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Solutions of the Bethe-Salpeter (38) equation for two scalar particles of arbitrary xnasses
interacting through an exchange of a massless scalar particle are reinvestigated by means
of a new method, applicable to the problem irrespective of the metric (Euclidean or pseudo-
Euclidean) of the underlying four-momentum space. This enables one to perform a step-by-
step comparison of the solving procedure as applied on one hand to the "ox iginal" equation

(with underlying pseudo-Euclidean metric), and to the corresponding Nick equation (obtained
from the former by formally performing the Nick rotation without prior proof of its actual
validity) on the othex' hand. At a certain point (compare the results of Secs. IV and V, respec-
tively) the kernels of the appropriate transformed integral equations corresponding to the
two cases become manifestly analytically different. This finding seems not only to render the
Nick rotation —u posgengyi —invalid, but also to preclude one—in the realistic (i.e., "original" )
case—from obtaining the well-known Nick-Cutkosky solutions (reproduced fully in the case
of the %'ick equation). Although the "original" version of the B8 equation is thus found too
difficult to solve exactly (due to the presence of an additional parameter in the kernel), the
xnethod developed leads in a most natural way to an exactly soluble model of the BS equation

obtained by retaining the pseudo-Euclidean metric but xeplacing the Feynman propagator
Dz for the exchange particle by the "relativistic Coulomb" propagator D (half the difference
between "advanced" and "retarded" propagators). This model exhibits a marked corre-
spondence —in its nonrelativistic limit —with the Schrodinger solution of the Coulomb problem.
It should finally be noted that our method avoids any series expansions of the results what-

soever (partial-wave expansion included) which would otherwise tend to obscure clear-cut
"analytic" conclusions by posing convergence problems, and thus aims always at obtaining

a closed-form expression for the total (off mass shell) scattering amplitude.

I. INTRODUCTION

The basic motivation for the present investiga-
tion derives from an attempt to obtain a closed-
form expression for the total scattering amplitude
in the scattering region for the Bethe-Salpeter
(BS) equation first investigated by Wick' and Cut-
kosky' more than 20 years ago. The problem is
far from trivial. In spite of the fact that a non-
relativistic counterpart of such a closed-form
expression is well known' and the fact that the
Vhck-Cutkosky solutions were also well known at
that time, at least two early attempts in this direc-
tion —notably those by Nishi) trna' and Okubo and
Feldman' —fell very short of the desired aim.
The last three authors were able only to show that
the problem of finding such a total scattering am-
plitude reduces to solving a xather complicated
boundary-value problem in two variables, based on
a, nonsePm a&le partial-differential equation' of
the second order and for a rather complicated
integral transform (more or less in the manner of
Wick and Cutkosky) of this amplitude, at that.
Nonetheless a feeling remains that even in the

absence of an ansatz for the general solution a
much simpler answer to the problem could still be
obtained "by brute force" (i.e., synthetically) by
somehow performing a closed-form summation
[involving first of all (but perhaps not only) a par-
tial-wave summation] on the already known Wick-
Cutkosky solutions —or rather on the solutions of
the inhomogeneous version of the %'ick-Cutkosky
equations (for noneigenvalue energies} with in-
homogenieties equal to the appropriate projections
of the so-called Breit term. That at least so de-
fined a "program" can be carried out successfully
was shown by Tang, ' whose result represents an
improvement on the Nishijima-Qkubo-Feldman
(NOF) result in that the problem of finding the
total scattering amplitude now appears to reduce
to a boundary-value problem in two variables,
but one based this time on a separable partial
differential equation obeyed (up to a known function
as a factor} by the scattering amplitude itself. '

For what follows it is now of importance to no-
tice that the apparent success of Tang's summa-
tion is in no small measure related to the use of
an alternative and simp1. ified method of deriving
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the Varick-Cutkosky equations discovered by Biswas
and Greene which from the onset consistently
avoids complicated integral transforms by intro-
ducing rather cleverly devised "bifocal coordi-
nates" related directly to the four-momentum
components (these bifocal coordinates seem not
to be widely known in the literature}. On the other
hand, the Green-Bismas method relies much more
heavily on the prior validity of the %ick rotation
than does the ¹shijima-Okubo-Feldman method.
Nore specifically, while the bifocal coordinates
can only be used in a meaningful may as integra-
tion variables in the aA'eddy 8'ick-xotgted version
of the BS equation, the equalities (2.10}of Ref. 4
and (11)of Ref. 5 do not depend on the validity of
the %'iek rotation. Moreover, it is also extremely
hard to visualize what sort of analytic continuation
the %iek rotation actually implies in terms of
those bifocal coordinates in geneygl, i.e., quite
apart from whether or not one proposes to use
them as integration variables (compare discus-
sior s at the beginnings of Secs. IV and V).

The last remark has as its consequence that
even if me simply assumed the validity of the Nick
rotation we would still not be able to profit much
from Tang's results, since me mould not be able
to meaningfully "translate" the content of the
boundary-value problem of Sec. IV (where Tang's
results are rederived; compare footnote 8) back into
the realistic "pseudo-Euclidean world" (i.e., re-
verse the Wick rotation) '0.

Faced mith this deadlock, but encouraged by the
relative simplicity of Tang's result, me base pres-
ent method essentially on the Green-Bismas type
of coordinates and endeavor to solve both the orig-
inal and the Varick-rotated BS equation concurrently
but separately. The new method avoids entirely
the partial-wave expansions, which feature it
therefore shares with the above-mentioned methods
of NOF (but not with the Tang method)

The order of the presentation and the main re-
sults are as follow: In See. II the necessarily
rather extensively varied notation used throughout
the paper is defined and summarized. This is
followed in Sec. III by the presentation of the rudi-
ments of the new method of approach insofar as it
ean be applied without variation to both the original
and the Nick-rotated BS equation. Section IV is
devoted to the %'ick-rotated BS equation, where,
as already mentioned, the %'iek-Cutkosky-Green-
Bismas results as mell as the Tang results are
reobtained, but the results of Sec. V seem un-
fortunately to prove conclusively tkat Ne solution
of the oriana/ BS equation must be analytically
different from tkat of Ne Wick equation, to the
extent that the former (i.e., the solution of the
original equation) must even exhibit a dependence

on an additional parameter (g or &} totally absent
in the latter. " The conclusions of See. V seem in
fact to be tantamount to a doubly negative result
that (1) the Wick rotation is not valid, and that
(2) although the closed-form solution of the original
BS equation is not obtainable by our method (and
therefore not even attempted), the Wick-Cutkosky
solutions are definitely not the solutions of this
equation, However, the considerations of Sec. V
lead in the most natural way to the construction
of an exactly soluble model of the BS equation of
much greater analytical simplicity than even the
Wick-Cutkosky-type solution (of the Wick equa-
tion}. This model is obtained by retaining the ~

Pseudo Euclid-ean tyPe of metric but essentially"
only by replacing the Feynman propagator for the
exchange particle ("photon" ) by the "relativistic
Coulomb" (half of the difference between the "re-
tarded" and "advanced" ) propagator. "

Importantly, but at this point perhaps not too
surprisingly, the solution of the model bears a
striking resemblance to the solution of the non-
relativistic Schrodinger tmo-body problem and
in fact becomes identical with it in the limit of
nonrelativistic energies and small coupling con-
stant, in further contrast with the Nick-Cutkosky
eigenvalue problem, mhich seems to bear little
or no resemblance" to the Schrodinger solution
in this limit.

Returning briefly once more to the main issue
of the validity of the Nick rotation, the mathe-
matical findings of Sec. V can perhaps be best
summarized by stating that in the Nick-rotated
version of Eq. (47) the application of the "four-
dimensional Laplacian" to (p -p') ' produces a
Dirac 4 function, which in the method devised by
Biswas and Green" reduces (47} at once to a dif-
ferential equation. However, upon closer exami-
nation, the Fourier transform [(P -p')'+ ie] ' of
the Feynman propagator in the non-Euclidean
momentum space is found not to exhibit such a,

simple property. This is of course connected with
the existence of the momentum-space null cone
instead of a point at (P -P')' =0, so that the con-
siderations of Sec. V are tantamount to a careful
examination of what the term +ie actually implies
on such a null cone." In this context, the exactly
soluble model presented in Sec. VI is characterized
by

&~(P -P'} '=o

which however does not preclude the fact that the
"relativistic Coulomb" propagator does obey the
inkomogeneous Klein-Gordon equation in posi tion
space (i.e., with a Dirac & function on the right-
hand side).
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H. NOTATIONS AND GENERAL DEFINITIONS

OF VARIABLES USED

As mentioned in the Introduction, me shall pref-
ace the presentation of the new solving procedure
of the BS equation by carefully defining the vari-
ables used throughout this yayer. First, the nota-
tion mill have to occasionally depart from that
most commonly used in the literature of the BS
equation. Second, because we mill have to apyly
our method to the Varick equation and to the original
BS equation seParately, repetition mill be avoided
as mell as uniformity preserved in spite of the
widely different integration domains involved in
these two cases. For these reasons also a number
of new conventions must be made mell in advance
of the point, further in the text, where their use-
fulness will first become fully apparent.

Practically all derivations mill be made in the
barycentric system in mhich the over-all energy-
momentum four-vector mill have the components

r=-(O, E),

where E denotes the total energy.

B. Labeling of states

All quantities pertaining to the initial, final,
and intermediate (or "integrated-over") states
mill consistently be labeled by "no prime, "
"prime, " and '*double prime, " respectively. Simi-
larly all quantities definable only in terms of a
pair of states (e.g. , the scattering angle) will be
labeled by "no prime, " "prime, " and "double
prime, " according to whether they refer to inter-
mediate-final, final-initial, or initial-interme-
diate pairs of states, respectively.

C. Variables pertaining to a single state

Variables defined here mill carry no prime, but,
as explained above, all definitions will automati-
cally be understood to be valid for primed and
double-primed quantities.

Given x, another four-vector {related to the mo-
mentum transfer) is needed to uniquely determine
the four-momenta p~ and p~ of the scattered par-
ticles A and B. As such me shall choose the four-
vector p, defined by

p =-p+&+ p& =+0-& —pa~

where

P, +P =1.
However, contrary to the convention adopted by
most authors, we shall (except in the case of equal

masses) not simply put p, =-,', but assign them the
following values:

E am~ vm~
2@2

where m„and m~ are the masses of the particles
A and B. This is because me mant to use, as pres-
ently explained, the so-called bifocal coordinates,
first introduced and extensively used in connection
with the Bethe-Salpeter equation by Green and
Bismas. Using these coordinates —in conjunction
mith new parameters introduced here and in Secs.
II0 and IIE—mill constitute a very important part
of our new approach (see Introduction). However,
because the usefulness of the Green-Biswas param-
eters as integration variables derives primarily
from their application to the VA'ck case, we will
define them in tmo steps, first introducing the
para. meters v „moreuseful as integration vari-
ables in the case of the original BS equation (i.e.,
with underlying pseudo-Euclidean metric). Those
mill be defined as

p, +)p) —ic
P, +Ipl+ic '

where Po and ~p~ are respectively the timelike
component and the magnitude of the three-momen-
tum of p [as defined by (2)j in the frame of refer-
ence (I), and where c is given by

c = [-{E-m„-ms)(E-m„+ms)

x (E+ „m- m)(sE+ „mm+)1s'~'. (6)

The bifocal coordinates y and g can then be defined
by

Solving (5) and (7) for p, and ~p~, we obtain the
original definitions of these parameters by Green
and Bismas:

c sing
cosy —cosg '

-c cosy
cosy' —cosg

Now, the particular values (4) assigned to p„as
well as that of the constant c given by (6), are
chosen so that

4 .dipl
(P„'—m„')(P,' —m, ')

dp.dipl

[(~,E.~.)*-P-m.'1[(e E- p.)'-p*-m. ')

=dydgx(function of y only),
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or equivalently, in terms of v
„

dp.dIPI
(p„'—m„')(pa' —ma')

=dv, dv x (function of the product v, v only), E,=P E == E =PE

, —1}(v —1

x f, (v,v ), (12}

where f, (v,v ) have to be functions of the product
v,v only and where we have also used the abbre-
viations

m„=m„m~=m .
The conditions (12) lead to

2 = P E2+c2

(13)

(14}

Solving the system of equations (3) and (14) for
p, and c, we obtain (4) and (6). With the values
of P, and c so determined the right-hand side of
(10}becomes

1 dv+ dv

2 (E, —ic)(E +ic)(v,v -u, ')(v+v —u '}

the requirement (10}bringing about a great simpli-
fication of the problem. More precisely, because
the Jacobian

s(p., lpl)
a(v„v ) (v, —1)'(v —1}2

the condition (10}is equivalent to the following
two conditions:

be distinguished from the variable lpl). In the
bound-state region c is real and allows the "geo-
metrical" interpretation as the height of the tri-
angle depicted in Fig. 1, whereas e, acquire the
meaning of the angles at the base E of this tri-
angle. The remaining notations pertaining to a
single state are the following:

1 v, +v
w =cos) = —

( )~g2

+=v, +v,
u=e '~

p=e '~

(19)

(20)

(21}

(22)

zo and & are used mainly as convenient notations
in the otherwise too lengthy formulas of Sec. V,
while the convenience of the notation (21) and (22)
derives mainly from considerations pertaining
to the Wick equation (Sec. IV).

FIG. 1. Geometrical interpretation of the relationships
between the total energy E, the masses mz and ~ of
the scattered particles, the angles u~ defined by (16),
the parameters c and P~ defined hy (6) and (4), respec-
tively, and finally the angle p entering Eqs. (198) and

(199). The situation depicted corresponds to E in the
bound-state region.

( )4m„ma sin(y + o.', ) sin(y —n ) '

where the quantities u+', u ' and a+, n' are de-
fined by

E~ +ic
E, +ic (16}

and where we have also introduced the abbrevia-
tion

It should be noted that c is imaginary in the scat-
tering region (in the direct channel for E & m„+ms
as well as in one of the crossed channels for 0&E
& Im„-mal), in which case we shall also use the
notation

(16)

with d assumed positive. Physically d is the abso-
lute value of the three-momentum of each particle
in the barycentric system (pertaining to the on-the-
mass-shell situation, however, and therefore to

z =cos8. (23)

Having thus defined what we shall henceforth refer
to as the z variables or z's, we next introduce the
y variables as exemplified by

Ip"I'+ IV I' —(p." —p.')'- i ~
(24)

The usefulness of this notation stems from the
fact that the propagator for the exchange particle

D. Variables definable in terms of a pair of states

Variables defined here will again carry no primes
and therefore will pertain to the intermediate-
final pair of states (the latter denoted by "double
prime" and "prime, " respectively), but the defini-
tions will be understood to be valid for the re-
maining two pairs of states by appropriate cyclic
permutations of primes (see Ref. IV, however).
Denoting by 8 the scattering angle [i.e. the angle
between the three-vectors p" and p' in the bary-
centric system (1)], we first introduce the nota-
tion
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can then be written as

1 1 1
(P" —p'} 2lp"I Ip'I z -y ' (25)

-cosg" cosf'+ cos(rp' —y")
sing' sing" (26)

or use the parameters v, defined by (5). In the
latter case the most noteworthy formula is perhaps
not so much the expression for y itself as the rela-
tion

y —1 (v", -v', )(v" -v')
y+ 1 (v", -v')(v" -v', )

' (27}

E. Special variables introduced to later replace

the variables z and z" (Ref. 18)

For the purpose of avoiding partial-wave ex-
pansions entirely it will be most convenient, as
seen later in the text [compare the derivation of
Eqs. (69) and (70) in Sec. III], to eliminate z and
z" in terms of one of the parameters v, 0, t, s and
~",v", t ",s", respectively, which we are now

going to define. The defining relation for T is
modeled on (26) and reads

-cosp cosg +cos(p —p +T)
sing' sing" (28}

so that for ~ =0 z becomes equal to y. Likewise
the parameter 7'" is defined by"

With values of p,", Ip"I and P,', Ip'I considered as
given, y can therefore also be defined as the cosine
of such a scattering angle as would correspond to
the situation where the exchange four-momentum
is a null vector (or lies on the mass shell of the
exchange particle, since the mass of the latter is
assumed to be =0).

Using the notations introduced in Sec. IIC, we
can either use the Green-Biswas parameters and
write t Pf gv sn $o (33)

and the convenience deriving from the option to use
them as independent variables will become es-
pecially apparent in the case of the quasi-Euclidean
metric of the underlying four-momentum space,
so that, beginning with Eq. (116) of Sec. V, all
formulas are indeed written almost exclusively"
in terms of these parameters. At this point it is
perhaps also worth mentioning that, as a general
rule, the exponentials, such as (32) and (33), and
the v, parameters defined by (5}, are better suited
to the considerations pertaining to the case of the
quasi-Euclidean metric, while the "angles" ~, 0,
y, and g are better suited to the case of the Wick-
rotated BS equation.

For these reasons it is worth noting for the
purpose of future reference that, because of (7),
the relations (30) and (31) are equivalent to

and

v,'v' st =v,"v" (34}

v', v' s" t" =v, v .
There is also an alternative option of defining
the t and s parameters in terms of z's and v's
directly, as pairs of solutions of the quadratic
equations

(35}

With the choice as to which of the two basic solu-
tions of, e.g. , Eq. (28) to call T and which o remain-
ing to a large extent optional, the ~ and o param-
eters are bound to play a highly symmetric role
in our further considerations. For that reason, it
will be ultimately most convenient to use v's and
o's —or rather the presently defined t and s param-
eters —as independent variables, eliminating not
only z and z" but y and y" through (30) and (31) as
well. The t and s parameters are defined by

(32)

and

-cosg cosg +cos((p —(p +T )
sing' sing

(29) z —1 (v," —tv', )(v" —tv' )
z +1 (v," —tv')(v" —tv,'}' (36)

and

V=2(p —cp ) —T

o" =2(y' —y) —T'".

(30)

(31}

Since Eqs. (28) and (29) do not define the quantities
7 and 7." uniquely, however, they shall at the same
time be considered as defining relations for the
quantities 0 and 0", the latter defined as the only
other (modulo 2z) pair of solutions of (28) and (29),
respectively. More precisely, starting with a
particular pair of solutions T and T" of (28} and

(29), another pair of solutions o and o" can be
constructed by setting

z" + 1 (v, —t "v')(v —t "v', )
(37}

with Eqs. (34) and (35) precisely the relations
between the appropriate roots, and regarding (32)
and (33) as defining relations for T's and o's.
Moreover, Eqs. (36) and (37) can be considered
modeled on (27} in precisely the same sense as
(28) and (29) were modeled on (26).

It should finally be noted that there will be no
need to introduce any auxiliary parameters—
analogous to v's and o's defined above —to repre-
sent z'. z' will be completely eliminated at a
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comparatively early stage of the solving procedure
of the BS equation by explicitly performing a
Cauchy integration [compare Eqs. (54) and (55)]
and will thus be replaced by y' everywhere in the
appropriate integrand. In this connection the need
will arise to further transform the expression

a(z, y', z")=1-z'-y" -z"'+2zy'z", (38)

originally symmetric in the z's. For reasons of
greater clarity, it will then be sometimes advan-
tageous to formally restore the full symmetry
with respect to permutations of primes by intro-
ducing the notations

the initial-final and intermediate-final pairs of
states only (the only meaningful and similar quan-
tity pertaining to the remaining pair of states is
the kernel of the BS equation). Therefore, the
notations T" and T suffice to identify the scattering
amplitude as pertaining to these two situations,
respectively. However, occasionally it will be
desirable to indicate clearly the variables on which
the scattering amplitude does depend. In such
cases we will again depart from the notation most
commonly used, e.g. ,

T" =T(r; p, p'), etc.

1
x =cos((0" —p'+T) =

( )ig2 (t+s), (39)
(with the four-vectors r, p, p', p" as defined in Sec.
II C), and introduce a Dirac-type notation:

x'=cos(y —y") =
(
„„,~, (st+s" t"), (40)
I T" =(PIT(~)lp'), «c (45)

x" =cos(y —cp'+7'")=
( „„),&, (t"+s"}, (41)

so that

z II

-cosP" cos~&'+x
sing' sing"

-cosg cosg" +x'
sing" sing

-costJI' cosg+x"
sing sing'

(42)

(43)

(44}

In conclusion it should be remarked that x's will
appear most naturally in conjunction with w's de-
fined by (19) in the otherwise too lengthy formulas
of Sec. V.

F. Notations adopted to represent the scattering amplitude

The (total, off shell) scattering amplitude T
belongs —from the point of view of the conventions
so far adopted —to the same category of quantities
as the s and t parameters in that it is defined for

T"=(v„v iT(E, z")iv,', v'), (46)

the general idea being that the variables of the
category defined in Sec. IIC should be used to
designate the end states, while E (sometimes
omitted) and one variable of the category defined
in Sec. IID or IIE should be written inside the
brackets as if they were arguments of an operator
T.' The same type of notations will also be used
for the "auxiliary" amplitudes A and 4 defined
later in the text [compare (49), (50}and (67), (68)].

It will have the advantage that the P's as arguments
of bras and kets can be easily replaced by Green-
Biswas parameters or v's defined by (5) without
losing sight of the general structure of the transi-
tion amplitude. This would be more cumbersome
to accomplish if the more conventional notation
were used and the particular six independent pa-
rameters, momentarily most useful, were just
listed inside a common bracket without clear dis-
tinction as to in which category (that of Sec. II C,
IID, or IIE) they belong. In the barycentric sys-
tem (1) we will write, e.g. ,

III. THE SOLVING PROCEDURE

Using the notations just described, the Bethe-Salpeter equation

(»)'i, , d'P "(p"i T(~)l p')
(p -p')'+iz 4g' Pi ip (p„'—m„'+i&)(p ' —m '+ i~)[(p" —p')'+teJ ' (47)

if written in the barycentric system (1), becomes

dp" dipl" d g"
[(P+E P.")*—lp"I'-m~'+ t~J[(p E-p,")' —lP"l*-m, '+t~J '

(48)
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where z's and y's are defined by (23) and (24),
the four-vectors p and P, by (2) and (4}, respec-
tively, and the auxiliary amplitude A by

A = IP"I IP'I (n". , ~ "I&(&,2)ln', n'), (49)

(50)

I „I'll{.. . )

p+g ~ ~ ~ )
dz & dz'

(1 z2 z IR zll2 + 2zz Iz ll)1 IR

(51)

&" =III IP'l(~. , ~ IT(&,z")Ii '+, n').

The integration limits in fdP
"( ~ ~ ~) are suppressed

on purpose to indicate that (48) comprises both the
original BS equation (integration from -~ to +~
along the real axis) and the Wick equation (integra-
tion from -i~ to +i along the imaginary axis,
together with assigning imaginary values to the
remaining p, and pe)." fcPQ'" ( . ).denotes the
usual angular integration in the barycentric sys-
tem (1}. To perform it, however, we prefer to
use the two cosines of the scattering angles z and
z' as independent variables rather than the usual
polar angles )t" (or )I,") and 8 (see Fig. 2}." As
easily seen, we have

where the contour integration in z' denotes the
integration around the cut of

(1 -z'-z" -z"'+2zz'z")'~'

extending from

z' =zz" —I(1 -z')'~*l I(1 -z"')'~'I (52)

+I(1 -z'P~'I I(1 -z"')'~'I (53)

, (1-z'-z"-z"'+2zz'z") '~'1
z

=-2vi(1 -z'-y" -z"'+2zy'z") '~', (54)

whereby Eg. (48) becomes

and where the proper branch of the square root is
understood as that which remains positive on the
lower lip of the cut. Now, since according to (49)
the "unknown" function A does not depend on z',
the z' integration can be performed explicitly using
the Cauchy theorem; thus

z" -y" 2g' J ', , [{P,E+P,")'-lp"I' m„'+tel-[(P S -P,"}'—
I
p"I* m, '+-tz] '

(55)

so that the number of integrations involved is
reduced from the original four to three. It is also
evident that by using the Green-Biswas param-
eters or u's defined by (5) a substantial simplifica-
tion of the kernel can be achieved because of (10)
and (15). The chief difficulty, however, is how to
deal with the residual dependence on the angular
variable z without resorting to partial-wave analy-
sis. In order to resolve this difficulty we proceed
as follows.

We begin by transforming the expression (38).
Using x's defined by Eqs. (39)-(41) and w's de-
fined by (19), we have

8 in)
Wq WA. sw" ' (58)

2 „B
4 ~)gg2 WA w +

2
+WQ (59)

i.e., with Q aquadzatic form in'" for @=const.
Consequently

z z +2z z sin'g sin'g' sin'g'" '

(58)

q = (1 -x' —x"-x"'+2xx'x") + (x' —1)w'

+ (x"—1)w" + (x"' —1)w"' + 2(x -x'x")w'w"

+2(x' —x "x)w "w+ 2(x" —xx') ww'

=- Am ~+Boo"+C, (5V)
FIG. 2. Angular variables used to perform the integra-

tion indicated by fd Q" in Eus. (4S) and (Sl).
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and where

A =(x"'-1),
B =2(x -x'x")w'+2(x'-x"x)w,

C =8~ -4AC

4(l -wg -w'2-«'u+2ww'x")

& (1 -x' -x"-x"'+2xx'x").

(60)

(61)

(62)

sin(y" —y'+ r)
sing" sing'

and, consistently with it,

sin(y —cp'+ r")
sing' sing

(67)

(68)

If we now introduce another auxiliary scattering
amplitude

WA = t sin(p —(p + T )» (64)

[compare (60) and (41)] and noting that for y", P"
= const

sin(y" —y'+7)
sing" sing'

[compare (28)], we finally have because of (58)
and (19) (see Ref. 23)

(65)

dz
(1- '-~"- "'+2 ~' ")'"

sing sin(y" - y' + r) s in(
n 11sing" sin(y —y'+r" } 8&"

Defining the proper branch of VQ in terms of that
of (1 —z -y' -z" +2zy'z")' by

vQ =singeing' sing" (1 -z' -y" -z"'+2zy'z")'~'

(63)

and the proper branch of vA by

the integrand in (55) becomes

x (function of y" only}

x 4dq&" dg" d~
8 in)

(or a corresponding expression if v", and t were
used), so that further simplification can be made
by dividing (55) throughout by

sing sing'
sin(cp —y'+v") '

Because of widely different integration domains
involved, it is best, from this point on, to write
the correspondingly transformed Eq. (55) separate-
ly for the Wick case and for the original BS equa-
tion, using the parameters best suited to the par-
ticular situation as integration variables. They
are

sin(y —y'+7") (2v)4i „z1
~

" „„4(s/sg")in)
cos(y —rp'+r") —cos(y —y') 2g' 2 m„ms J', sin(y" + o.', ) sin(y" —a )

(69)

for the Wick case and

1 1
t" -1 s" -1

2g' (p,E —ic)(p E+ic}„'t (v,"v"-u, '}(v,"v"-u '} ' sv," sv"

(70)

1 1
t" —1 s' —1

was also used to represent the inhomogeneity

(71}

for the case of the original BS equation and where
the relation

sin(rp —q'+r")
sing sing

sin(y —rp'+ r")
cos(cp —(0 +T ) —cos(p —

q7 )

(Born term}. o,', and u, are defined by (16), p,
by (4), and c by (6). The integration domains D,
and D, are explained in detail in Secs. IV and V,
where parallel attempts are made to solve the
Wick equation and the original BS equation, re-
spectively.

To conclude the preliminary remarks of the
present section, it should finally be pointed out
that the analytic properties of the quantity $ de-
fined by (59) are obviously going to play an essen-
tial role in all further considerations. These
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analytic properties are derived in detail in Ap-
pendix A.

Analytic $& plone

IV. SOLUTION OF THE WICK EQUATION

po = CP4, p4 real (72)

we see that according to (8}and (9}y must be real
and g imaginary. To determine the integration
limits in (t and g it now suffices to realize that
with p, real Eqs. (8) and (9) represent the con-
formal mapping

The continuation of the solving procedure from
the Sec. III must now —out of necessity —differ
when applied to (69}as compared to (70). We
propose therefore to solve (69) as a simpler case
first and then, in Sec. V, to try to follow as closely
as possible all the same essential steps in order
to solve (70). We shall begin by determining the
integration domain D, . First of all notice that,
because c defined by (6} is real in the bound-state
region and imaginary for the scattering region,
the nature of the integration domain involved (i.e.,
D, as well as D, of Sec. V) will additionally depend
on whether m„+ms ~ E ~

~
m„—ms~ or E & m„+ms

(~m„—ms~&E&0). From now on we shall therefore
work exclusively in the scattering region; thus

E&m„+m d'or ~m~ —ms~&E&0;

and we shall only occasionally (compare the exactly
soluble model of Sec. VI) analytically continue the
results into the bound-state region, e.g. , in order
to determine the positions of the bound-state poles,
etc. This makes c imaginary and d, [defined by
(18)] real and —according to the convention already
made —positive. Since in the Nick-rotated situa-
tion

(pl

FIG. 3. Graphical representation of the conformal
mapping {73), obtaining in the case of the Wick-rotated
BS equation, supplying in part the motivation for intro-
ducing the bifocal coordinates y and g of Green and
Biswas.

the limits -i(g' ag") as z varies between +1, re-
spectively. We thus have

dy" d(1)" d~( ~ ~ )

v II 1
(v")* (78)

pt+yt

pwca

gtt

d(t" d)I)" d~( ). ~ (~7~7)
Q 0 0 ~t + g t ~tt IIitt

For what follows it is of importance to also show
at this point that in the presently considered %'ick
case (and contrary to the situation encountered in
Sec. V) the v parameters defined by (5) would be
completely useless as integration variables. This
is easily seen from (7) in conjunction with the
fact that y's are real and g's imaginary; thus

g, =i ln f2+ d

2

also depicted in Fig. 3, where

0y =9 + &Xy

l. =Ipl+ ip„
with X defined by

Q=iX

(74)

(75)

(76}

so that the point representing v," in its analytic
plane becomes completely determined by that of
v" and to speak of an integration path in v", "while
v" remains constant" becomes meaningless.

To solve (69) we now proceed as follows: The
form of this equation suggests that if 4 were not
to depend on g", but only on the remaining vari-
ables y" and ~, the integrand could be rewritten
as

and therefore real. Since the analytic right half
plane in f, represents the integration domain in
(p'( and p," (we shall now again start using double
primes to indicate the actual integration variables),
the integration limits in q)" and g" are from 0 to
2w and from 0 to +i~, respectively (see Fig. 2).
In order to make the left-hand side of (28) real
v must now be in general complex. Its real part
remains constant and equal to y' —qr' for y" and
y.
' constant and its imaginary part varies between

8 41ng
s('" sin(i"+n, )sin(i" —n ))' (79)

so that the "volume" integral over D, could be
reduced to a "surface" integral over the "boundary"
of this domain by a "Green theorem. " However,
for reasons of internal consistency, 4" would then
have to be independent of g, and since the inhomo-
geneity also does not contain this variable the
outcome of the above surface integration would
likewise have to be g-independent. In other words,
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a=)ti (82)

[with t defined by (32)], respectively —than in
terms of (p", g", and 7' Namely. , since the real
part of 7 is equal to y' —y" we can write

t it's(((P IP ) ae((Q IP )

while, because of (7), (21), and (22), Eq. (36)
becomes

(83}

z —1 (a —p"/p')(a —p'/p")
z +1 (a O'O")(a —-1/O'O") ' (84)

the possibility of a further reduction of the number
of integrations involved from three to two depends
on the compatibility of (69) with the solving ansatz

(80)

(81)

emphasizing that the auxiliary scattering ampli-
tude 4 defined by (6V) and (68) is independent of the
()) parameter

We shall now proceed to show that such com-
patibility indeed obtains and leads to a solution of
(69}. However, a slight change of the integration
variables is first indicated (i.e., going slightly
beyond the general "register" of parameters of
Sec. II and definable only in the Wick-rotated case).
Mainly because of a rather complicated way the
integration with respect to v has to be performed
[compare (77)], the boundaries of the domain D(
are much more conveniently established in terms
of the parameters y", p", and e—the latter two
are defined by (22) and by

a=
p

1

\

\

/

p" =I p =p

Ia=~(, z=-l, e

P

FIG. 4. Integration domain in 0. and p" (shaded area)
in (85) and (88). and 6 denote the signatures of the
boundary lines in the sense defined in Appendix A and
correspond to -e&e2 set equal to +1 and —1, respective-
ly, where ~& and &2 are defined by (A9) and (A16).

representing a relation between all real numbers
in the Wick-rotated case. Consequently, to fully
cover the domain D„p"must vary from 1 to ~
(corresponding to the variation of g" from 0 to t~),
and y", as before, must vary from 0 to 2m, while
a must vary from 1/p'p" to p"/p' for p" (p' and
from 1/p'p" to p'/p" for p")p' as z varies from
-1 to +1. The integration region in e and p" is
represented graphically by the shaded area in
Fig. 4, where the solid lines a =p "/p' and a =p'/p"
correspond to z =+1 and the dashed lines n =p'p"
and a =1/p'p' correspond to z =-1 and represent
the boundaries of this domain. Equation (69) writ-
ten in terms of y", p", and n instead of y", g",
and T now becomes

1 1 (2(()' „((" (' „'(' (' da "" „'' da
+ dp

4 8

sin((()" + a, ) sin((p" —a ) sp"

where t" and s" expressed in terms of a's and y's are

[compare (83)] and, because of (31) and (33),

eg ((I() —P}1
IIQ

(85)

(86)

(8V)

Thus, reversing the order of integrations with respect to e and p",

z/p' p'/n z P '/ f}f

dp" d&+ dp" de ~ = d& dp + d& dp ~ ~ 88
p' ~/p'p" 0 Z/ap' 1/P' OfP'

(see Fig. 4), making the ansatz (80), (81), and finally performing the integration with respect to p" ex-
plicitly, Eq. (85}becomes

1 1 (2(()' „) v " „'da 4 (4)", a) ln(g, /g ) (89)
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(t-t")(s-s")
(s-t")(t-&") ' (90)

which if expressed in terms of e's and y's reads

(1/a)l a"8'" —as"" '
a~ altsl(P (1/a)sfP 2 (91)

and is thus indeed p- (or g-) independent. Equa-
tion (89) represents by far the most important and
useful analytic property of $. It should be borne
in mind, however, that the validity of the above

where we have now written 4(y, a") instead of
C (y, v"), and 4 (y", a) instead of 4(y", v), and
where (, denote the values of ( corresponding to
the same values of y", e, and p, but taken at
z =+1, or, more precisely, where the subscript
a of $ is identical with the signature -e,e2 in the
usage of Appendix A, with c, and c2 defined by Eqs.
(A9) and (A16), respectively. The internal con-
sistency of (87) now obtains because, as proved in
Appendix A [Eqs. (A29} and (ASO}],

change sign under the substitution a'-1/a", so
that any solution of (89}must exhibit the additional
symmetry

4 (y", a) =-4(y", 1/a).

Consequently, (89}becomes

(92)

result depends to no lesser extent on the fact that
$ remains single-valued throughout the domain
D„which in turn stems mainly from the positive-
definiteness of Q, defined by (57), in the Wick-
rotated case. The latter is no longer true in the
situation under discussion in Sec. V (see Appendix
A for details). To further transform (89), we
first notice that because of (86), (87), and (91)
both expressions

1
s"-1 t"-1

and

in-k+

(92)

e, =ecosoc", e, =asiny",

e,"=e'cosy, e, =e' sing,

whereby

(9g)

(95)

where the integration in e has been formally ex-
tended to infinity by the substitution a- 1/a in
the expression pertaining to g, since the denomi-
nator of (91) becomes equal to the numerator and
vice versa under this substitution. Equation (93)
is now equivalent to a two«dimensional boundary-
value problem. To see this it suffices to introduce
the rectangular coordinates

(97)

and

1 1
s" -1 t" -1

s (a,"—cosy')'+ (a," —siny')'
Be" e

e ll2

(a,"—cosy')'+ (a,"—siny')' (98)

Applying the Laplacian

ln~ a'" —a"e'~~ = in[(a,"—a )'+ (a" —a )'j ' '

dW" ' ' ' = de, de2

(96)

a 82 1
-

„

e ' a2-
8 ell2 g ell2 ell2 g eN c) 2+ Q +

j. 2
(99)

and also to realize that
to both sides of (92) and using the well-known two-
dimensional "potential theory" formula"

we get

2 82 +on + OO

„~+ „2 da~ da~in[(a, —a,") +(a~ —a~) ]'~~f(a„a)=2wf(a,",a"),
2 «00 «co

(100)

8 8 g 1 1
+ ll2 + ~ ll C =0sa sy"' (2s}* m„ms sin(y" +a, )sin(y" —a ) ~

which is a homogeneous equation satisfied everywhere except at the point

(101)
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Nz =cosfI(), &2 =sing, (102)

notwithstanding the presence of the Born term in
(93) since, according to (98),

82 a2 1 1
g ~pI2 g 01@2+ =0

1
(103)

satisfied likewise everywhere except at the point
(102). The proper boundary conditions to be im-
posed on 4 satisfying (101) in order thai it should
satisfy (93) are therefore that

(i) P should develop a singularity of the type
(99) at the point (102), or more precisely that the
expression

4g2 1 1
4(w + ) o y & ~ &, ~)

A. =(a"- a ") I:(y"),

where the functions Y„satisfy

(104)

should remain regular at that point, '~

(ii) P/& should remain regular at a =0 [because
of the factor 1/o. in the integrand of (93)], and

(iii) the solution should exhibit the over all-sym-
metry (92).

Equation (101) is separable in o.' and y", so that
the solution of our boundary-value problem may be
sought in the form of a sum of products

1
I(2 +8 + F„=0.dy"' (2v)' m„ms sin(p" + &,) sin(y" —a )

(105}

Equations (105) are identical with the "radial"
equations of Green and Biswas' and are therefore
also equivalent —as shown by these authors —to
the well-known Wick-Cutkosky results. Having
thus established an essential equivalence of our
results concerning the Wick equation with those
known in the literature, we shall now attempt to
solve the "original" BS equation (VO).

V. THE "ORIGINAL" BETHE-SALPETER EQUATION

A. Integration domain

in the four-dimensional space [Re(y"), Im(y"),
Re(g"), Im($")] and, in a fashion similar to what
was true for v," and v in Sec. IV, even the con-
cept of, e.g. , "an integration contour in y" while
g" is kept constant" loses its meaning. "
The parameter t defined in Sec. GE represents
a third "natural" choice of an integration variable
because it is real and —most importantly —be-
cause now Eq. (36) becomes a relation between all
real numbers. To actually determine the integra-
tion domain D, in the underlying three-dimensional

As in the previous section, we shall first deter-
mine the integration domain D,. To begin with,
since po is now real and i c =d is also real (i.e.,
for E in the scattering region), the parameters
v", defined by (5) are real. Moreover, they can
be considered independent variables since po
+ ~p"

~
are also real and independent —a situation

very different from that of the previous Sec. IV,
where this was not true because of (78). Con-
sequently, in the case of the original BS equation,
v", represent a good choice of integration vanables.
Inversely, the Green-Biswas parameters are
practically useless for the following reasons:

(i}Since for real p," the conformal mapping ('13}
becomes meaningless, the integration domain in
y" and P" becomes very involved even if the quan-
tities E, m„,ms which enter the definition (6) of
c are all "strictly real. "

(ii) If small imaginary parts are assigned to
m~ and m~, as entailed by the use of Feynman
propagators, the above difficulty is compounded
enormously —to such an extent, in fact, that the
"integration domain" can now only be understood
as a certain two-dimensional "surface" embedded

V =I

v"=0
II

V+

II
V+ =0 s

V+ =i

FIG. 5. Allowed values of v~ (shaded area} by virtue
of the fact that the integration domains in pa and ~p"

~

extend from -~ to + and from 0 to +~, respectively.
This means that pg +( p"

(
—po'-)p" ( and consequently

[compare (5}] that 1/(v+-1} ~ 1/(v —1}.
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(v,",v', t) space, it is important to realize from
the onset that one should expect it to be signifi-
cantly more involved than was the case with the
domain D, of Sec. IV, in its underlying (qr", p", a)
space. The boundaries of D, consist not only of
the planes VI

I
I

I

I
I

I

I

Vp

v,"-tv,' =0 and v"-tv' =0,

corresponding to z =+1, and

v,"-tv' =0 and v" —tv+ =0,

(106)

(10'?)

Q+
II I

z=+I v- =tv--
I t

II
v- =I

corresponding to z = -1, but also of the planes

v Il (108)

v" =1 (109)

corresponding to Po —ip'i=~ with Po'+ip"i finite
and finally of the plane

corresponding to Po +ip"i=~, with Po' —ip" i finite
and

v-' =0

II
v+ -0 II

v+ =I z=-I
I

y+= fy-
0+

z=+ I

II
v+ = fy+

8

II
z = -I;v =tv+.

FIG. 7. Cross sections of the "rearranged" (shadings
in the horizontal solid and horizontal dashed lines) and
"original" (shadings in the vertical solid and vertical
dashed lines) integration domains D2 and D2 by a t
=const plane for t &1/v'.

vlf v II
+ (110)

0+

II I

z=+I;v- =tv

II
v =0

v+ =0 z =-I

=tv
0+

z=+I
ll

v =tv+

0

corresponding to ip" i=0 [compare (5) and the inte-
gration limits in (48}]. While the boundaries (106)
and (10'?) clearly have their analogs in D, (com-
pare, e.g. , the solid and dashed lines in Fig. 4),
the boundaries of the tyPe (108), (109), and (110)
are simPly absent in the Wick-rotated case. It is
now a matter of a little painstaking but perfectly
straightforward geometry (consisting of deter-
mining the overlap regions of the shaded areas
depicted in Figs. 5 and 6 and representing the
allowed regions of integration by virtue of the
domains of variation in p,", ip"i, and e, respec-
tively} to realize that the domain D, can be rep-
resented symbolically by

FIG. 6. Allowed values of vf (shaded areas) by virtue
of the fact that the integration domain in the cosine of
the scattering angle z extends from —1 to +1. They
derive from the condition that (for a given t) the right-
hand side of (36) must always be negative. The distinc-
tion between areas shaded in horizontal solid lines and
those shaded in vertical solid lines is that they must be
counted positively and negatively, respectively. This
depends on whether —proceeding in the direction of
increasing t [i.e. , in the three-dimensional (v+', v", t)
space] and keeping v ~ constant —the surface correspond-
ing to z =-1 is encountered first and that corresponding
to z =+1 second, or vice versa. By combining the in-
formation contained in Figs. 5 and 6 (the latter redrawn
for different values of t) we obtain Figs. 7-13. The
meaning of signatures and 6 is the same as in Fig. 4.

D2-V, +V2 —Vs- V~ —V, +Vs,

where, to avoid lengthy verbal descriptions, the
"subdomains" or "volumes" V„.. . , V8 are rep-
resented graphically in Figs. 7-13, and where the
minus signs in front of V„V4,and V, denote that
the corresponding integrals over these volumes
should be counted negatively. Figures V-13 rep-
resent cross sections of the integration domains
by the t =const planes for t in the intervals
t & 1/v ' & 1/v,', t = 1/v ', 1/v ' & t & 1/v '„t = 1/v ',
1/v' &1/v', &t& 0, t =0, and t(0, respectively,
and are all drawn for a particular situation where
v+)v' )0 2s



2424 MARIAN GUNTHER

II
I;v- =tv+ad

Q.-

Q+

ll I
z= I;v- =tv- = I

VI

II
v- =0

II
v+ -0 z=-I

II I

v+ = tv- = I

Q+

z=+I
II I

ve =Nq

vp

I

I

I

I

I
I

I

I V4

I

I

I

I

I

I

I

I

z=-1;v- = tv' =I I

I

Q+ VQ )

II Iz=+I v- =tv-' I
I

I

v- =0 0
I

IV5
I

I

I

v+ =0 z=-l

v+ =tv '

z=+ I
II I

v+ =fv+ =I

FIG. 8. Cross sections of the "rearranged" and
"original" integration domains D2 and D2 by the t = 1/v'
plane.

FIG. 10. Cross sections of the "rearranged" and
"original" integration domains D2 and D2 by the t =1/v',
plane.

Thus, as anticipated, the detailed structure of
D, is indeed rather involved. Before going into
details of a more analytic nature, we shall there-
fore first try to improve the geometry of this
over-all integration domain, i.e., try to replace
D, with an equivalent domain of a simpler shape.
The possibility of doing so stems from the fact that
the integration over a particular V, can always be

replaced by that over a corresponding "mirror
reflection" V,* in the v+ =v" plane by performing
the formal substitution v,"=v" in. the integrand.
A glance at Figs. 7-13, where the positions of
V3 V4 and V,* are also indicated, shows that a
particularly simple choice of a over-all domain
equivalent in that sense to D, is

II Iz-l. v -tv+ ----V.—
~I

'
v =i:=-=.„,1-
II

z=+I v- =tv-I

IIv- =0

I
I

I

I

I

I

v~)
I

I

I

I

v5

v~
ytf= =- II

v- =I

z "-I; v- = t v+ I8 '---.
p+

--=- 5 ==
II I

z=+I v- =tv-'
I

0

I

I

I

I

I

IV4
I

I

I

I

I

I

I

I

I

I

I

T

Y6

v

z=-I
II I

v+ = tv-

z =+I
II I

v+ = tv+

II
~v+

2 =+I
II I

vy =tv'
8

I

IY5
I

I

I

II
v+ =0

z=-I
II I

v+ =tv-
0+

FIG. 9. Cross sections of the "rearranged" and
"original" integration domains D2 and D2 by a t =const
plane 1/v' &t & 1/v+.

FIG. 11. Cross sections of the "rearranged" and
"original" integration domains D2 and D2 by a t =const
plane for 1/v+ &t &0.



MATHEMATICAL STRUCTURE OF THE BETHE-SALPE TER. . . 2425

v "=I

II I I

v =tv, =tv =0

v, =tv, =tv =0 V+ =(

FIG. 12. Cross sections of the "rearranged" and
"original" integration domains D2 and D2 by the t = 0
plane.

D2 =V, +V~+V3 +V4 +V,*+V~, (112)

in which therefore we shall actually perform all
the necessary integrations. It should be noticed
that, for reasons to become clear later, "the
definition of D,' also includes the change of sign
in front of the V*'s which means that the sign
of the integrand should also be changed in addition
to the substitution v+=v". As again seen from
Figs. 7-13, where the domain D,' is indicated by
the shaded areas, D,' is not only more compact
than D„but—Most importantly —its external
boundaries (unlike those of D, ) consist notv solely
of the Planes (106) and (107), while those of the
type (108), (109), and (110) are relegated to the
roles of interfaces between the constituent volumes
(to emphasize this fact D,' is additionally rep-
resented by a three-dimensional picture, Fig. 14).

More "analytic" aspects of the replacement of
D, by D,' in conjunction with the special form of the
integrand in (70) entail now the following: First
of all, the substitution v,"-v" poses no problem,
even as far as the unknown 4 is concerned, since
on general grounds [and entirely independently on
whether or not the ansatz (114), (115) is made-
see later] it has to be a symmetric function of
v," and v". This follows from the fact that the
substitution v", =v" implies lp"l- -lp"l and z --z
[compare (5) and (36), respectively], which in
turn is compatible with Eq. (48) provided that
A--A under this substitution. " That 4 is a sym-
metrical function in the variables v+ and v" is
then a consequence of the definition (67), (68).

As far as g is concerned, the substitution v+
=v" can of course be performed explicitly since
$ is known in a closed form (59); in fact, the sym-

eI
mm
Vcj

mm
m
m
m
m

I

I

I

I

I

0
I

I

Iv""'"
Jllllllllllllllll "ellllllllllllllll

:-=I

Kv, "=0
2=+I

II
v =I

v '=0

z=+I;v "=tv ',
I III IIIIIIIIIIIIII % IIII I' Io IIIIIIIIII IIIIIIIIIIIIIII

I I& I i I t I I 'I IIIII~~ I III 4 &II & II II t II ' s ~II g & I I I II & I I II II ~ll fll

z=-I;v "=tv,', 8
11

v+ =I

vy =tv v/ =tv
8 8

FIG. 13. Cross sections of the "rearranged" and
"original" integration domains D2 and D2 by a t =const
plane for negative t. Note the "reversal of sign of the
subdomains" V& as compared, with, e.g. , Fig. 11.
However, this is "compensated for" when the integration
is finally performed in the t, s, and (d variables by
the appearance of the factor ltl in the Jacobtan
8(t, s, ~")/8(v+, v, t), so that this integration continues
always smoothly into the range of negative t (or s).

w~ ri
q/ ~J

r r r

II I

--V+ = t V-

II I

V+ = fV+

II
V-

FIG. 14. Over-all three-dimensional picture of the
("rearranged") integration domain D2 of (70) (outlined
in solid lines). For greater clarity, the position of
(D2) * (obtained from D2 by reflection in the v+ =v
plane) is also indicated (dashed lines). Notice the gap in
D2 in the region where the two would otherwise (i.e. ,
if this gap were absent) intersect. To preserve maximal
readability, however, the positions of individual V&'s
and those of the otherwise very important v~+ =1 and
v =1 planes (interfaces) are no longer included.
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metry properties of its logarithm (In)) play a
predominant role in our future considerations, as
we shall presently see. In this connection it is
of particular interest to notice that if lnE, were a
symmetric function of v," and v", the integrand of
(70) would be antisymmetric in these variables,
so that —taking into account the additional change
of sign of this integrand implied in the definition
(112)'0—it would be continued smoothly through
the interfaces (108), (109), and (110). In practical
terms this means that the detailed behavior of the
integrand in the vicinity of the surfaces (108),
(109), and (110),i.e. , Precisely those that have no
counterParts in the Wick-rotated case, will be apt
to influence our results only if in) has a nonvan-

ishing antisymmetric part at these surfaces, in
which case the corresponding part of the integrand
would have to change its sign discontinuously while
crossing them.

4 = 4 (v,"v ",t),
4"=4(v,v, t")

(113)

(114)

to emphasize the dependence of 4 on the v param-
eters only through their product, could be made,
then in complete analogy to (79) the integrand in

(70) could be written as

(
4 in)' Bv," Bv" (v,"v" —u ')(v,"v" —u ') '

B. Analytic difference between Eqs. (69) and (70)

In an actual attempt to solve (70) we shall now

try, as emphasized before, to follow as closely as
possible the same methods which in Sec. IV suc-
cessfully led to the solution of (69), since, even
in spite of the fact that we were forced to use dif-
ferent integration variables, the situation which
confronts us here still seems to bear much re-
semblance to that of Sec. IV. What we have pri-
marily in mind is the fact that if the ansatz (80),
(81), which we now prefer to write as

4=4(t, s), (116)

4"=4(t",s"), (117)

emphasizing the (desired) lack of dependence on
the g parameters.

The right-hand side of (70) becomes

Consequently, the volume integral of a divergence
term (115) could again be converted into a sum of
surface integrals over the boundaries of D,' by a
Green's theorem. Unfortunately, as we shall
presently see, some of these surface integrals
will now in general be P-dependent (or in terms of
the v parameters will depend not only on the pro-
duct but also on the ratio of these parameters), so
that the compatibility of (113),(114) with (70) will
not obtain (at least without changes made as to the
types of the propagators used-see later) F.rom
the preceding geometrical considerations it is of
course immediately clear that the only boundaries
that could contribute to such g dependence (a term
that we shall continue to use for the sake of
brevity in spite of the present emphasis on the
use of the v parameters) are the interfaces (108),
(109), and (110) since the contributions from the
external boundaries (106) and (107) corresponding
to z =el, respectively, remain [i.e., contingent on

the ansatz (113), (114)] g-independent because of
(89). Anticipating this, in a more detailed analysis
which now follows we shall use the ansatz (113),
(114) to transform only the right-hand side of (70),
but shall not equate it to the Breit term 1/(s "—1)
—1/(t" —1) lest this should lead to inconsistencies.
At this point it is convenient to finally go over to
t, s, and e" [defined by (36), (34), and (20), re-
spectively] as integration variables in preference
to v,", v", and, keeping in mind, however, that
the integration domain should correspond to D,' de-
fined by (112), The ansatz (113),(114)will there-
fore now mean that

(2w)"
(„„}viv,'v'

2g' ' (E,-ic)(E +ic),
4(t, s)

~

"+d „Bln)
(tsv,'v ' —u, ')(tsv,'v '- u ') J„„B&g"

where the integration limits ~, correspond to z
=+1, respectively, and are

co+ = tv '+ sv,' or ur,"= tv,'+ sv ',
co"=tv,'+sv ' or cu"=tv '+sv '

(119)

(120}

[see also Eqs. (A10}-(A15) of Appendix A] accord-
ing to whether the particular end point corresponds
to a point in one of the V. . .'s or one of the
V. ..'s constituting the original D„sothat in D,

only the first alternative applies. To evaluate the
last integral in (118)we now proceed as follows:
First of all we prefer to write it as

g in)(~)
CO

(121)

replacing 5 defined by (59) by a new function g"'
differing from $ by a factor independent of ~" and
so chosen that
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((1) ((I)( II) (f ftl)( I/) (122)

(123)

[compare (90)]. For arbitrary a&" and also using
the t and s parameters (see Appendix A for de-
tails), the so-normalized function (~' is then given
by

~ (I)(+ rr) + (~ tt 1(gts + gtt) + [(~et ge)(+e ye) j1/2)
-(t"—s "}'t"v '

+

where 8," [not to be confused with &u", of (119)]are given by

(124)

a(&G,"+(3")= „„([(ts+t"s")(t"+s")-2t"s "(t+a)]&@'+[(t+s)(t"+s")-2(fs —t "s"))(u) (125.)

(126)

where the expressions 5, are given by

5,= (v, —t"v,')(v —t"v,') .

Finally, the proper branch of

[(+rr gn)(+ti pre)]1/2

(127)

which is of course nothing else but WQ defined by
(63) multiplied by a factor independent of &u", is
defined in terms of that of

(1 —z' -y" -z' +2zy'z")'/'

by

[(+e gtr)(~ri gn}]1/2

. (v +v,)(v' -v,')(v"-v,")
2v, v (s" —t")

v" from V~~ into V, ) and for s& 1/v,' (from V", into
V,), while for 1/v ' & s & 1/v, ' the whole integration
path lies entirely within either V ~4 or V, . Repeat-
ing the same for all the other situations depicted
in Figs. 7-13, the full answer to the question con-
cerning the interface crossing is contained in
Table I. The meaning of the symbols used in
Table I is as follows: A simple + or —denotes
that no interface crossing occurs. The + sign
also indicates that the integration path lies entire-
ly inside a single V,. (V I') if this region lies above
(below} the diagonal v,"= v" . The —sign' indicates
just the converse. Situations where interface
crossing does occur are marked + - —or —- +,

y

II Iy- =fye

x (1 — '- a — '~+2 ' ")'/' (1.28)
ll

y- =I VI

In evaluating (120) special attention must be given
to the following two questions: Does the integra-
tion with respect to ~" between ~" and ~," entail
crossing of an interface? If such crossing does
occur, what is the behavior of ln( ' at this inter-
face'P

The first problem is a purely geometrical one
and is again best discussed with help of the
(v,",v") diagrams of the type in Figs. 7-13. The
integration path in the (v,",v") plane corresponding
to the co" integration from co" to co," with s and t
kept constant is represented by an arc of the
hyperbola v,"v"=tsv,'v ' [compare (34)] contained
within D, . A typical situation is shown in Fig, 15,
which is actually the same as Fig. 9, but where
hyperbolas corresponding to s & 1/v ', s =1/v ',
1/v ' & s & 1/v,', s = 1/v, ', and s & 1/v,' are also
drawn. We can see that in this particular situation
interface crossing occurs only for s & 1/v ' (name-
ly, proceeding in the direction of the increasing

VSy- =ty-

I V5
I

I

I

I

I

I

I

y+ = ty- I

I

I

I

I

y+ =I

t=const; — & t & ~. I

&y I y

y+

FIG. 15. Graphical illustration of the conditions under
which interface crossings occur (indicated by f arrows;
the arrows / indicate the corresponding points inthe
"original" —or unreflected" —V~ 's). The situation de-
picted corresponds to the case represented in Fig. 9
(1/v' & t & 1/v+) only. Table I is verified by repeating
the construction fox' the remainder of Figs. 7-13.
Arrows along the hyperbolas v+v = tsv+v' =const indicate
the direction of increasing uP.
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TABLE I. Areas in the (t, s) plane where interface
crossings occur (marked by arrows).

1t& —,
V

1 1
V Vp

1t&—IV+

S&
V

1 1
V V+

s&—I
V+

respectively, according to whether, proceeding
in the direction of increasing v", the integration
path crosses from a+ area into a —area or in-
versely from a —area into a + area.

The importance of the above distinction between
+ areas and —areas is connected with the behavior
of ln)"' and derives from the fact that if Feynman
propagators are used for the exchange particle, "
then, in situations where

z,'&y'&z ' (129)

(&3,
" and &3" both real and ~"~

&u
"~ u&"), with z,'

defined by (52), (53), we have

sgn[i [(u)" —(3,")(u)"—~")]'~']

(V -V,)(V ' —V+) (131)v,v (s"-I")

for the —areas. Therefore discontinuities of ln)"
can and, as we shall see, will occur if an interface
crossing takes place with the situation (129) pre-
vailing. This and the equally important fact that an
interface crossing proceeds smoothly (i.e., with-
out a discontinuity in 1n) '~) if rather than (129)
either

y'&z ' (132)

y'&z, (133)

obtains, follow from an at first paradoxical-looking
theorem to the effect that the proper branch of
[(ur" —&3,")(&u" —rD"}]'~' behaves like an antisym-
metric function in v," and v' for situation (129),
but becomes a symmetric function in these vari-
ables for situations (132) or (133).

=+ sgn ' ' (130)v, v (s- I-)

for the + areas and

sgn[i[((u" —(3,")((u"—(3")]' ')

II ]
(v,- I"v,')'(v - I "v )' - 0

z
(134)

and also assuming, consistently with our previous
geometrical constructions, that v,'v '& 0,~ we first
of all see that if $,' and $

' are either both posi-
tive or both negative then 9," and 9" are complex,
the expression (u" —8,")(cu"—&0") is positive-def-
inite, and, consequently, the situation (129) can
never occur. This means that, regardless of
whether or not the interface crossing occurs, $

"
continues smoothly from $

' to g,', remains
real, and also retains the same sign, since for
finite &u", $

' must [compare (124)] remain finite
and c 0. Consequently, whenever

$,' $
' =(& —I")(s—s")(&—s")(s —&")~0, (135)

we have simply

To prove the first part of the theorem notice that
the situation (129) remains unchanged under the
substitution v,"=v', since the latter implies y'-
-y' and z- —z, so that 1 —z -y~-z" +2zy'z"
remains unchanged. Now, for a Feynman propa-
gator, y' defined by (24) is real except for a small
and always negative imaginary part, which for sit-
uations (129) makes (1 —z'-y" —z"'+2zy'z")'i'
always positive, since the proper branch of this
square root as a function of y' was defined [com-
pare (51), (52), and (53)] as that which is positive
at the lower lip of the cut extending from z ' to
z,'. Consequently, not only the expression 1-z'
-y~ -z"'+2zy'z" itself but also the sign of its
square root must remain unchanged by the sub-
stitution v,"=v", which proves, according to (128),
that for a situation (129) [(&u" —rD,")(ru" —&3")J' ' is
indeed an antisymmetric function in v," and v".

To prove the second part of our theorem it now
suffices to observe that if a situation (132) or (133)
obtains, the expression 1-z' -y —z'~+2zy'z"
again remains unchanged under the substitutions
v,"= v", but its square root does change sign since
under this substitution the situation (132) becomes
that of (133) and vice versa and the signs of the
proper branch of i[1 —z' —y" —z'e+2zy'z "]'~' to
the left and to the right of the above cut are op-
posite. Q. E. D.

In order to establish in detail what trajectory
will be described by $

" in its analytic plane as
co" varies between ~" and ~," for a given pair of
values of t and s, or in other words what will be
the shaPe of this trajectory as a function of t and

s, we must now supplement the information con-
tained in Table 1 with that stemming from (125) and

(126), regarding the properties of &0,
" and rD" as

functions of t and s. Noting that according to (124}
and (37)
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s(u" (i —s")(s —t")

The situation is much more complicated if $,"}
and $~' have opposite signs, i.e., if

&."'h'" = () i—")( s—s")(I—s")(s —i")& o (137)

g(l )(-
(l)

I Analytic'( I )plane
)

First of all, the situation (129) can and in fact
must then prevail part of the way between ro" and

~,", which means that the interval (v" I &3,") must
be contained within the interval (&u", ur,"). This is
because as long as (129) prevails, the point repre-
senting $~' in its analytic plane must remain on a
circle around the origin of radius

+ — (j) (~)
2( llill)il2 v I 5 ~+

[compare (124)] and therefore either the lower or
the upper part of this circle must be traversed in
order to connect a positive (negative) (,"}with
negative (positive) $

'
by a continuous "trajectory"

consisting only of intervals of the real axis
[$~'}(&u") remains real for situations (132) and

(133)] and arcs of the above circle without passing
either through zero or infinity [compare Fig. 18,
representing such a trajectory for a situation
where s "& s & i"& 1/v ' & 1/v,' & i & 0, v, & v, and

5, &0]. However, whether $
"}will follow a con-

tinuous trajectory of this type or will jump dis-
continuously from the upper (lower) to the lower
(upper) semicircle upon reaching an interface in
a manner indicated in Fig. 17 [drawn for a situa-
tion where s"& s& t"& 1/v ' & i& 1/v,'&0, v, & v,
and 5, & OJ will depend on the following further
circumstances: First of all a continuous trajectory
will always obtain if the values of s and t in addi-
tion to satisfying (137) also correspond to regions
marked + or —in Table I. In this case we will
have instead of (135)

s h ~
(1} (i ill)( «)

d(d „=ln
( „)( „)+)wI (138)

where the + sign applies to a situation where
(~"&0 ($~"&0) and the lower (upper) semicircle
was traversed, and the —sign to $~'}&0 (g~" &0),
$
"describing the upper (lower) semicircle. Pro-

FIG. 1V. Trajectory described by the point represent-
ing ( in its analytic plane, as u varies between w"

and++ in the case of s &s&t" &1'/v' &t &1/e+&0, o+&v
and 6+ & 0. Notice the discontinuous jump from the lower
to the upper semicircle upon reaching the interface at
u" =uo, where coo is given by (141).

or
+II& ~II

0 (139)

(140)

Here

Mo =1+5,5 s1, (141)

and denotes the value of ~" for which an interface
crossing occurs [i.e. for which either v,"=1or
v" =1; compare (20) and (34)]. Finally, a discon-
tinuous trajectory of the type depicted in Fig. 1V

will always obtain if (137) is satisfied and in addi-
tion s and t correspond to subregions of the regions
marked +- —or --+ in Table I for which

g II ~ ~ II & g II
+ 0

If the latter is the case, we will have

"„„sin~", (i - i")(s —s")
II (I II)( ill)

~ [2 ln)((u,")-iw],

(142)

(143)

where $(~0') denotes the "old" function ( defined

by (59) (see Ref. 33) at ~"=~,". The over-all re-
sults of the above analysis are best represented
graphically in Fig. 18, drawn for a particular sit-
uation where s "&I"& 1/v ' & 1/v,' & 0, v, & v, and

5, & 0, which makes (130) positive. The important
"phase term" P(i, s,' I",s") is defined by

vided that (137) is satisfied, continuous trajectories
and therefore also the result (138) will still obtain
inpgzts of the regions marked+-- and --+ in
Table I as long as either

~(l )( )))

(l)

Analytic plane
(l)

g(l (@)))

(l)

+ „8in)' " ' (i —i")(s—s")
II (i II)( ill)

+&(t, s; &", s") . (144)

F'LG. 16. Trajectory described by the point represent-
ing $

~ in its analytic plane, as (d" varies between (d and

u+ in the case of s"& s &t" & 1/v' & 1/u+ & t & 0, v+ &e, and

5+ & 0. There is no interface crossing in this instance.

The boundaries of the doubly shaded regions in-
side which (143) applies are of course given by
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where &3,
" and u&,

" are given by (125), (126), and (141), respectively. If written in terms of the i and s
parameters, (145) reads

Oi" —s "P(1+stv,'v ') —[(ts+t"s")(&"+s")-2&"s"(&+s)](v,'+v ') -[(i+s)(i"+s")-2(is+i"s")](v,+v ))'

, (v, —v,' t ")(v —v,'t ")(v, —v 'i")(v —v ' t ")(t —t ")(t —s ")(s—t ")(s —s ")= 0 . (146)
V~V

This is obviously symmetric in t and s, and for
s =const (t =const) represents a quadratic equation
for t (s). Equation (146) shows also that the curve
(or rather curves) it represents must always be
tangential to the lines s = t" and s = s" (t = t" and
t = s"). These properties allow us to immediately
draw phase diagrams pertaining to topologies dif-
ferent from that depicted in Fig. 18, i.e. , to types
of inequalities between the initial and final param-
eters different from those hitherto assumed (com-
pare Figs. 19 and 20). Continuing with the situa-
tion depicted in Fig. 18, however, they imply in
particular that the roots t = l,(s) and t = l, (s)
[s = l, (t) and s = l, (t)] of (146) must be real for

s "&s & t" (s"& t& t"), "merging" at the ends of this
interval, where for future reference we shall also
assume that l, o- l, .

From Fig. 18 it is now clear that by substituting

$=$

(a) t=O t=- t=t" t=-,
V4 V

t=s"

$= I

V

I
$ =

V+

PgÃoiY+»

$=0

t=O t=ViI

+
t IIt=t t=s

II

)
7i7NX

$=- i
V

s=t"
1

I

V+

//! Ãzaxw/w
'

wwxzgwxzxzwwzxzw//.
Fff/g fP jP///t f "' ""' " F/////jg'

giga

FIG. 18. A diagram depicting the main characteristics
of the dependence of the phase P defined by (144) on the
parameters t, s, and ~", drawn for the particular case
(s & t"& 1/v' & 1/v+, v+ &v, and 6+ & 0) worked out in
detail in the main text. P =0 everywhere outside the
shaded areas. The two different shadings, namely that
in continuous lines inclined under 45' with respect to
the horizontal direction and that in continuous lines
inclined under 135' with respect to the horizontal di-
rection, indicate regions where P is constant and equal
to +i n and i7r, respe-ctively (or more generally, where
P is equal to -ion and +i&~ and & stands for
sgnl(s -t")(v —v+) (v -v+)/v+v'6+]). The doubly shaded
areas represent "transition regions" where P becomes
~-dependent and is equal to & given by (153). The
shape of the boundaries of the latter regions is also
co-dependent and is given by (146).

s=O

t 0 t=l,
V+ I

V

FIG. 19. Diagrams of the same type as Fig. 18, but
drawn for a general situation where s"& 1/v' &t"& 1/v+,
v+ &v, and 6+ & 0. Additional —though of no particular
interest —inequalities between the parameters involved
distinguish between the special cases (a) and (b). Some-
where between (a) and (b) a situation arises where the
"transition regions" degenerate to two points at the
intersections of the lines t = t", s =s" and t =s", s =t"
and the general pattern becomes accidentally identical
to that of Fig. 22.
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P=Pw+ R (147)

(144) into (118), the latter will in general become
g-dependent (&u-dependent) on account of the f d-e

pendence of In/(~0'), so that the compatibility of
(116), (117)with (70), needed not only as practical
means of solving the latter but also rePresenting a
necessary condition for the Wick-Cutkosky results
to follow, becomes indeed questionable. In order
to analyze more closely this important point, it
will now be advantageous to represent P(t, s; t", s")
defined by (144} in the form of either of the follow-
ing two alternative "decompositions":

P///////////1/8/NJ/8//8//84

L%.%1X4CLLRLLtL4 a aa a

t=-i

P =P„+R„.

P~ and P„aredefined by

(148) FIG. 20. Another phase diagram belonging to the same
general category as Figs. 18 and 19, drawn for a situa-
tion where s" & 1/v' & 1/v+ & t ", v+ & v, and 6+ & 0.

P (t, s' t s ) = -is[6(t t)8(s —s) -8(s —t)6(t s)+6(t —t )8(s —s ) -8(t —s )8(s —t )] (149)

P (t, s; t"s")=-is[8(s"- t) -6(t"- t) -6(s"-s)6(t"- s)]. (150)

They are represented graphically in Figs. 21 and 22, respectively, and are obviously g-independent. The
"rest terms" R, and Rg are given by

ft, (t, s; t", s"; ~) = -[6(s"—s) -6(t"—s)]

x([E(t, s; t", s"; v) 2si]6-(l, (s) t) E(t, s; t-", s-"; e)6(l,(s) -t}]-(s t) (151)

tt„(t,s; t", s";~) =-[6(s"—s) -6(t"—s)]

x( 2[vi(8"s-t)- (8l, ( )st}]+E'(t, s;t", s";~)[8(t,(s) t} 6(l,(s) t)]} (s-t), (152)

where (s- t) denotes terms obtained from the preceding by substituting s for t and vice versa. The term
2 In)'(&,"}is now denoted by E(t, s; t", s", &u), which, to better emphasize its pertinent analytic properties as
a function of t, can be written as

E(t, s; t", s"; (u) =-2 In) ((oo')

=2 in{at+ b+ [(at+ b) —(t -t")(t —s")]+')-ln[(t —t")(t —s")],
where

(153)

t"
a =

[ ( „)( „]v,{(t"—s")'sv,' v ' —[(t"+ s")s —2t"s"](v,'+ v ') -[(t"+ s") -2s](v, + v )], (154)

t"
b=

[ ( II)( iI}]v2((t -s' p-[t s (t +s )-2t s s](v~ +v ) —[(t —s )s —2t s ](V++ v )) . (155)

The analytic structure of E as a function of t is
represented graphically in Fig. 23, and the proper
branch of I' in the analytic cut t plane is defined as
that which is =0 at t = l, and which exhibits a -4@i
(emphasis on the minus sign} discontinuity across
the real axis for Re(t) & l, (i.e., the value of E at
the loire~ lip minus that at the uPPer lip of the cut
= -4si).

The decomposition (147) is directly motivated by
the problem of elucidating the analytic difference

between (69) and (70), while that of (148) will to a
certain extent serve a similar purpose in compar-
ing the "realistic" equation (70) with the exactly
soluble model constructed in Sec. VI. '4

C. Failing of the Wick-Cutkosky solutions
[study of the "decomposition" (147)]

Addressing ourselves to the first problem first,
the most important property of P~, which accord-
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S

$=$
S=S

s-t s=t"

I$=
V-

Is=- J

V

I

S I

Ve $=- i
I

V4.

s=Q

t=Q
I

Vy t=-,I

V
t=t" t=s" t=Q f=—

J

I

Vy

FIG. 21. A "simplified" diagram of Fig. 18 for which
the Wick-Cutkosky type of solutions uould obtain. The
t and s dependence in this diagram is given by Eq. (149).

ing to Fig. 21 represents —roughly' speaking —an
"extension to infinity" of a situation prevailing in
Fig. 18 in the vicinity of the square where the
lines t =t", t =s", s =t", and s =s" intersect, is

82 oo +oo

dt dsP~(t, s; t",s")f(t, s)~t "es ~ 00

= -2si[f (t ",s") —f (s", t ")]. (156)
'
The importance of (156) derives from the fact that
if reasons could be found in support of the con-
jecture that the ~-dependent "rest term"

l 4(t, s)
(t s v+ v' —u+') (t s v', v' —u ')

xR, (t, s; t",s"; 4J) =0, (157)

FIG. 22. A "simplified" diagram of Fig. 18 that would
lead to (174) and is closer related to the exactly soluble
model of the BS equation considered in Sec. VI. The t
and s dependence in this diagram is given by Eq. (150).

or could otherwise be neglected [to which we shall
refer in a sequel as the orthogonality conjecture
(157)], then not only would the ansatz (116), (117)
again become compatible with (70), but also the
solution of the resulting integral equation would
have to satisfy a second-order partial differential
equation identical with (101), thus leading once
more to results essentially equivalent to those of
Wick and Cutkosky. To see this, replace P by PJJ,
in (144), substitute the result in (118), and equate
the so-obtained expression to the Breit term
1/(s" —1) —1/(t" —1). The resulting integral
equation is

s" —1 t" —1 2g' ' (E,-ic)(E +ic} „„(tsv',v' -u+')(tsv,'v' -u ')

t -t" t-s"
s -I," s -s"

and has its closest analog in either (89) or (93) of Sec. 1V. From (158) it now follows that

4 (t, s) = -4 (s, t),
which is exactly the relation (92}written in terms of t and s. Applying the operator S'/St "Ss" to both
sides of (158}, we finally get because of (156) and (159)

(158)

St "Ss" 2s (E+ ic) (E +i-c) (t "s"v', v' -u, ')(t "s"v',v' -u ') (160)

where again the method parallels closely that of
obtaining (101) from (93) with help of (100), since
even the Laplacian (99) is, up to a numerical fac-
tor, identical with the operator S'/St "Ss". Re-

introducing the a and p variables through Eqs.
(83), (34), (35), and (7) and also using (16) and
(14) we can see in fact that (160) is identical with
(101), so that (157) with C satisfying (160) becomes
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discontinuity of F between these points = -4 ~i
logarithmic cuts in the second

Riemonn sheet I& (s)

real t axis
/

),.(S) f
square-roof cuf

logarithmic cuts

FIG. 23. Analytic structure of I' given by (153).

f
s I I

Sign olume" Vg &2 &3 &4

TABLE II. Signs of expressions: e —e+, 6+, and
(161), obtaining in different subdomains of the space of
initial states, tabulated in order to demonstrate the
existence of the discontinuous reversal of the sign of
P at the interfaces.

indeed a necessary condition for the Wick-Cutkosky
results to obtain and becomes, by the same token,
also an a posteriori necessary condition for the
validity of the Wick rotation.

Having thus succeeded in reducing the problem
of analytic difference between (69) and (IO) to that
of satisfying the orthogonality condition (157), we
will now finally proceed to show that it in fact can-
not be satisfied. The possibility of such a clear-
cui' negative proof [as contrasted with the general
feeling that it would be hard to satisfy (15V) on ac-
count of its g dependence] stems mainly from a
hitherto-unexplored property of the phase P de-
fined by (144). According to (124), and (126) [com-
pare also the detailed sign determination implied
by (130)], and (131) the change of"

, „(v-v,)(v' -v,')
{161)

V+V 5~

brings about an over all reversal -of sign of this
phase. To correctly assign the proper values of
(161) to different parts of the physical domain of
the space of initial states (v+, v, t") [or equiv-
alently (t ",s", &u) space], it is best to again sub-
divide it into volumes V, in exactly the same way
as was done with the intermediate-state space D,
at the beginning of the present section (compare
again Figs. 7-13 with v, instead of v", and I;" in-
stead of t). Having done so we immediately see
(compare Table II) that (161) is positive in V, ,
V, , and Ve and negative in Vs, V4, and V, .

Now, in order to prove that (157) cannot be sat-
isfied at all points of the physical domain of the
(v„v,t ") space, assume —to the contrary —that
it is satisfied, e.g., at least in the region of V,
immediately bordering on V,*, whose representa-
tive point A is depicted in Fig. 24 (which is a
"replica" of Fig. 9 in the space of the initial
states). Consider also a point B lying in V, such
that the distance between A and B*, the "mirror
image" of B in the v =v plane {lying therefore in
V,* across the interface v =1 from A), can be
chosen arbitrarily small. In the limit as both A
and B* approach the same point C of the interface
v =1, the phase structures —as depicted in Fig.
18—pertaining to A and B will become exactly the
same, except for the above mentioned over-al-l

p (c)=p, (c*),
a (c)=B,(c+),

(162)

(163)

where C* is the "mirror image" of C in the v, = v

plane, whereas on the other hand

p(A) = p (c)+& (c)
A~C

and, most importantly,

(164)

V

II I

Vq

v =I

n jV=t v
l

I

I

I

I

I

I

I
I

I

I

I

I

I
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I

I
II I Ivy-t V

I

I

I
l

v, =l

A V&

C 8

hyperbola s =const

II I

V+=) V+

FIG. 24. A diagram corresponding to the same situa-
tion as Fig. 9, but drawn for the space of initial states
(v~ instead of v~ and t" instead of t), referred to in
proving the theorem that there is an over-all discontin-
uous change of the sign of the phase P at the interface
crossing at the point C.

change of sign. This is because on one hand (146),
(154), and (155) are symmetric in v, and v, but
on the other hand the signs (161) in V, and V4 are
opposite. More precisely, ~etaining the same
signs in the definitions (149) and (151) of P~ and

g, we will have on one hand
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P(B} = -Pv(C) -R, (C) . (165)
B~C+

Considering the contribution from R,(C) as =0,
i.e., invoking (157}, we can therefore only conclude

that, upon the above-mentioned interface crossing
from V, into V,*, the sign of the integral term in
(158) should also suffer a discontinuous reversal
and therefo're should lead to, instead of (160),

st "ss" 2v g, -ic)g +ic) (t "s"v',v' u,'-)(t"s"v', v' u')- (166)

However, the assumed ~ independence would then
lead us to believe that in fact both (166) and (160)
should be satisfied simultaneously since, as we
saw before, the interface crossing can very well
proceed along an arc of the hyperbola v, v
=v', u'/s"t"=const, so that, even at finite distances
from each other, all the points A, B, B*,C, and
C* could be assigned exactly the same values oft" and s".

Repeating the above argument for all the areas
of the (t", s") space marked +-- or --+ in
Table I, i.e., for all the areas where the interface
crossing is possible, the simultaneous validity of
(160}and (166) can of course only mean that 4 =0
in these areas. The assumed validity of (157) in
the remaining areas of the (t ",s") space must on
the other hand at least imply the validity of either
(160) or (166), so that by the usual continuity
arguments we are driven to an inevitable conclu-
sion that 4 =0 should prevail over the whole
(t",s") plane. Needless to say, such a "solution"
is not only physically unacceptable, but is also
simply incompatible with (70), whose inhomogeneity
(Breit term) does not vanish identically. The final
conclusion can therefore only be that (15V) cannot
be satisfied and therefore the Wick rotation is not
vahd. Q.E.D.

In addition to furnishing the proof that (69) and
(70) are indeed analytically different and that a
solution of the Wick-Cutkosky type cannot satisfy
the latter, the above negative result is also prac-
tically tantamount to admitting our inability to
solve (70) by the methods developed so far. There-
fore, no further attempt will be made in this work
at obtaining a closed-form solution of (VO), which,
if at all possible, must in all probability involve a
co dependence of 4. Instead we shall devote the
remainder of the present section to considerations
leading to the construction of an exactly soluble
model of the BS equation (see Sec. VI), since the
currently used t and s parameterization seems to
be particularly suited for this purpose. As we
shall see later, the construction of this model will
be tantamount to changing the type of propagators
involved, in such a manner, however, that some
basic physical features of the "exact" problem
hopefully will be retained. In conjunction with

the already proven lack of equivalence between
(69) and (70), the solution of the model might
therefore conceivably represent even a better ap-
proximation to the "true" scattering amplitude
than that based on the Wick-Cutkosky results.

D. Study of other "decompositions"-in particular, (14S)

A good starting point for the construction of such
a model is provided by returning once more to the
general problem of the compatibility of the solving
ansatz (116), (117) with (70) per se, i.e., inde-
pendently of whether or not the former leads to a
solution of the Wick-Cutkosky type. Notwith-
standing the fact that the latter possibility is now
definitely excluded, it is still a priori possible
(though admittedly not very likely, in view of our
recent experience) that a "decomposition" of the
"phase" P defined by (144) into a ~-independent
"main part" and a (d-dependent "rest term" —other
than (147)—could still be found in such a way, that
an equation obtained by replacing I' by this main
part would admit of a solution orthogonal [in the
sense similar to (157)] to the rest term (for ar-
bitrary &u), so that it would also satisfy (70) itself.
Unfortunately, it seems almost impossible to
furnish even a conclusive negative proof pertaining
to this more general problem of compatibility
(i.e., to the effect that it is impossible to find such
a decomposition), let alone —to the contrary —to
actually find a decomposition which does satisfy
the above conditions and thus be able to solve (VO)

after all. This can be partly ascribed to the ap-
parent lack of a valid guiding principle as to the
proper choice of trial decompositions, though each
such trial would be apt to be very complicated it-
self, involving as its preliminary step a necessity
to solve an integral equation of a type presumably
varying widely from case to case.

However, if we were to be guided in this con-
text by a principle of analytic simplicity alone,
then the decomposition (148}would certainly seem
to deserve our very special attention, so much so
in fact that had we not known about the existence
of the Wick-Cutkosky solutions we would probably
be inclined to investigate it first, even in prefer-
ence to that given by (147). The greater analytic
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simplicity of (148) as compared to (147) obtains,
as it should, separately in both the "main parts, "
i.e., in P„ascompared with P~, and the "rest
terms, " i.e. , inR» as compared with R, . As seen
from Fig. 22, P„,given by (150), represents an
extension of the pattern from Fig. 18 prevailing
at the far-off tails of the latter. Its far greater
simplicity in comparison to P~ given by (149) is
almost self-evident in that, unlike the latter, it
represents a sum of a function of t" alone and a
function of s" alone, which property it therefore
shares with the logarithmic term in (144). Con-
sequently, in sharp contrast to (156}, we have
simply

82
PN(tt, ' t', ")=0.

Bt Bs
(167)

ds (I dt F(t, s; t",s"; &u)f (t, s)

~It
dt dsFt s t",s";x t s, 168

&pl 1

where F is given by (153), the emphasis being on

The greater analytic simplicity of R«given by
(152) as compared with R, shows itself in the fact
that

r+ oo + ao

dt dsR«(t, s; t",s"; ~)f(t, s)

the appearance of contour integrals, which seem
to fit naturally with the system of analytic cuts of
F depicted in Fig. 23. By contrast, an expression
corresponding to the left-hand side of (168) with

R» replaced by R, would involve only open path in-
tegrals in both variables t and s, i.e., integrals
taken from some initial value (l, , l, , t", or s")
to ~, where ~ represents a regular point of F.
In more detail, the contour integral in t of the
first term on the right-hand side of (168}is under-
stood as that taken —in the usual anticlockwise di-
rection —around the whole system of cuts depicted
in Fig. 23, or equivalently around a cut extending
from l, (s) to s" and passing through l, (s) and t"
It should be noted that the subsequent integration
with respect to s between the values t "-and s"
could also be converted into a contour integral
(though of a different and slightly more complicated
type and therefore avoided here), since these two
points represent also (logarithmic) branch points
of F (this time as a function of s). The integra-
tions involved in the second term of the right-hand
side of (168) are understood in precisely the same
sense as above, only with the roles of t and s re-
versed (F is a symmetric function of t and s).

If we now wanted to undertake seriously the
problem of solving (70) by the ansatz (116), (117}
again, but decided to base our. procedure on the
decomposition (148) instead of (147), Eq. (158)
would have to be replaced by

s" —1 t" —1 2g ' (E, ic)(E -+ic)„„J„[tsv',v' -u, '][tsv', v' -u ']
&& ([in(t —t ")—ln(s —t ")]

-[ln(t —s") -ln(s -s")]j,
since, because of (150),

t t" t
ln „—ln „+P„(t,s; t",s") =[ln(t —t") -ln(s t")]—[ln(t--s") —ln(s -s")],

(169)

(170)

1«x =ln)x~+i«e(-x) . (1V1)

The integrations with respect to t and s in (169)
can therefore also be understood as performed
along a straight line parallel to the real axis, but
lying slightly above this axis. Because of (168},
the orthogonality condition (157) would have to be
replaced by

where the proper branch of lnx for real x is under-
stood as that for which

the appearance of only one (double) integral in-
stead of two being caused by the fact that 4 (t, s)
satisfying (169) would again [i.e., like that satisfy-
ing (158)] have to satisfy the antisymmetry rela-
tion (159).

The most important property of (169) deriving
from (16V) is now the fact that the application of
the operator 82/Bt "Bs"gives

(173)

[tsv+v —u+ ] [tsv+v -u ]
which, within the framework of our new approach,
replaces (160). Equation (173), in conjunction
with (159}, leads immediately to the conclusion
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@(t,s) =G(t) -G(s) (174)

and brings about an enormous simplification of
the problem of solving (169), which reduces, upon
substituting (173) into (169) and differentiating
with respect to t" (mostly in order to convert the
"unpleasant" logarithmic terms in the kernel into
rational expressions), to that of solving a single
integro-differential equation in one variawe:

I I ++4

+ ' dtK(t", t)G(t),Ec

with the kernel g given by"
~ 4

ff'(t", t) = ' ds
tsv+v -@+2 tsv+v

(176)~~ ~~t" —t -ic t" -s -ie

Of course, the orthogonality condition —or more
properly conjecture —(172) also undergoes a fur-
ther simplification [i.e., in addition to the already
mentioned fact that, unlike (1V5), it can be ex-
pressed in terms of contour integrals] as a result
of (174), in that one of the integrations in (1V2)

can now be performed explicitly, before the exact
form of G(t) satisfying (175) is known.

Unfortunately, the above encouraging aspects of
the approach based on the decomposition (148) not-
withstanding, if Eeynman propagators are used to
represent the scattered particles A and B the exact
form of G(t) is not easy to obtain, since (175) is
still very difficult to solve, and consequently no

definite answer as to whether or not (172}can be
satisfied can be given (the negative answer is of

course still the most "probable" ) no matter how

much more "plausible" a positive answer to that
question might seem as compared to (15V) on ac-
count of the appearance of contour integrals.

However, as we shall see in Sec. VI, it is not

altogether too difficult to solve an equation of the

general type (1V5) exactly, if the Feynman propa-
gators representing the scattered particles are
replaced by advanced (or retarded) propagators.
Once the type of any propagator has been arbi-
trarily changed, on the other hand, we are already
dealing with models of the BS equation rather than

still trying to solve the original equation exactly,
so that, in search for always valuable exact solu-
bility, we might feel free —subject to certain
limitations, "of course —to change the type of
propagator representing the exchange particle as
well. If this is done properly, however, then —as

we shall presently see —no orggogonality condition
of either type (15V) or (1V2) is any longer required,
since the solving ansatz (116), (11V) becomes once
more strictly valid.

VI. AN EXACTLY SOLUBI.E MODEL OF THE
BETHE-SALPETER EQUATION

Considering exact solubility as the most impor-
tant guiding principle for the moment, we saw in

Sec. V that our inability to solve (70) exactly stems
mainly from the very complicated behavior of the
phase P defined by (144). The most radical way to
be free from this difficulty is therefore to simply
put

(177)

which is also tantamount to assuming the validity
of (136) for all values of t and s. From the view-

point of a more immediate physical interpretation,
however, it comes at this point as a rather pleas-
ant surprise that the validity of (1VV} is ensured

by merely replacing the Eeynman propagator for
the exchange particle by its rather close cousin
the so-called relativistic Coulomb potential (equal
to half of the sum of the retarded and advanced

propagators), so that we can still claim that at
least some essential physicaL features do remain
included in the interaction. " To see this it suf-
fices to first realize that the above-defined
Coulomb propagator (denoted sometimes by 6~)
can also be represented as half the sum of g»
and g,» the first denoting the Feynman propagator
proper, involving the integration with respect to

po performed in the usual fashion, i.e., beloved the

left singularity and above the right, and the second
denoting, inversely, a propagator where the in-
tegration path in the complex p, plane bypasses
the left singularity above and the right heloise the
real axis." Returning briefly to the pertinent part
of the argument from Sec. V, we see that as long
as (135) obtains, the outcome of the integration
(136) remains of course the same whether or not
the Feynman propagator is replaced by ~~„since
it is in this case immaterial how the above singu-
larities are to be avoided [situation (129) never
obtains]. If on the other hand (137) holds, then,

upon substituting a~ for a,s, the integral (121)
becomes equal to half the sum of its "old" value
and the value corresponding to ~» whose differ-
ent integration path with respect to p, means that
the point representing $"' should describe pre-
cisely the opposite semicircle in its analytic
plane. This happens because the signs of
(1 -z'-y"-z'"+2zy'z")'" corresponding to b,,s
and 4,„arealma/8 opposite as long as the situa-
tion (129) prevails, with the result that the phase
contributions stemming from these terms always
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FIG. 25. Diagrammatic way of showing that using the
"relativistic Coulomb" propagator for the exchange
particle (right-hand side), considered as half of the sum
of Feynman (first "term" on the left) and 4~A (second
"term" on the left), has the effect of principal part
integration in ~" and thus leads to P =0. The drawings
symbolize the trajectories described by the point repre-
senting $~ in its analytic plane and correspond to the
situation depicted in Fig. 16.

FIG. 26. A diagram showing that exactly the same
is true as in the case depicted in Fig. 25, if there is
an interface crossing. This diagram corresponds to the
situation depicted in Fig. 17.

eaneel, so that (177), or equivalently (136), in-
deed prevails throughout the whole (t, s) plane
(detailed graphical illustration of this fact, per-
taining separately to situations depicted in Figs.
16 and 17, is furnished by Figs. 25 and 26, re-
spectively). The general validity of (136) means
of course first of all the disappearance of the &u

(or g) dependence from our equations, so that the
ansatz (116), (11V) is obviously valid and leads
again to an equation of the general type (169),
which is, however, now exact and need not be
supplemented by any orthogonality condition. The
only difference between the "old" and the "new"
Eq. (169) [the latter referred to from now on as
(169M), where M stands for "model" ] is in the
shape of the integration paths in t and s. Replac-
ing the Feynman propagator by the Coulomb propa-
gator for the exchange particle in (VO) [the so-
modified equation is referred to from now on as
(VOM)] means that the integrations with respect to
both t and s in (169M) should be understood as
principal part integrations (half sums of the cor-
responding integrals taken along two straight
lines, one slightly below, the other slightly above
the real axis) because only the absolute values of
the expressions like t —t ", etc. enter Eq. (136).
Another equally important consequence of the gen-
eral validity of (136) is the fact that its right-hand
side represents a sum of trvo functions, one of t"
alone and the other of s" alone, so that the same
is again true for the whole integral term in (169M)
and, consequently, (274) obtains. This, in turn,
by exactly the same manipulations as before, leads
once more to the integro-differential equation of
the type (175), only now its kernel is given by

1 1 1t" -t 2 t" —t+ie t" -t -i
(1VQ}

instead of (176). To actually solve (175) with the
kernel (1V8}, the question concerning the type of
propagators to be used to represent the scattered
particles becomes once again of importance in
connection. with the valid "recipe" as to how to
avoid the singularities at s = u,'/tv, 'v' and
s = u '/tv', v' ." As explained in some detail at
the end of Appendix 8, this recipe becomes rather
complicated in the case of the Feynman propa-
gators, leading to the appearance of "step func-
tions" (8's} of rather complicated arguments if an
attempt is made to perform the integration indi-
cated in (1V8) explicitly, which in turn —as already
mentioned —precludes obtaining a closed-form
solution of (175) with such a kernel. We shall
therefore include as part of the definition of our
model that the retarded (or, equally well, the ad-
vanced) propagators shall be used to represent the
scattered particles A and 8 instead of the Feyn-
man propagators. s' If this is done, and if we also
assume as usual that v+v' &0, then, if retarded
(advanced) propagators are actually used, the
singularity at s = u '/tv', v' should be bypassed
always (i.e., independently of the value of the t
parameter) beloN/ (above) and that at s = g,'/tv', v'

always above (below} the real axis (see Appendix
B for detailed proof). Having from now on decided
to consistently use only the retarded propagators
to represent the scattered particles, we can there-
fore make the following identifications:

+ oe 1 1x(t", t) =
~v+v -u+ tsv+v' -u

1
tPt t t/P (178)

-Q~ tv(. v s -tc~ /tv~ v hie

Because of (180) the kernel K given by (1V8) now
becomes

1 1 1 1 1
+ + I t + gt

V II -t f-t —If F-t +la t t —M /fU fl +la t -II /t —E)
(181)
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so that instead of (175) [or rather what we now call (175M), where M stands for "model"] we can simply
write

1 (2v)~ dG(t") m'i +" dt 1 1 1 1
(t" —1)' 28' dt" Zv

„

t t —t" -i a t —t" +i a' t" ,'/—tvv' +'i,a t" u -/tv 'v' ',—ia)

(182)

Equation (182) can now be solved exactly, as fol-
lows: We start with the well-known integral rep-
resentation for the inhomogeneous term of (182)

iutl( t at)2
dl,(t" —1)' 2,„sin&l

(183)

where the integration can be carried out strictly
along the imaginary / axis —i.e., without "de-
tours" —since the point l =0 is regular. Corre-
spondingly, the solution of (182) can be sought in

the form
~ ~+ jao

G(t) =— . f(l)(-t)'+ h(l) —,, d, .

(184)

This particular form of the integral representation
is furthermore motivated by the fact that by the
Cauchy theorem

"dt( 1 1
—u~ /tVd. V +RE t —u /tV8V

(-: ), ((88)

where the proper branch of (-x)' is understood as
that which for real x is given by

(-x}' = exp {i[lnlxl - ive (+x)]}. (189)

The important point here is that (187) and (188)
generate the (-1/t)' term from (-t)', and vice
versa. This, combined with the fact that the op-
eration t" d/dt", like those of (185) and (186),
simply reproduces the same type of term in both
cases, leads to an easy identification of terms on
both sides of the equation, when (184) is sub-
stituted into (182}. Keeping in mind that for non-
integer l the functions (-1/t)' and (-t) ' must be
regarded as linearly independent, since

"+"1 1
+ „.(-t)' dt =+ „(-t")',1 j 2mi

(185)

~ „
t t-t" -ie t-t" +ie t

( 1/t)l ( t)-282(t t(28(t)

leads to the following taboo relations:

and

(190}

(191)

(192)

"+"dt I 1
t t"-u/tv v aia t",'-u ', 't''tv,'v' -ia)

2wi 1
(187)t t v, v

Solving (191)and (192) for f (l) and h(l), substitut-
ing the result back into (184), and also using the
relations (16), where the angles a, and y are once
again those depicted graphically in Fig. 1, the
exact solution of (182) finally becomes

i,&"" l (Ml -X)(-t)'+X(ug'( 1/tv', v' )'-
2 &,„sinvl {Ml-X[1+(u /u, )']]{Ml-gl —(u /u, )']j (193)

where

and

(2v)' 88'

2m' 2m'

Ec m~m~ sing

(194)

(195)

problem we undertook to solve obviously was.
Another solution of (182) with the roles of 8(, and
n exactly reversed can indeed be found by simply
using another branch of (-x)' (x standing for t or
1/t) in our ansatz (184), i.e., that which for real
x is defined not by (189), but by

(-x)' = exp{1[in[xf
+ ive (x)]j . (196)

Strictly speaking, it is at once evident that (193)
cannot be the only solution of (182), since it is not
symmetric in a+and (2. (orm„andm ), while the

It appears therefore that the general solution of
(182) is a linear combination of (193) and this
other solution, whose coefficients C, and C, must



MATHEMATICAL 8TRUC TURK OF THE BETHE-SAL PE TER. . . 2439

satisfy the relation C, +C, =1. The circumstance
that the solution of (182) is thus not uniquely de-
termined (up to one arbitrary constant) need not
concern us unduly, however, from either a strictly
mathematical or physical point of view (i.e., quite
apart from the fact that uniqueness is achieved by
postulating the symmetry with respect to m~ and

ma in the solution, mhich does not seem too un-
reasonable per se). From the mathematical point
of view, the above nonuniqueness has as its con-
sequence the existence of a nontrivial solution of
a homogeneous version of (182) for all values of
the eigenvalue parameter (which is here the cou-
pling constant g' rather than the total energy E).
However, this is excused because the eigenvalue
spectrum of an equation with the kernel (181) need
not be discrete since the latter is most obviously
a non-Fredholm kernel [in fact [K'~ is proportional
to the expression for the (divergent) self-energy
of the composite particle of A and 8]. The physi

chilly most pertinent properties of the solution, on
the other hand, derive almost exclusively from
the behavior of the bracketed expressions in the
denominator of (193), which remain the same if
the roles of the particles A and B are reversed.
The energy eigenvalues of the problem correspond
in fact to the zeros of these bracketed expressions
for integer l, since, as already most strongly im-
plied by the integral representations (183), (184),
our method of solving (182) is tantamount to per
fo'Yming t/18 //sggs ana/ysts Df the scattel'lllg am-
plitude. This statement might seem a little sur-
prising in view of the fact that we have many times
emphasized the avoidance of a partial-wave de-
composition. In order to show that it is indeed
true, and, more importantly, to discuss more
fully the method of obtaining the positions of bound
states and/or resonances in our model, we shall
therefore conclude this work by going into a little
more detail on this slightly modified Regge analy-
sis in t instead of in z. The crucial point in this
connection is the relation between the cosine of
the scattering angle z" and t ", (36), which when
solved for g" reads

(197)

where the coefficients multiplying t" and 1/t"
are constant for constant time and radial param-
eters p„)p~, p, ', (p'( [compare (5); also recall the
convention about primes, Sec II 8—.III Dj. As a
consequence of (197) the Legendre (or for that
matter any) polynomial P, (z"), if expressed in
terms of t ", mill in general contain all positive
as mell as negative integer powers of t" in the

range -l' to +l' (though of course not inversely,
i.e., a finite-pomer expansion in t" is not always
a polynomial in z"). From this it in turn follows
that an energy resonance occurring in the lth term
(i.e., for l equal to any positive as cue// as nega
tine integer) of the power expansion of the scatter-
ing amplitude in t mill necessitate an occurrence
of a resonance in at least one partial-wave ampli-
tude of order l' with /' « ~/~. Equivalently, a reso-
nance occurring in the lth (angular momentum)
partial-wave amplitude must be caused by at least
one "Regge pole in I;" crossing the real l axis at
a (positive or negative) integer value of / in the
range -l' to+/'. This proves our contention that
our nem Regge analysis ln I; is indeed essentially
equivalent to the standard Regge analysis in the
angular momentum, only that now both positive and
negative integer values of l must be considered
equally indicative of energy resonances. It is of
importance also to notice another formal departure
from a more orthodox Regge approach. This is
the fact that the integral in (193) as it stands, i.e.,
obtained directly as a solution of (182), has to be
taken along the imaginary l axis and is not —like
the so-called background integral of the standard
Regge analysis —obtained only secondarily by de-
forming the original integration path along the
real positive l axis. Consequently a question
arises as to which of the poles corresponding to
zeros of the bracketed expressions in the denom-
inator of (193) can in fact be regarded as "true"
Regge poles, the latter defined as those capable
of generating resonances when their trajectories
cross the real / axis at integer O1ere positive or
negative) values of /. To answer this question, it
should of course first of all be borne in mind that
our solution was obtained, as it actually should be,
for the scatten'ng region (E «m„+ms), so that
the poles (in energy) of the scattering amplitude
corresponding to bound state or resonances are
expected to be found as a result of an analytic com-
tinuation of G(t), given by (193), into the bound-
state region (m„+ms«E «)m„-ms~). From this
point of view it is then readily realized that the
"true" Regge poles mill be only those from among
an a Priori larger class of poles, which in the
process of this analytic continuation mill first
migrate from the left half of the analytic l plane
to the right (or vice versa) and only tken cross the
real l axis. If the latter crossing occurs at an in-
teger value of E, a "true" Regge pole will thug
pinch the integration path against L static pole
stemming from I/sinn/. Only by this process can
a pole (in energy) of the scattering amplitude be
generated. This pinching of course would not
occur if the given pole were to proceed towards
the real l axis "directly, " e.g., its trajectory lying
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entirely in the same (left or right) analytic half
plane of / [see Figs. 2V(a) and 2V(b)]. However,
bearing in mind Sat there is more than one way
in which an analytic continuation from the scatter-
ing into the bound-state region can be accom-
plished, we are at liberty to also adopt a slightly
changed point of view, according to which any pole
corresponding to a zero of the above-mentioned
bracketed expressions can in fact be regarded as
a "true" Regge pole with respect to at least one
suitably chosen route of such an analytic con-
tinuation. This is certainly true, since we can
obviously prescrib a trajectory of a given pole in
the / plane —in particular to be that of the general
type depicted in Fig. 2V(a)—and then determine the
corresponding trajectory in E. Given a sufficiently
complicated relation between l and E, the latter
might of course turn out to be quite involved, en-
tailing, e.g., multiple encirclings of the thresh-
oMS at E equal to -Opt' -m~ -sip+ apl~ sip -st~
and m„+ms [compare the analytic structure of c
given by Eq. (6)] and thus leading to resonances
lying in much "higher" Riemann sheets [provided

that such exist, i.e., that the analytic structure of
G(E, f) given by (193) is essentially more compli-
cated than that of c given by Eq. (6)] of the scatter-
ing amplitude than the "physical" Riemann sheet ~0

corresponding to the bound-state region. Al-
though it might at the first sight seem that calling
a trajectory a true Regge trajectory even though
it might lead to resonances only in such higher
Riemann sheets is tantamount to a sui genens
sophistry, a little reflection suffices to realize
that, given again a rather complicated relation
between / and E, this approach is once again es-
sentially not different from a more orthodox ver-
sion of the Regge analysis where all trajectories
are s priori "true" Regge trajectories (i.e., are
not subject to the precondition that they first cross
the imaginary axis in the l plane), and yet a situa-
tion may well arise where a given trajectory may
not be able to cross the (positive) real l axis at
all, unless we are prepared to venture into higher
Riemann sheets in energy (i.e., encircle the corre-
sponding thresholds more than once).

Bearing the above in mind, we now see that ac-
cording to (193)-(195)the Regge trajectories
have, in our case, to obey the equations

' Analytic
I plane

veiny- —' (1+e"'" "') =0
2 7T DlQ fRg

(198)

\

"true"
Regge

trajectory

formed
teg ration

contour
l siny— elk (y-w)) 02' PÃg Vlg

(199)

-l- —9 —-f ——1-—- —9- -I---
I=4 3 2 I 0+I '2'3 '4

AnoIytic
I pIane

OrlglnGI

integration l
contour SpuriouS

Regge
'&trajectory

- + -- j- —4 - -I- - -- - + - 4 - -I - -1-—
I=-4 -3 -2 -I 0+I +2 +3+4

where m -y =-e++e and where a, are related to
the total energy E through (16) and (18) and thus
indeed represent highly complicated relations be-
tween / and E. Determining a trajectory in E cor-
responding to even the simplest trajectory in E of
the general type depicted in Fig. 2V(a) in order to
find out in which Riemann sheet a given resonance
actually obtains seems therefore almost impossi-
ble without resorting to numerical computations,
which we however forego since they are of ne-
cessity lengthy and generally out of tune with the
predominantly analytic character of this work.
In the hope that at least some of the resonances
wi11 nevertheless lie in the "physical" sheet, we
shall therefore conclude this brief discussion of
our exactly soluble model by at least trying to de-
termine their positions for integer / as they fol-
low from Eq. (198). Although even that seems to
pose a difficult problem for finite n —y, if we ad-
ditionally assume

FIG. 27. An illustration of a slight difference between
our Regge analysis and a more standard one: A Regge
pole must first "migrate" across the imaginary / axis
to produce a resonance.

&& ].
2 tt ps+w'g

(200)

(g'/2m m„ms is in fact the analog of the fine-
structure constant e in electrodynamics, we can
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consistently keep / finite and yet assume g - y
=sin(w —y) =siny«1, replacing the exponential
expression in (198) by 1. With help of Fig. 1 and
Eq. (6) we then have

([E' —(m„-ms)'][(m„+ms)' -E']P"= g'/ml,

(201)

which finally reduces to the nonrelativistic Balmer
formula

E -m~ -m~ ——
2m m„m 21

if we additionally assume m„»ms (smallness of
the mass of the "electron" compared with that of
the "proton"). Equation (202) furnishes an im-
portant link with the "nonrelativistic hydrogen
atom, " and in this connection it is of interest to
again recall that many authors ' found it rather
difficult to establish a similar correspondence
with the Wick-Cutkosky solutions, mhieh in turn
seems to bear out the already-made contention
that our model may be closer to physical reality
than these solutions, even as an approximation.

A little embarrassing may seem the fact that if
we proceed to higher approximations where me can
no longer put e" '& "=1, the energy eigenvalues
(even that of the ground state) become complex so
that one may be inclined to think that the very ap-
pearance of e" '& " is a rather artificial feature,
brought about by the arbitrary changes of the
types of propagators in our model, and may dis-
appear if other changes are performed. It turns
out, however, that it is not easy to do so.~ Qn
the other hand, the appearance of e" " '~ may not
be all that unphysical on account of at least the
following fact: One would expect that more precise
energy-eigenvalue formulas than (201) or (202)
mould involve at least another quantum number in
addition to t (i.e., something analogous to the
Sommerfeld fine-structure formula in which our
l will be cast more in the role of the principle
quantum number, but where another quantum num-
ber j also appears), causing a degeneracy within
a cluster of states. However, precisely that seems
to be indicated by the "exact" equation (198), which
for given l is an algebraic equation of the (1+1)th
degree in the variable e'& and therefore should in
general exhibit as many solutions.

APPENDIX A: PROPERTIES OF $ AND $~'~ DEFINED
BY (59) AND (122),(123)

This appendix is devoted to a systematic presen-
tation of the pertinent analytic properties of g de-
fined by (59), as well as to the properties of a
slightly differently normalized $t", defined by (122)
or (123), as functions of various sets of parame-
ters introduced in See. II, with special emphasis
on their dependence on the parameters w" and ~",
defined by (19) and (20), respectively.

Equation (59) together with (57), (60), (61), and
(62) defines ( first in terms of the w and x vari-
ables, which, as mentioned earlier [Sec. 11, Eqs.
(38)-(44)], was done to preserve the invariance
of (38) [and therefore also of (57)] with respect to
permutations of primes and which constitutes
probably the most economical (as far as the length
of the mathematical expressions is concerned) way
to define this very important quantity. The x pa-
rameters, however, are never used as integration
variables. Also, the very important problem con-
cerning the correct choice of proper analytic
branches of $ or $

' [see especially the part of
the main text which follows Eq. (121}of Sec. V]
and therefore of the proper branches of /A, MQ,
and (B' —4AC}"', is more conveniently discussed
in terms of the g, p, and r parameters [due to the
indeterminacy of signs of (1-x')'I', (1-cu'}'",
etc ], as .best evidenced by the assignment (63)
and (64), the latter constituting in fact an impor-
tant part of the definition of g itself. Going over
to g, p, and r and/or other parameters defined in
Sec. II seems therefore mandatory. This must,
however, proceed according to a mell-defined
plan, whereby maximum advantage is to be taken
of a number of useful algebraic relations to be es-
tablished, as one of the early experiences with $
is that more or less haphazard substitutions can
very well lead to mathematical expressions of con-
siderable length, practically precluding the neces-
sary interpretational clarity.

It appears that the best way to proceed is to start
with the expression fox B' -4AC given by (62) and
realize that both 1-x'-x" -x"'+2xx'x" and
1- ur - m' -x" +2avzo'x" are subject to further
factorization, as follows [see (39)-(41)]:

1 —x —x' —x" +2xx'x"
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and also

1-w - w' -x" +2ww'x"

=-[x"—ww'+(1- w')"'(1- w")"']
x[x" ww ' (i. —w')'"(1 —w ' s)"'],

these variables. However, lengthy expressions
in these parameters are sometimes still unavoid-
able, as best exemplified by the following.

Because of the importance of the variable w", as
well as of the quadratic expression Q, we would
like to factorize the latter as follows:

which because of (19) and (41) equals
Q =A (w" —w,")(w " —w "), (A3)

-[cos(g7 —p' + T' ) —cos($+ l/J )]

x [ cos(y - y '+ ~")—cos(g —g')],

and because of (32), (33), and (7) equals

where

-B a (B' —4AC)'i
2A.

(A4)

—.„„,„„(v,—t"v,')(v —t"v') and also write

x(v, —t"v' )(v —t "v,') . (A2)

This seems to indicate that the choice of the pa-
rameters s, t, s", t", v„v,v'„v', and w" (the
latter or ~" must be retained as convenient inte-
gration variables) or s, t, s", t", w, w', and w"
(to retain "symmetry" between w's) has some def-
inite advantages, and we shall therefore in fact
try to present most of our analysis in terms of

(B'-4AC)'"

x w" + + w"- w" w"- w"B
+

(A5}

Unlike the expressions for MA and (B' —4AC)"',
the expression for B/2A which enters (A4) and
(A5) is now indeed rather complicated and reads

—= --'(w" —w ")
2A ~ +

1f 1/

J

I I

+ ' [(ts+t "s")——,'(s+t)(s" +t")](v, +v )
+

(A6)

where, in contrast with (Ai} and (A2), no further
useful simplification seems to be possible. In dis-
cussing the pertinent analytic properties of $, it
would therefore be desirable never to be forced to
use the explicit algebraic form (A6) in any direct
mathematical manipulation. To see that this can
indeed be achieved, we should at this point be more

, specific and realize that analytic properties of $

of interest to us (i.e., those required by the dis-
cussions of the main text), pertain only to the be-
havior of $ at, or in the vicinity of

(a) points corresponding to the ends of the inte-
gration interval in z, i.e., corresponding to z =+1
[corresponding in turn to the solid and dashed lines
of Fig. 4 in the case of the Wick equation and to the
surfaces given by (106}and (107}in the case of the
original BS equation],

(b) interfaces given by Eqs. (108) and (109) in the
case of the original BS equation, and

(c) in conjunction with (b), points corresponding

tow�

"=w,", where w," are given by (A4}, with spe-
cial emphasis on the relative signs of the proper
branches of MA, MQ, and (B' —4AC)"', since the
latter determine whether the upper or the lower

1 2m
&x (A7)

(compare notations used in Fig. 2). Consequently,
according to (63) we have for z =+I

WQ = tain/sing'sing"(y' —e,z"),
where we have introduced the abbreviation

(AS)

+1 for z =+1,

1-1 for z = -1 .
(A9)

semicircle should be traversed by the point repre-
senting $

' in Figs. 16, 17, 25, and 26, as w"
varies between w" and w,".

A more detailed analysis of (a) now follows.
(a) The values of ( at z =+1. It is first of all to

be realized that, independently of the type of prop-
agator used for the exchange particle, the values
of (I -z'-y" -z"'+2zy'z")~' for z =+I are
t(y'vz"), respectively (emphasis on signs by
virtue of the proper determination of the analytic
branch of this square-root expression), since the
left-hand side of (54) is then simply
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To compute the values of w" corresponding to z =c,
we first realize that, according to (36) and (34),
we have either g"=e,g' —e,(y" —y+r) for z=e, (A17)

so that, using both e, and e„wecan write because
of (7), (32), (33), and (30)

or
v," = tv '; v" = sv,' (A10)

(All�

}

or, because of (19) and (39),

= w «+ fit2(1 —w )(1 —«) (A18)

for z =-1 and, correspondingly, either

v," =tv,'; v" =sv' (A12) (I w zr2} /2 e x(1 wr2)1/2 —z wi(1 «2)1/2

or
v," =sv,'; v" =tv' (A13)

for z =+ 1, which, using the abbreviation (A9), can
be written summarily as either

(A14)

or

(A15)v" =sv' ' v" =tv'+

respectively. The fact that to each value ~, there
correspond two different points in the (v,",v")
plane calls for an introduction of another & symbol,

(A19)

where w", are from now on understood as values of
zo" corresponding to +1, respectively, and where
(1 —x')'/' and (1 —w')'/', etc. are understood as
equal to sin(y" —y'+r) and sing, etc , re. spective-
ly (emphasis is on signs of the proper analytic
branches again). In (A18) and (A19) we have tem-
porarily reverted to the x and w variables in order
to facilitate the computation of the expression

(A20)

+1 if (A14) obtains,

i
-1 if (A15) obtains,

(A16)
[compare (59)] for z =+1, without invoking the
complicated formula (A6). Because of (64), (A18),
(60), (61), and (41), we now have

~A w" + —= „,~, ([w'x+s, e,(l —w } '(1 —x')' '](1 —x"') —(x-x'x")w'- (x' —x"x)w) . (A21)

Similarly, because of (43) and (44) the right-hand
side of (AS) becomes

g[-cos g sin(g' —e,g")+ x 'sing' —e,x"sing" ],
(A22)

which, because of (A17), (A18), and (39) (i.e.,
identifying g" with g,") and finally likewise revert-
ing to the x and zo parameters, can be rewritten as

i[(x' —x"x)(1 —w")+' -e,e, (w —w'x")(1 —x')'/'].

(A23)

Now, probably the most important purely algebra-
ical finding, which allows many computations of
the main text to be performed explicitly, is the
fact that the sum of (A21) and (A23), which repre-
sents the expression (A20) for z =+1, can be fac-
torized to give

[vA(w" +B/2A)+WQ J. ,
z„,v, [w - w'x" - (I —w")~'(I —x"')~']

(I - x"' v'

x[»' «» +e e (1 «) (I «" ) J . (A24)

In a way similar to (A2) we furthermore find that,
because of (41), ('l), and (33),

ixir (1 wiz)j/2(I «Ia)u'2

= cosf —cos(g' —p+ p' —r")
-1 „/,(v, —t"v,')(v —t"v,') (A25)2t"v,'(v, v pi'

and also, by (39), (40), and (41),

x' —xx" + (1 —xz)+2(1 «ra)i)2'„„„,(&- s")(s —f"), (A26)

while

x' —xx" —(1 —x')+'(I —x"')'/'

(f f )(s s ) (A27)
2 jsts "t"~'

where we have again returned to the v, t, and s
parameters. Combining the last results with the
formula for

B —4AC=
4 „2,~,~ ~ (t- t")1

x(s —s")(t- s")(s —t")6,6, (A28)
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stemming from (26), (Al), and (A2) and where we
have also used the abbreviations 5, given by (127),
me finally have

rl«-+(f)g —g1 II all s I e8 v+ v

(t- .")( —t") "
(t —t")(s —s") for s,e2 =1 (A29)

(&)g=g =
II tgs -t v, 5

-(t tll)(s sll) lj2

(t —s")(s —t")
(A30)

x [(t—t"}(t—s")(s —t")(s —s")]v'& (av") .
(A31)

Concurrently with introducing $~'~ it is convenient
to go over to the variable &v" defined by (20), in
preference to 2v" [as defined by (19)]. The motiva-
tion for doing so derives from a principle of maxi-
mal rationality of the algebraic expressions in-
volved, similar to that which prompted us to
change the normalization of g, but is this time
primarily aimed at the maximum avoidance of ex-

so that, denoting the expressions on the right-hand
sides of (A30) and (A29) by (,and $, respectively
(i.e., identifying a with -e,c2), we have also de-
rived Eq. (90).

In this connection it should be noted for the sake
of general reference that although the c symbols
have been avoided in the main text, we have also
the following correspondences:

(i) e, e2 = 1 corresponds to curves n =p"/p' and
n = 1/p'p" of Fig. 4 (Wick-rotated BS equation)
and to lines in all (v,', v") diagrams of Sec. V (the
original BS equation), where either v," or v" is set
equal to tv,', whereas

(ii) e,@2=-1 corresponds to curves n=p'/p" and
n =p'p" of Fig. 4 and to lines in all (v,",v") dia-
grams where either v," or v" is set equal to tv '.

Equations (A29) and (A30) contain in principle
the full answer to (a) above. Before discussing
(b) and (c), however, we are at this point in the
best position to provide a rationale motivating the
introduction of (~'~ defined by (122) or (123). We
mant to avoid square-root expressions like those
present in (A29) and (A30), at least at the ends of
the z interval, and also we want to make the val-
ues of $~'~ real there. For arbitrary se" it then
follows that

trr r g 1/2

( (1)( g) +

v I g ~lltll

(trr + «)2trr
[( II -II)( II -II)]1/2

25 (A32)

[compare (124}]for min(rj,")«v" & max(rD,") is posi-
tive imaginary or negative imaginary, respective-
ly.

(iv) The proper branch of [(ar"-gr,")(~"-g")]'t'

pressjons like [v+ v" ]'t, (st)~, etc., which even
in the case of the original BS equation could be-
come imaginary. Using (A31) in conjunction with
(A28), we thus arrive at Eqs. (124)-(126), where,
needless to say, 8," correspond to sV+ defined by
(A4}, while v,", defined by (119)and/or (120) cor-
respond to 2v,

" defined by (A18). As a particularly
important consequence of the latter change of vari-
ables, note finally that the right-hand side of
(125)—which derives from (A6)—while still remain-
ing a rather lengthy expression in the t, s, and ~
parameters, is now at least rational and therefore
~ea/ in the case of the original BS equation. This
in turn implies that, since w" is always real in
that case, $

'~ is real for m"=&V,", which enor-
mously facilitates the discussions in terms of
Figs. 16, 17, 25, and 26.

This brings us in a natural way to a brief discus-
sion of problems posed by (b) and (c) above which
are best considered jointly.

(b), (c) Behavior of &&'& for g,"~~"~ g", in par
ticular at +"=1+stv,'v' (interface). A detailed in-
vestigation of the behavior of the phase P defined
by (144) as a function of the t and s parameters, on
which the presently considered properties of $~'

have a particular bearing, is actually given in
Sec. V and need not be repeated here. However, for
the sake of reference, here is a brief summary of
the "recipe" of how to construct P for given values
of t and s, as well as that of the main results of
this analysis:

(i) The phase P is determined jointly by the
over-all direction of progress (from left to right
or vice versa) of the point representing $&'~(~")
between the (always real) end points (t- s")(s —t")
and (t- t")(s —s"), together with the information of
whether the lower or the upper semicircle (com-
pare again Figs. 16, 17, 25, and 26) has to be
traversed, should the passage involve regions
where [(&u" —&o,")(u"—8")]'t' is imaginary.

(ii) The direction of progress depends on the
signs of (t —s")(s —t") and (t —t")(s —s") and on the
proper determination of e2 defined by (A16) [i.e.,
on whether (A14) or (A15) obtains in the actual —or
"physical"-domain of integration, viz. , subdivision
of the domain D, into V's discussed at the begin-
ning of See. V], while

(iii) whether the upper or the lower semicircle
has to be traversed depends on whether the ex-
pression
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B'-4AC & 0, (A34)

the latter following from the fact that the expres-
sions (Al) and (A2) and entering (62) remain upon
closer analysis always real and &0 and &0, re-
spectively. Although w" itself is not used as an in-
tegration variable in the case of the Wick-rotated
BS equation, we must therefore conclude that Q de-
fined by (57) remains in this instance always posi-
tive-definite (or at most equal to zero) and there-
fore —no matter what integration variables are
subsequently used —the integration domains never
contain the area of the troublesome branch cut de-
fined by [(~"—&V,")(~"—g")]'~', which of course is
yet another way of restating that the difficulties
connected with (b) and (c) above are entirely ab-
sent in this case.

APPENDIX B: PROPAGATORS OF
THE SCATTERED PARTlCLES

The problem considered here is that of finding
the positions of the integration contours in v,' in
relation to the positions of the singularities of
[(v+ v" -u, ') (v,"v" —u ')] ' (or in other words
to learn a set of rules of how to bypass these
singularities while performing the integrations
with respect to v, ) in integrals of the general type

~ ~ ~

v+0 -u~ v~ v -u (Bl)

in (A32) is in turn determined by invoking (128)
[which is a direct consequence of (63) expressed in
different parameters] and thus finally links the
problem of determining P to the particular type of
the propagator used for the exchange particle, the
latter determining the proper branch of
(1 eR yi s1i2+2syIs «)1/2

(v) Closer analysis along these lines reveals
that for certain type of propagators-notably Feyn-
man-an important mathematical "phenomenon"
takes place to the effect that whenever interface
crossing (see Sec. V for its definition) occurs
within the interval min(g,")& ~"& max(&8,"), this is
accompanied by a discontinuous flip of sign of
(A32), giving rise to the appearance of the shaded
areas of Fig. 18, where the phase P becomes &-
dependent.

To conclude this appendix, it bears mentioning
that in the case of the 5'ick rotated BS equation,
the variable cu", as defined by (19) [though no
longer +" defined by (20)] remains real because
tg" is real [compare (l6)]. On the other hand, we
have for the quantities defined by (A4)

(A33)

since A and B remain real, while

[compare (10) and (15}],consistent with a par-
ticular type of propagator (Feynman, retarded,
advanced, etc. ) used to represent the scattered
particles A and B. So formulated, the problem
should be considered as complementary to, yet
distinct from, that considered at great length in
Sec. V, at the beginning of Sec. VI, and in Appen-
dix A [especially parts (b) and (c}],where our
main concern was to perform integrations con-
sistently with a particular type of the propagator
used for the exchange particle. The findings of
this appendix are of practical importance in Sec.
VI, since they enable us to define uniquely the
integration contours in t and s in integrals of the
general type

~ ~ ~
dtds

(v,' v' t s —u, ') (v+ v' ts —u ')

where the integration (121) is presumed already
performed and therefore v,' are related to t and
s [i.e., at the ends of the integration interval in
(121) for &u" =&u«] by (A14) and (A15).

As is well known, using Feynman propagators
is, e.g. , tantamount to assigning small negative
imaginary parts to m„and m~ in expressions
like (48) and then performing the Po integration
strictly along the real axis. Likewise, it can
easily be shown that using the retarded (advanced)
propagators to represent the particles A and B
is equivalent to keeping m„and m~ this time
strictly real, but assigning small positive (nega-
tive) imaginary parts to both E, and E defined
by (14) and (4) [compare (2)], which according
to these two relations is in turn simply equivalent
to assigning a (single) small positive (negative)
imaginary part to the over-all energy E. The
effect of retarded (advanced) propagators is then
achieved by again integrating with respect to po'

strictly along the real axis.
Now, according to the definition of v", given by

(5}, which we want to strictly retain [i .e., never
to consider it only valid in some limit i&-0; the
same applies to the definition of u, ' given by (16)],
we can easily see that ln all the three cases (i.e.,
for Feynman, retarded, or advanced propagators)
the trajectories described by (or geometrical
loci of) v," as Po +

~
p"

~ vary from -~ to +~ through
real values are circles, since ic, with c given
by (6), is no longer strictly real. To be more
precise, both v+ and v" describe in fact the same
circle, but remain independent, since po +[p
are independent real variables. As we do not
propose to consider propagators other than the
above three types, this is the most general situa-
tion we are going to deal with in this appendix.

At this point much clarity is gained by consis-
tently using an exaggerated picture of the above
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common geometrical locus of both v+ and v~ as
that of a circle of finite size (and always con-
taining the point zero in its interior), even though
it degenerates of course into the real axis in the
limiting case of real d =ic. This is done to em-
phasize the very important fact of "'Ago-dimen-
sionality" of the resulting geometrical, locus of
the product v+'v", since the problem under in-
vestigation is now easily seen to be essentially
that of finding the positions of the points repre-
senting u,~ in relation to the latter two-dimen-
sional domain, ' the situation becomes especia, lly
involved if either {or both) of the points u, ' are
found to lie inside this domain (which does actually
happen in the case of &eynman propagators; see
below}.

The problem is now best discussed not in terms
of the geometrical locus of points representing
v+' v itself, but rather of its square-root mapping,
or, in other words, in terms of the geometrical
locus of points representing (v," v" )' ', since the
shape of the latter is especially simple and is
given by the following theorem.

Theorem. Let the geometrical locus of points
(in the analytic plane) representing each of the
two independent complex variables v+ and v" be
(the circumference of) a circle C, containing the
point zero in its interior (Fig. 28). The geomet-
rical locus of points representing Z =(v,' v"}''2
is then the joint area of the two crescent-shaped
figures (Fig. 29), consisting of points belonging
to the interior of one and only one of the following:
(i) the circle C itself, (ii) the circle C' obtained
from C by reflection in the origin.

The problem of locating the points u, ' in relation
to the geometrical locus of S' = v," v is thus finally
seen as equivalent to that of finding the positions
of four points, -u, +u, —u+, and +u+ (this
accidentally provides one of the motivations to de-
fine the left-hand side of (16) as u, ' and not u, )
in relation to the above-mentioned crescent-shaped
areas of Fig. 29.

Now, to determine the position of an arbitrary
point D in relation to the latter domain it simply

Analytic v+ plane

Anolytic Z=[v, v- "]'"platy
IIi

regionII

l

'"'
region

A l1
Ift

ll
l

I

~I I )

FIG. 29. Geometrical locus of points representing
& = {v+'v")~~2 in its analytic plane {shaded area), as v+'

and v" describe {independently) the circle C of Fig. 28.

suffices to compare the magnitudes of the radii
of the following two circles: (1) C itself and (2)
the circle through the points of intersection A., &&

between C and C' and the given point D (see
Fig. 29). Denoting the former by r and the latter
by x» w'e have either

in which case the point B lies outside the geomet-
rical locus of (v,"v' )~', i.e., in one of the two
regions I and II depicted in Fig. 29, or

(84)

in which case it must lie inside this geometrical
locus. To apply this criterion to the points repre-
senting u+, I, -I+, and -u, we first see that,
according to Eqs. (5), (6), and (18), the circle C
intersects the real axis and therefore also the
circle C' at the points —1 and +1, respectively,
so that

%e see also that its radius is given by

ldl
llm(d) l

[with d given by (18) and c by (6)j. The relations
(85) and (86) apply to all three types of propaga-
tors considered here. Furthermore, because of
(85) the radius of a circle through A, B, and D
is given by

(87)

FIG. 28. An exaggerated picture of the geometrical
locus of points representing v~, if d given by {18)has
a small imaginary part.

where Z& is a complex number representing the
point D, and X~ and F~ are its real and imaginary
parts, respectively. Identifying S&~ with u, m given
by (16) and also using (14) and (1'l) we therefore
have for the appropriate radii through the points
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I, (or -s,) Iu, ' l&1 (817)

Im '„IE,+d I&& llm(d) I,E~ Td (89)

which, employing the useful relation

m =E~ —tP

[equivalent to (14}because of (IV) and (18)], can
also be rewritten as

(810)

Ilm(m, )Re(E,+ d) —Re(sI, ) Im(E, v-d) I

II «}IIE,+dl. (»I)
With help of (Bll) we can now examine the cases
of Feynman and retarded (advanced) propagators
separately —beginning with the latter as the sim-
pler of the two —as follows:

1. Retarded (advanced) propagators

d
Ilm[m, /(E, +d)]l E, +d '

'

Tllus the cl'itel'Ioll (83) (84) Rpplled to tile poillts
u, and u (or to the points -I, and -u, the situa-
tion being now entirely symmetric with respect
to Z-- Z} finally reads

[i.e., for positive d; compare (16), (18}of the main
text]. In terms of integrals of the general type
(81), these findings imply that the integration con-
touI' iII v (tJ' ) w111 Rlways ellcil'cle the poillt
u /e" (I ~/s, ), while the point s+'/v" (u+~/II+')

will always lie outside this integration contour,
irrespective of the value of the other integration
parameter II" (II, ). In the limiting case of real
d, i.e., when this integration contour "straightens
up" and becomes coincidental with the real axis,
this in turn implies that for retarded propagators
the point I '/v" (u '/e,') should be considered
as lying always slightly &close the real axis and
the point u, '/v' (u, '/@+ i always slightly above
this axis, with the situation exactly reversed for
the advanced propagators (T.he center of C has
to be considered as lying above and below the real
axis for the two respective cases. ) Making the
identifications (A14) or (AI5), this finally leads
to the Eq. (190) of tile main 'text.

2. Feynman propagators

This case is characterized by

As mentioned before, this case is characterized
by setting

Im(E, ) =0,

but, according to (810),

(818)

Im(III, ) =0,

which combined wM1 (810) gives

Re(d }Im(d)
Re{E,)

(812)

so that, considering Re(E, ) and Re(d) as given,
Im(E, ) are determined joint1y by a single (small)
Im(d). Substituting the above in (811), dividing
by IIm(d)l, and multiplying by IRe(E, )l we get

IRS(m, )Re(E, ~d)& IRe(E. ) IIE, +dl, (814)

with the uPPer inequality sign obviously applying,
since for sufficiently small Im(d) (814) must be-
come

I~. I& IE, I

[compare (810) with real finite d in the bound-
state region]. Consequently, Rll the four points

Q p -Q+ ~ and -Q lie Outssde the geom8trical
locus of (s,"s" )', with the additional very im-
portant circumstance that, while u and -u lie
in the "internal" region I, the points e, and -u+
must lie in the "external" region 11 (see Fig. 29),
SinC8

lu ' l&1

Im(III, ) = — Im(d),
Re(d)

Re Is, (819)

so that again it suffices to deal with a single small
Im(d) in order to assign proper signs to 1m(m+)
and Im(m ). In addition to (819) which stems
from equating the imaginary parts of (810), we
need this time also information stemming from
the real part of (810) which reads

[Re(III.)]*-[im(ss. )]*= [Re(E.)]' —[RS{d)]*

+[1m(d)]'.

Substituting (818) and (819) in (811) we have

Re(E,+d)+Re(sI, ) &&IE,+d I, (821)Re(d)

which after multiplying by Re(m, ) and using (820)
becomes

I Re (E, ) Re{E,+ d) +[1m(d)]*+[1m(m, )]' I

& IE. +dllRS(m, ) I. (822)

Because inequality (815) must again obtain for
vanishing Im(d), the losoeI' inequality sign must:
this time apply in (821), so that, in the case of
Feynman propagators, all the points u„u,-u,
and -u lie inside the geometrical locus of
(u' v")I~'. Consequently, depending on the value



2448 MARIAN GUNTHER

of v" (v+), some integration contours with respect
to v," (v") in integrals of the general type (BI)
wilt contain in their interiors the point u, '/v" or
u ~/v" (u+~/v+' or u "/v+'), while others will not.
Closer (and rather cumbersome) analysis reveals
that in fact, as the "other" integration variable
v" (v," ) itself describes the circle C, the point
u, '/v" (u,'/v,"}remains inside the integration
contour in v+' (v" ) between the points 1 and uP

[according to (16) it so happens that the points
N~ themselves lie on the circle C if—as
assumed —E, are real] and outside elsewhere.
In the limit Im(d) - 0 and making again the identi-
fication (A14) or (A15), the kernel K defined by
(178) will therefore no longer be given by a rela-
tively simple formula (181), but will contain step
functions 8(tv,' —u ') and 8(t v,' —1/u, *), as well as
8(tv,' —1) and 8(tv' —1).

~G. C. Wick, Phys. Rev. 96, 1124 (1954).
2R. E. Cutkosky, Phys. Rev. 96, 1135 (1954).
3See, e.g., J. Schwinger, J. Math. Phys. 5, 1606 (1964)

for perhaps the best and most concise presentation on
the subject.

4K. Nishijima, Prog. Theor. Phys. 14, 203 (1955).
~S. Okubo and D. Feldman, Phys. Rev. 117, 279 (1960).
8Reference is here made specifically to Eq. (3.16) of

Ref. 4 and Eq. (19a) of Ref. 5. Equation (3.16) of
Nishijima actually separates, but only in the case of
the final four-momenta on the mass shell, i.e., when
Eq. (3.17) is satisfied.

I-Ming Tang, Ph.D. thesis, Univ. of Cincinnati, 1969
(unpublished) .

Tang's results (Ref. 7) are rederived by a different
method in Sec. IV. The original method need not be
reproduced here, partly because it makes use of the
partial-wave expansion, totally avoided in the present
work, and partly because the new method derives
(essentially) the Wick-Cutkosky equations as a result
of and therefore concurrently uith Tang's boundary-
value problem rather than vice versa.

9H. S. Green, Nuovo Cimento 5, 866 (1957); S. N.
Biswas, ibid. 7, 577 (1958). See also H. S. Green and
S. N. Biswas, Phys. Rev. 171, 1511 (1968).
It seems almost needless to add that precisely the
same difficulty precludes us from trying —in terms
of the Green-Biswas or related parameters —to
follow either the argument of Wick himself (Ref. 1) or
that of N. Kemmer and A. Salam [Proc. R. Soc. A230,
266 (1955)] in their well-known attempts to prove the
validity of the Wick rotation.

~i Corroborating evidence to very much the same effect
seems to be provided by C. Fronsdal and Y. C. Yang
[IAEA Trieste Report No. IC/68/70, 1968 (unpublished)],
who attempt to show that the "accidental 0(4) symmetry"
(similar to that of the H atom) of the Wick-rotated BS
equation and constituting the starting point of the
Cutkosky method is absent in the original equation.
The Feynman propagators for the scattered particles
A and B are likewise replaced by advanced or retarded
propagators. Though also needed for the exact solubil-
ity and changing the mathematical structure of the BS
equation, this step seems to have a much less profound
effect on the analytic structure of the solution [an
integro-differential equation of the type (175), i.e., in
one variable, still obtains]. Besides it could well be
argued (see Ref. 39) that, for physical reasons, the
retarded propagators actually should be used in pref-
erence to other types as far as scattered particles are

concerned.
Compare C. Fronsdal and L. E. Lundberg, Phys. Rev.
D 1, 3247 (1970), where similar results were obtained
based on the same assumption. The exactly soluble
model discussed by these authors differs, however,
from that of Sec. VI in that at least one of the propaga-
tors representing scattered particles is replaced by-
in their notation —g (p —m&2) e(po), which according
e.g. to the classification of Jauch and Rohrlich (Ref. 38)
is a combination of "closed integration path" 4+ and

propagators, instead of the retarded or advanced
propagators used in our model. Compare Eq. (2.5)
with Eq. (7.1) of Ref. 13 and see our footnote 39.

~4Compare F. L. Scarf, Phys. Rev. 100, 912 (1955);
D. A. Geffen and F. L. Scarf, ibid. 101, 1829 (1956);
R. E. Cutkosky and G. C. Wick, iMd. 101, 1830 /956).

~~Compare e.g. , Biswas, Ref. 9, Eqs. (3.2), (3.3).
i~In the course of the necessary changes of variables,

the essence of this problem is finally discussed in
terms of a two-dimensional (t, s) space (see below),
where the crucial test is whether or not the operator
8 /Bt &s produces a two-dimensional 5 function when
applied to the phase defined by (144). Compare also
Eqs. (156) and (167).

i~Note the departure from the convention about cyclic
permutations of primes for quantities defined in
Sec. II C. If this convention were followed here, we
would have instead of (29)

—cosp'cosf+ cos(p' —p+ 7.")
sing sing'

Together with the bifocal coordinates of Green and
Biswas, these variables constitute the most important
tools of our new method, but they are introduced here-
to the best of the present author's knowledge —for the
first time. However, see footnote 26.

~ The question as to whether or not the residual depen-
dence on the ~ parameters can then be also made to
disappear from our equations in in fact the most
crucial in discussing the original BS equation vis a vis
the Wick-rotation equation.
No such "operator" could be properly defined, of
course, only expressions like Eq. (46) as a whole having
a well-defined meaning.

2~No "proof" of the validity of the Wick rotation is of
course required here, since the very purpose of the
present work is in part, to examine this point a pos-
teriori by comparing the analytical structures of
Eqs. (69 and (70) (see below). See also footnote 10.



22The notation g" ls preferred instead of the usual rp,

to avoid confusion with the Green-Biawas parameter y,
23Frequent change and simultaneous use of diffexent

notations seems unavoidable, not only in order to pre-
serve the conciseness of the formulas, but also to
malntRln xnaxlmR1 clarity Rs to the x'elevant analytic
plopertles of th8 xnathematical expx'eaalona xnoxnexl-

tarily under discussion. In addition, it should be box'ne
in ~~~d that parameters best suited in a particular
instance to emphasize certain analytic aspects may at
the aaxne time not represent the "best" integration
variables» Rnd vice versR.

24The dependence on the final-state parametex'a, e.g»»
((()' and g', is of course suppressed, since they, as %'ell

as the total energy E, are constant parameters of the
problem.

~5%8 prefer here not to invoke shorthanda such as

g2 g2 1/2
+

„

ln (0,&
—0,

&
)2+ (0;2-0;2 )2,

since (100) is Qo longer true in genex'Rl if G.~ » u2 Rx'8

complex Rnd/or the real integration domain D& is re-
placed by a more general two-dimensional continuum
embedded in the four-dimensional space (Rs(nt), Im(&t),
Rs(o.t), Im(ot)), as is indeed the case in the Ssc. V.

26The results (101),(103), the last condition [(i)j, and
most significantly the ansatz (80), (81), which means
that the dependence of 4 on the cosine of the scattering
angle z and g should be only through the parameter +,
were —as already mentioned in the Introduction —borne
out in detail in a synthetic way in a closed-form partial-
wRve SMIlmation by TRQg (Bef. 7). IQ Rddltlon» the
choice of parameters employed by Tang to convert the
original sums into contour integx'als strongly suggested
to the present author the possibility of an over-all use-
fulness of the parameters t and 8 defined in 8ec. Il E
(see footnote 18).
sp remain good integration val lRbles eveQ lf E»
axMi Mgy Rx'8 complex with fwct8 ixQRgiQRry parts. 888
Appendix 8 for details.

28Unless sobd models of the "subdomains" V; are made,
this form of graphical representation has —for our
purposes —a distinct advantage, from the points of
view of both clarity and conciseness, ovex either three-
dimensional pictures (as in Fig. 14) of V's ox repre-
sentations by means of projections onto the (n+, v" ),
(v", t), and (t, v+) planes.
The above sign convention is motivated by the fact that
for symmetric in) the interfaces become completely
"invisible, " "melting" into one integration domain B&
depicted in Fig. 14. They are in fact truly "invisible"
in this sense for the exactly soluble model considered
in 8ec. VI.

30The fact that A -A under the substitution@+ e
actually foEE0~8 from (48). A relation resulting from
formally changing ths signs of I pI and s" in (48) can
first be eonaldex'ed Rs R d8faslgg "veEQtxos Of

(p,.-lpl l~(E. —")Ip;. Ip'I)

(t.e., as that of A for "negative IpI") in terms of ths
values of this function from the posltlve x'ange of
I pI," because ths integration on the right always es-
tends from I p"I = 0 to I p' I

= + ~. It is then a matter

of very simple algebra to actually show that

{po, Ipl I&(&,-s")Ip», lp'I)=-(po, lpl l&(gs")Ipo, lp'I).

However, this formal device will be resorted to us
88ldoss 88 P088$M8 1D ordex' to Rvoid confusion Rnd to
prevent us from unwittingly covering the saxne inte-
gratloD Rx'8R twice.

31888 8ec. VI for changes brought about by the uae of
other types of propagators.
The opposite assumption» 0+5' &0» %'ouM chRDge neither
oux' quRlitRtlve x'esults lD generRl Qor the RQRlytic
structure of the roost important phase P defined by
(144) in particular. However» repeating all the argu-
ments of the present section under the assumption that
e+v'„&0would entail lengthy though trivial changes in
our "geometry»» and therefoxe will not be presented
here.
The old $ was so Dormallzed thRt the x'evex'sRl of the
sign of WQ implies $ 1/$.

34In other vrords, Fig. 18 seems u priori to suggest that
the "truth»» lies somewhere between a solution similax'
to that of (69) (i.e»» of the Nick-Cutkosky type) and
that of the exactly soluble model of Sec. VI. The analy-
sis which follows seexna to indicate, however, that
only the latter approach ean actually be pursued in a,

consistent way (see later).
35Choaen as positive in Fig. 18 for the explicit purpose

of obtaining the closest correspondence with the
results of 8ee. IV.

368ee later (and Appendix 8) for the detailed detexmina-
tlon of h0% the integrRtloQ pRth should be chosen to
avoid the slngulRr points Rt 8 = gg /5+8 t » stexnxnlng
from the type of propagators used to repx'eaent the
scattered particles A and 8 (as distinguished from the
+pea of propRgRtora used to x'epleseQt the 8xckQnge
particle» which Rctually coDatltute our pxlxDRry coQ-
cern at this point).

3THere belongs first of all the fact that this propagator
does still satisfy the imkomogemeous Klein-Gordon
equation (with R four&imensional Dirac delta functloQ
0D its x'lght-11Rnd side) when written ln position apace.
It is even possible to construct R quantized free field
(involving "ghosts, "however), representing particles
of mass zero, in such a way that its "contraction
symbol" [in the usage of the Nick ordering theorem;
see e.g»» J. N. Jauch Rnd F. Bohrlich, The Theory Of
Photo@8 end EEeetxons (Addison-Nesley, Beading,
Mass. , (1955)j can be made exactly equal to this
"Coulomb" propagator [@88e.g., M. Gunther, Phys.
Bev. 125, 1061 (1961), where retarded Rnd advanced
propagatora were so obtained in connection with a
relativistic Lee model).
Compare JRuch Rnd Bohrllch, Ref. 37, p» 421, Eq.
(A1-7).

39There Rre reasons to believe that the xeplacexnent of
the Feynman propagatora by either retarded or
advanced propagators for the Scattered' particles
constitutes, ho%ever, at least a much lesser "ain»»

against "x'eality" than the replacement of the Feynm~n
propagator by a "Coulomb»» pxopagator for the exchange
particle (see footnote 27). It could even be argued that
while the latter should probably always be equated to
the "contraction symbol" (in the usage of the Nick
theox'em) of the field "transmitting" the interaction-
and thus harder to explain away when changed from the
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usual Feynman type —the former should more properly
be either retarded or advanced rather than Feynnmn
propagators. In fact, if the BS equation is consistently
derived from field theory fas done some time ago by
the present author; see M. Gunther, Phys. Rev. 88,
1411 (1952); ~94 1347 (1954)j, as contrasted with the
usual derivation by partial summation of the Feynman
graphs ("ladders"} where all internal lines are repre-
sented by Feynman propagators, the appearance of
xetarded or advanced propagators to represent the
scattered particles —while the exchunge particle prop-
agators retain the meaning of "contraction symbols"—
becomes a logical consequence of the formalism [com-
pare Eqs. {69),(66) and {42) of the first and the second
of the above papers, respectively]. It should be ob-
served paranthetically that the above-mentioned Geld-
theoretical derivation (or rather definition) of the BS
equation (i.e. , that based on retarded propagatox s) as
contrasted with the now "standard" one (i.e. , based on
all Feynman propagators), does allow a clear-cut
physical interpretation of its wave function in the or-
dinary usage of nonrelativistic quantum theory (see
the first of the above papers, especially the defining
equations of Secs. I and II), contx'ary to the rather
widespread belief that such an interpretation is hard
to achieve, frequently mentioned in the literature as
one of the shortcomings of the BS approach.

4"The latter is deGned, e.g., as that accessible from the
original value of E at which (182) was solved via a semi-

circle above {orbelow) the threshold at E= m~+ m.
4~The expression e"(& ~& stems from the last two terms

in (181), and the "preceding" 1 of (198) and (199) from
the first two terms in {182). Tracing the origin of
these expressions still further back, we thus coxne to
the conclusion that they stem initially from the appear-
ance of $(,'~ and $&~& given by (122) and {123},respec-
tively. Now, it is rather hard to visualize a theory in
which ((&) and g( ) would not play a highly symmetric
role.

+A corresponding rationale behind the original "normal-
ization" (59) was provided in footnote 33. This would
have as its consequence that, drawing diagrams like
those depicted in Figs. 16, 17, 25, and 26 "in $," the
radii of the semicirclea would be equal to 1, but their
end points could become complex.

~3As the proof is somewhat lengthy, at least in the ver-
sion known to the author, it is omitted here. The gen-
eral idea, however, is to first keep one of the vari-
ables (e.g. , v ) constant, so that if v+ describes the
circle C, v+o" will likewise describe a circle X(e"}.
The boundary of the geometrical locus of points repre-
senting Z'= (e+ e ) is then obtained by forming an en-
velope of the family of circles X(v ), as v describea
the circle C. This is finally followed by the discovery
that the so-obtained (and rather complicated} boundary
curve ("cardioid") maps precisely into the pair of
circles C and C', as depicted in Fig. 29 by means of
z {gI}i/2


