rapidity; we define b, to be
the largest of the gaps in rapidity between adjacent
particles. We then define o(n) to be the cross sec-
tion for production of final states where the maxi-
mum rapidity gap is less than or equal to h.
der/dh is the corresponding differential cross sec-
tion, obtained from experimental data by binning
the events according to the size of the maximum

gap, 6.' We call do/d6 the maximum-rapidity-
gap distribution. In terms of cross sections, if
do„/dy, dy„ is the ordered differential cross
section [where y,. is the rapidity of the ith parti-
cle, y, ~ y,.„, and Y= in(s/m, m, )j, then

.()=J

o(a) =Q o„(b,) .

The usefulness of o(n) is based on the idea that
diffractive processes are expected to contribute
mainly to large subenergies, and hence large gaps
4, whereas nondiffractive processes should con-

tribute little to this region. It is our purpose to
illustrate by general arguments and simple mod-
els the expected shape of do/db. and the sort of
difficulty one encounters in using it to measure
the amount of diffractive dissociation at NAL and
CERN ISR energies. Basically we find that there
is not a clear separation of events into two groups,
diffractive and nondiffractive, but that there are
two regions where either mechanism dominates,
although some of the other is present. Although
one can be relatively sure that most of the events
with large rapidity gaps, say, 4&4.5 or 5, are
Pomeron exchanges, there still may be an ap-
preciable fraction of the Pomeron-exchange
events in the region dominated by the nondiffrac-
tive contribution. The existence of an appreciable
cross section at large gaps can thus be taken as
independent evidence for the existence of diffrac-
tive dissociation at high energies, but determining
the amount of diffraction is difficult.

Before discussing the results of our analysis, it
is important that we have a clear definition of the
term diffraction. In particular, not all dissocia-
tion is diffractive. We require in general that a
diffractive mechanism (a) lead to an energy-in-
dependent cross section, and (b) correspond to
exchange of no quantum numbers. That is, it cor-
responds to Pomeron exchange. A dissociation or
fragmentation event will be one where one (or
both) of the incident particles "decays" into a num-
ber of particles having, in aggregate, the same
quantum numbers as the incident particle. The
aggregate will also have nearly the same momen-
tum (i.e., the momentum transfer t is typically
very small). For fixed missing mass M, momen-
tum transfer t, number of particles n, etc., the
dissociation cross section is generally energy-
dependent. From Regge theory we might expect
to fit the cross section with

+ P„(i)y"„(i,m')s '')' . -
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The energy-independent term due to Pomeron ex-
change we define to be Chffractive dissociation.
The cross terms and the ff terms we call nondif-
fractive dissociation. This means that, experi-
mentally, one can only decisively determine what
fraction of the dissociation cross section is dif-
fractive by comparing results at various energies.
Triple-Regge fits are an effective means of doing
this (although they miss the double-diffractive
dissociation).

With data in only a small energy interval, it is
impractical to use the above general definition of
diffraction. This has motivated us to examine an
operational definition which could be useful at
even a single energy and applicable on an event-
by-event basis. We find that rather general phys-
ical arguments predict an approximate separation
of events into two regions in do/da, nondiffractive
and diffractive, according to whether b, is small
or large, respectively. The separation improves
with energy. We thus consider the operational
definition of diffractive events as those where b,

is greater than some fixed quantity, on the order
of the correlation length.

Considering first the nondiffractive component,
we find it has the following general properties:

(1) do/dn is sharply peaked at low values of a,
the peak occurring in the vicinity of Y/(n) .

(2) da/dA falls off exponentially for large n,
with a slope related to the contributing Regge tra-
jectory n„:

do e-(2-2') 6
d6

(3) The curve is very slowly varying with ener-
gy, moving towards higher 6 values only as ln Y.

In contrast, we find the diffractive components
contribute to a wide range in a, with a peak at
6 = Y (the maximum possible b) resulting from
single diffraction into low mass and the elastic
cross section, if included. When both components
are considered together, the crucial question is
what energy is required for adequate separation
of the two regions. We find, using simple models,
that NAL energies are probably not sufficiently
high enough, though CERN ISR energies may be.
However, at any energy there will probably be an
appreciable number of Pomeron-exchange events
in the nondiffractive region.

Experimentally, it is easier to measure the
variable q=-lntan(-, 8), which is similar but not
identical to rapidity. The definitions of y and q
are
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FIG. 1. ln tan(go) distribution for individual tracks
from a sample of events of various multiplicities at
205 GeV/c.

If rapidity is not available, one may use the maxi-
mum q difference distribution. However, there
will be some loss of resolution so that higher en-
ergy is required to obtain the same separation of
the two regions. Nevertheless, as an illustration
of the effects we are considering, we shown in
Fig. 1 the g plots of a sample of 31 events at 200
GeV/c. '

In Sec. II, we derive some properties of the dis-
tribution do/da. In Sec. III, we describe a partic-
ular multiperipheral model. We present the re-
sults and summarize in Sec. IV.

II. ANALYSIS OF dG/dA

Before looking at specific models, let us look at
the general behavior we expect to find for da/dn.
Since rapidities are limited to the region Os y, ~ Y,
we see that high-multiplicity events are less likely
to have large gaps in rapidity. Similarly, since
Y=Q", , (y,. —y, ,) we see that low-multiplicity
events must have at least one large gap. In fact,
the minimum n for n particles is Y/(n —1), where
(n —1) is the number of gape. The last statement
neglects leading neutral particles; however, to
the extent that there is a charged particle some-
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where near the end of the rapidity interval, it fol-
lows that low-charged-multiplicity events do not
give gapa appreciably smaller than Y/(n —1).
These kinematic considerations are helpful in
analysis, but are less important than the dynami-
cal effects we consider next. (Note that the eris-
tence of low-prong events at high energy is itself
a dynamical result; i.e., without diffraction, low-
prong cross sections vanish like a power of s as
energy increases. )

(b) I I I & I I I

0 Y

FIG. 2. Kinematic variables of a general Reggeized
production amplitude.

A. Nondiffractive contribution

Before turning to a multiperipheral model for the
analysis, we first illustrate the results with a
simple Regge model. This involves examining
the process as illustrated in Fig. 2. If 6 is the
separation in rapidity of the two blobs M, and M„
then for large 6, M,/m„M, /m» we have

-st
M MI 2

In the same large-4 limit, the differential cross
section looks like

d 30 -sE 2n+(g)

dM dM dt M M

.which is used to generate the full cross section.
However, Eq. (1) requires that we obtain the
transform of

&(&, z) =ges'8(b, —z),
01.e.)

The &-limited cross section, a(n, s), is obtained
from an "absorptive amplitude, " a(a, s):

c(A, s) = —a(b, s).1

The transform of a(n, s) is

e6 I2ag(t)-2]

where a„(t) is a meson Regge trajectory. We then
expect the 4 distribution to fall off exponentially
for large d, with a slope given by (2a„-2), where
a„ is the effective n„over the appropriate region
in t. Since this region is generally small, it is a
good approximation to say that

do' 6 I'2a~(0) -2]
d4 8 hlge

Notice that this rate of decrease is the same as
the rate at which exclusive cross sections decrease
in s. This argument is only crudely correct,
since the dependence of o on M, and M, has been
ignored.

In the framework of the multiperipheral picture,
an instructive model for maximum-gap distribu-
tions is the one-dimensional version of the Chew-
Pignotti model. 4 In this model the differential
cross sectlonq

d 0'
s =k(y, )k(y, —y, ) ~

x )'z(y„—y„,))t( Y- y„),

is determined by the kernel

u(z) ge("&-"=ge" .
The Laplace transform of (7} is

has the large-~ solution

a(a)-p+g(1 —e ' ) . (10)

Since a(~) =1 implies g=1 —P=2 —2a„, for the
maximum- gap distribution we obtain

do' e-(2-2nz)a(] s}sn(D)-1
dA

Notice that da/dn is the product of an increasing
and adecreasingfunctionof L, andhas apeak. %'ell
above the peak, where a(b, ) =—1, Eq. (11) can be
approximated by

gK(b, , 8)
I-K(n, d)

'

The leading behavior of o(b, s) is obtained from
(9) by locating the leading zero of 1-E(n., a(n)). '

The inverse transform (neglecting the residue and
numerical factors) then yields o(d, , s) -s ~) '. lt
is easy to see that a(A) should be bounded by unity.
We see below that a(6) is monotonically increas-
ing with b. For large gaps, the behavior of da/
dn. - a'(n)(ins)s"(~) ' depends upon a(n) and a'(n).
To obtain the approximate behavior of a(b, ), we
note that the vanishing of 1 —K(6, a), i.e.,

a —P-g(1 —e ' -')~)=O,
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FIG. 3. Typical single-diffractive-dissociation event
in rapidity space.

in Fig. 4. If we assume the largest gap (z, ) is the
Pomeron and use z, as the total rapidity across
the dissociation products, single diffractive dis-
sociation is given by

do'
(2 2 )

dh,

This shows the exponential decrease which was
derived earlier [E(I. (5)]. We can also deduce
from E(I. (12) that the distribution dc/dn trans-
lates upwards in 6 at the rate of ln(lns) as s- ~.
For large b, , the (Iuantity (I/Ins){dk/d4) should be
energy-independent.

(12)

8. Diffractive contribution

n

n-( (
X III~) Q LMSD

{a}
aM

A typical dhffractiue dissociation event looks (in
rapidity space) like the example in Fig. 3. This
example shows diffraction into 3 and 1 particles,
with a large gap 4 in between. We mill now study
the behavior of do/dh for diffractive events.

We first enumerate the various types of Pomeron
(P) exchange we need to consider. We ignore mul-

tiple I' exchange, leaving single or double dif'frac-
tive dissociation (d.d. ), i.e., single Pomeron ex-
change. We further distinguish between diffraction
into low masses (the resonance region), and high
masses ({M)-5 GeV at P»=200 GeV/c). Low-
mass single diffractive dissociation is equivalent
to the g»„contribution in the inclusive single-
particle distribution, while high-mass single d.d.
is equivalent to the contributions from the triple
Pomeron coupling, g»~. We mill consider only
single diffraction {both low and high mass), and

double low-mass diffraction.
Our model for the low-mass diffractive dissocia-

tion mill be a multiperipheral chain that generates
an output pole at —,', coupled to a Pomeron. The
model for high-mass dissociation will be a multi-
peripheral model that generates an output pole at
1, coupled to a Pomeron. These models are shown

Taking (r~ = 1 and a =-,', then dv/dn -e
which increases with 6 whereas the nondiffractive
part decreased. Since this contribution to dc/dA
is just a function of F-6, as s increases, this
contribution translates to higher d at the rate lns.
For high-mass single dissociation we put n = 1 in
E(I. (13) and the distribution is independent of both
b. and y. (The integrated contribution is increas-
ing like lns but this is because the mass interval
is increasing like lns. ) For double dissociation
(assuming both n's are the same), we get

dg ~0(gg (2n~-1}6 ags
dd s 1 3

x 5(I'- z, —4 —z~)

y A)+ (2a~-1-a)6 (a-l)r (14)

which is again only a function of F-4, if o.~=1.
The important feature of the diffractive contri-

bution is that asymptotically it "pulls apart" like
lns from the nondiffractive contribution, and is
large at large 6, where the latter is small.

One might fear that a large gap between two
charged particles, resulting from emission of
many neutral particles between them, mould be-
have similarly to a gap caused by Pomeron ex-
change. However, if this were the case the prong
cross sections (since they are summed over neu-
tral particles) would not fall off as the energy in-
creases. Since the prong cross section, summed
over neutral particles, falls off approximately like
s ", we expect that the nondiffraetive part of
the rapidity-gap distribution, summed over neu-
tral particles, will fall approximately like e
[see E(I. (5)), whereas the Pomeron-exchange
part is constant or increasing in h.

LMQD
P

(b}

.MSD

{C} P
P

FIG. 4. (a) Diagrammatic model for low-mass single
diffraction (LMSD). (b) Diagrammatic model for lovr-
mass double diffraction (LMDD). (c) Diagrammatic
model for high-mass single diffraction (HMSD).

III. NUMERICAL CALCULATIONS

Although the Chew-Pignotti model is useful in
obtaining the qualitative predictions, one needs a
more general model to do a quantitative calcula-
tion. We will start with the nondiffractive com-
ponent and will treat it in greater detail since
more is known about it.

We need a model which includes input singulari-
ties from Regge poles at -', (because this affects
the falloff of du/db, at large a) and yet still gets
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the average multiplicity correct. The Chew-
Pignotti model cannot do this, so we turn to a
slightly more general model, one that includes
"resonances" via a 5 function in the kernel. ' The
other effect that needs to be included is neutral-
particle production. We thus introduce two cou-
pling constants, for charged and neutral particles,
g~ and g„and will make a statistical-independence
assumption. To have a 2: 1 ratio of charged to
neutral particles produced, we put —,'g,„=go= 3g.
The kernel as a function of rapidity difference z
(without a cutoff ~) is

g +g, ~(
(J —P)(1 -g.&) -g,

where

g gch
(1 EP)Q H I

y =P+ =0.20,1-g

(2o)

k(z) = (go+g,„)[es'+X5(z)],

or in the J plane

)((z)=(g,+); )( +x) .1

(15)
A =x(1-gy) ='; .

Now to cut off the kernel wherever the rapidity
difference between charged particles exceeds 4,
we simply write [the 5(z) needs no cutoff]

The last term can also be considered the limit of
XPz/(J+Pz) as Pz- ~, i.e., an input singularity
low in the J plane. To fix the constants in the ker-
nel we find the output pole and average multiplici-
ty. We examine

This has a pole at a =p+g/(1-gX) and an average
multiplicity of

(n) =Bins,

where

-(~-y)&
K, (Z, S)=G ~ +A) . (21)

However, we have not yet considered the problem
of neutral particles on the end of the chain. Since
in this case no rapidity is measured across these
neutral particles they require special treatment.
That is, we want to allow the rapidity difference
between an incoming particle and the nearest
charged particle to be greater than 4 if it wishes.
(This cannot be Pomeron exchange since it is
charge exchange. ) This sum over neutral parti-
cles is the same as before except the numerator
is now one. So we have the factor

1 K,(J)
1 —Ko(J) 1 —K,(J)

= 1+ oE,(J) . (22)

(1 —gx)'

Taking P-=2m„-1=0.0, +=1.0, and A=2.0 fixes
g ~ and A, 1 0 Hence g~ 3 and go ~

Temporarily writing E(J) =E,+E~, then

Ko+K~
Q (Ko+Ko) 1 ~ K )

(K, +K„)/(1 —K,)
1-K,),/(1-K, )

We note that

= K,~+K,gKO+K, gKO + . ~ ~

0

is the "renormalized" propagator for getting from
one charge to the next, summing over the neutral
particles in between. We will call it K„. It is
this propagator that should be cut off:

The entire cross section is then generated by the
amplitude

g(J, a) = [1+—',K,(J)]1 " ' [1+—,'K„(J)] .E„(J,~)

(23)

Using a pole approximation we determined numer-
ically the cross section o(6, Y) corresponding to
this amplitude. That is, we numerically deter-
mined the positions and residues of the (real)
poles, both in K„(J) and in [1—K„(J,Z))] '. The
complex poles were found to contribute little at
this energy for most ~.

Next we turn to the calculation of the diffractive
dissociation distribution. Because less is known
about the diffractive component than the nondif-
fractive (for instance, (n)o is not yet known}, we
will use the simpler Chew-Pignotti model dis-
cussed in Sec. II. Because we expect that only the
single-diffractive (both high- and low-mass} and
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possibly the double low-mass diffractive cross
sections are important we limit our calculation
to these. For the single diffraction (SD) we take
(we also ignore complications due to neutral par-
ticles)

K„(d„J)
Aso 1-K (d J)Ki,(h, J).

M and P refer to meson and Pomeron exchange,
respectively;

e-(~8, )~
K,. =g, , i=Mor P.f 5 J p

%e used P~ =1.0 and g„=0.74. The value of P„
depends on whether we are generating high- or
low-mass diffraction and was chosen to make the
zero of 1 —K„(~,J) be at J = 1.00 or 0.5, respec-
tively. That is, p„=0.26 and -0.24 for high- and

low-mass dissociation. None of the numerical
values in this diffractive model have any particular
significance, nor are the results sensitive to small
variations in them.

To calculate the double low-mass d.d. (LMDD)
we use the amplitude

A (&,J)= " ' K (ia, J)LMoo 1 K (~ J)» 1 K (d

with the same parameters as before. However,
in this case it appeared simpler to use the trans-
formed amplitude, so the numerical calculation
was done using

i".Moo(

where

n k-1 - 6 6 n -i-1 n -i-1 6 haik

where

Pk = Y- (0+1)b,

g~= Y-kh,

&-Pp- ~~.

IV. RESULTS

In Sec. III we described a simple model for the
maximum-rapidity-gap distribution. This model
contains a fairly detailed nondiffractive compo-
nent, one designed to agree with the general fea-

tures of the data. The diffractive component of
the model is less detailed, but also contains the
basic features of a reasonable model. Thus, we
expect the model as a whole to describe adequately
the general features of the data, though we do not
expect it to agree in detail. In particular, the
model cannot fit individual prong cross sections,
and therefore we will not use it to predict do "/db.
distributions for a fixed number of prongs.

In Figs. 5 and 6 we show the distributions dc/dA
(unnormalized) predicted by our model for the
various components, at Y=6 (s=400 GeV'). We
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FIG. 5. Nondiffractive-model predictions for da/dA
versus &, at Y=6. The solid curve is the prediction
of the detailed model (see text); the dashed curve is
from a simple Chew-Pignotti model (P =-0.5). The
curves are normalized to eND =27 mb.

F&G. 6. Diffractive contributions to do/dE at Y = 6.
Normalization is arbitrary. (a) Low-mass single diffrac-
tion (LMSD). (b) High-mass single diffraction (HMSD).
(c) Low-mass double diffraction, {LMDD).
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see the characteristic features predicted earlier,
with some modifications. In particular:

(I) (do/da)Nn peaks at low a and decreases at
higher 6,

(2) (do'/dh)~sD peaks at a = Y, and falls off rap-
idly with decreasing 4.

(3) (dc/dd)„„sc is flat at high h. The hump at
lower 6 arises from events where the largest gap,
6, is not across the Pomeron.

(4) (do/da)~„nn increases for moderate a, then
decreases to zero at 4 = F. The excess of events
at lower 6 is again due to the largest gap being a
meson trajectory rather than the Pomeron.

In Fig. 5 we also show (dashed line) the non-
diffractive contribution which would result from a
simple Chew-Pignotti model with input pole at
0.25. We see that this lower pole produces a much
narrower distribution. The two nondiffractive
models probably cover the range of reasonable
models. The following discussion concerns the
model of Sec. HI, but comparison to the dashed
curve will help define the range of possible effects.
Clearly, the narrower curve allows the better
separation of events.

The normalizations of the various components
of the cross section are not well known. In order
to arrive at some idea as to the shape of the over-
aQ distribution, however, we make the following
reasonable guess (at Y=6):

o'ND =2V lYlb»

o =4.5 mb,

o'H~D = 1 mb»

v „=O.V mb.

(24)

The value of o~ is typical of those quoted experi-
mentally. ' If we take o~ = 6.8 mb and o~=40 mb,
we arrive at e~ = 6.2 mb. The value of 1 mb for
o„„~D is rather uncertain, but agrees roughly with
estimates made by Frazer and Snider. ' This quan-
tity is, however, quite model-dependent, and

could, in fact, be zero. With o~sD fixed at 1 mb
and o~ at 6.2 mb, the o«sD and o are deter-
mined by factorization:

(5&~9)'
oeI = ~

LMDD

As we increase the energy, only o„MS increases
as lns, since the high-mass region is increasing.

With these guidelines, we have plotted in Figs.
7 and 8 the distribution do/da, summed over all
contributions, for 7=6 and 8, respectively. The
dashed lines in each figure give the total diffrac-
tive and nondiffractive components.

It is evident from Fig. 7 that the nondiffractive
component dominates the distribution up to L -4.5.
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~ ~gggggi 48++

I I I

I 2 3 4 5 6

FIG. V. Model predictions for dg//dA at Y =6. Dashed
curves show the nondiffractive and diffractive contri-
butions with normalizations from Eq. (24).
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FIG. 8. Model predictions for do/dA at Y =8. Dashed
curves show the nondiffractive and diffractive contri-
butions with normalizations from Eq. (24).

The diffractive component lies largely under the
nondiffractive peak, and there is only slight evi-
dence of a peak at F=4. One approach to utilizing
such a distribution (the solid line) would be to
make a cut at 6 =4.5. If we do this, we see that
roughly 75% of the large-L events are diffractive,
while one-half of the diffractive events lie below
6 =4.5. Thus, the separation of diffractive from
nondiffractive events will be quite difficult. More
refined techniques, such as fitting the curves to
exponentials, may work better, with sufficient
data. Note that the low-6 diffractive events are
almost entirely from high-mass diffraction. It



MAXIMUM - RA P ID IT Y - GA P DIST RIB UT ION 249

appears that such events, if they do exist, will be
very difficult to locate by using do/db, .

At Y=8, the situation is somewhat improved.
Taking only events with b & 5 would get 3 of the
diffractive events, with about a 20% contamination
of nondiffractive events. Again, the high-mass
diffractive contribution is mostly missed.

We should temper these pessimistic statements
by pointing out the conservative nature of the
model we have chosen. We have used only the
highest possible meson trajectory, which gives
the slowest decrease in (dc/dd, )„D. Equivalently
(through duality), actual resonances take up a
nonvanishing amount of rapidity, in contrast to our
5-function term, reducing the gap size for non-
diffractive events. Thus we can state that a more
realistic model can and probably will have a nar-
rower nondiffractive distribution, thus improving
the separation of events. For example, the nar-
rower distribution (do/dh)„D of Fig. 5 would yield
a total distribution with a separation around
6 =3.5, rather than at 4.5. We regard this model
as the most optimistic possibility, and expect the
true physics to be somewhere in between the two
models discussed here.

The dc/dh analysis can be improved by making
additional cuts on the data. For instance, re-
quiring that the charge exchanged across the
largest gap be zero will eliminate some nondif-
fractive events in the large-6 region. Similarly,
if one wishes to look at double dissociation, the

requirement must be made that the largest gap not
appear at the end of the rapidity i.iterval (i.e.,
with only the proton at one end of the gap). Such
analysis will improve the isolation of diffractive
from nondiffractive events.

It has been suggested that diffractive dissociation
be defined as large gape in rapidity. The standard
definition is that diffractive dissociation means
Pomeron exchange. Our analysis shows that at
200 GeV/c, or even 1500 GeV/c, the definitions
still differ considerably. It appears that if one
wants to determine the amount of Pomeron ex-
change, the da/db, distribution (at one energy) is
certainly less useful than energy-dependent tri-
ple-Regge fits, but perhaps as useful as the stan-
dard energy-independent analysis of diffractive
dissociation from missing-mass distributions.
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