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Using the methods of the renormalization group we study the structure of Pomeranchukon
Green's functions in a Reggeon calculus or a Reggeon-field-theory model. We are able to
determine the behavior of all Green's functions in the "infrared" limit of small Reggeon mo-
menta and small Reggeon energy (-E =angular momentum minus one}. This behavior is
governed by a zero of the classic Gell-Mann-Low variety which arises when the triple-Pom-
eranchukon coupling is pure imaginary as suggested by Gribov's analysis of Feynman graphs
in ordinary field theory. The form of the Pomeranchukon propagator dictates that the trajec-
tory function be singular at t =0 and that a variety of scaling laws for the Green's functions

be obeyed. By coupling particles into the theory, we find that total cross sections are pre-
dicted to rise as a small power of lns, which in the model is approximately oz(s} (lns}

I. INTRODUCTION

By studying the nature of branch points in the
angular momentum plane in Feynman graph mod-
els, Gribov has been able to abstract a Reggeon
calculus or Reggeon field theory' which provides
a powerful analytic tool for the discussion of the
interplay between E-plane poles and cuts. This
field theory treats Reggeons as quasiparticles or
elementary excitations in a space of one time and

two spatial degrees of freedom. By choosing vari-
ous forms of local interaction among the "free"
field operators, one can use the techniques of
quantum field theory to study the physical or re-
normalized partial-wave amplitudes in, say, elas-
tic scattering processes.

These field theories have been analyzed at some
length by Gribov, Migdal, and Levin in a long and

occasionally difficult set of papers. ' In these ar-
ticles a whole set of alternative renormalized so-
lutions to the Heggeon field theories was presented
using at various times perturbation theory, the
full Schwinger-Dyson equations of the theory, or
simple soluble static theories as methods of solu-
tion. Further study of such field theories has been
carried out by Bronzan, ' who provides a dynamical
reason for the famous vanishing of the triple-Pom-
eranchukon vertex. 4 A recent summary of ideas
in the Reggeon calculus and references to a variety
of applications can be found in the work of Cardy
and White, ' who use Bronzan's observations to ar-
gue about the structure of or(s). A full-scale re-
view of the subject will be available shortly as

In this and subsequent papers we will examine
the structure of renormalized Green's functions
in a variety of Reggeon field theories, some of
substantial physical interest, using the method of

the renormalization group to carry out our analy-
sis.

We begin by reviewing briefly the motivation for
a Heggeon field theory and discussing some of its
limitations. After this we set up the field theory
and establish the Feynman rules for calculating
the Green's functions. Following this we set up

the renormalization-group equations, and study
the constraints they place on the Green's functions
and show how they enable one to determine the be-
havior of these quantities in the "infrared" limit
of small Reggeon momentum and all angular mo-
menta near 1.

The particular theory w4. examine in this paper
has a "bare" Reggeon with a linear trajectory
passing through 1 at t=0,

o.,(t) = 1 + a, 't,

and a local triple-Heggeon coupling only. In sub-
sequent papers we shall discuss both more gener-
al "bare" trajectory functions and more elaborate
coupling schemes. This example has quite enough

physical interest and structure in itself to serve
as a model for any further analyses of the type we

present.
In his original study Gribov demonstrated that

taking proper account of signature leads one to
make the triple-Pomeranchukon coupling pure
imaginary. We find that this observation is cru-
cial in our renormalization-group treatment. It
allows us to find (when the number of spatial di-
mensions, D, is near 4) a Gell-Mann-Low zero'
of the relevant renormalization-group functions
which determine the infrared behavior (t = 1, t = 0)
of the field theory. We shall show that this zero
occurs in fact at a small value of a renormalized
dimensionless coupling constant and allows one to
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make a kind of perturbation expansion in s/12
=(4-D)/12. Thus, we are able to calculate in
what would appear a priori to be a strong-coupling
problem.

We shall also present an analysis of the scaling
structure that is dictated by the renormalization
group for the Green's functions. When we couple
the Reggeons to particles, this implies that the
elastic amplitude has the leading behavior

A(s, t)=s(lns)"F(t(ins)'), (2)

where the indices y and z and the function F can
be calculated as a power series in s/12. (Note
that z/12 is the natural perturbation parameter,
which is not large when s =2.) In the present the-
ory we find to first order in s/12 that y = 1/6 and
z =13/12 when D =2. The total cross section aris-
ing from (2) is then

(sr(s) - (lns)"', (3)

with corrections down by approximately order
(lns) "'.

Some of the scaling laws have been given by
Gribov and Migdal with no indication how one might
evaluate the indices y and z or the function F. Our
presentation has the double attractiveness of being
direct and showing how one may indeed determine
these quantities in perturbation theory. There are,
not suprisingly at this stage, a host of unanswered
questions within the framework of Reggeon field
theories. Besides the enormous uncertainty of
how to choose the Lagrangian, which problem
plagues all field theorists, there is the additional
tricky question of how to treat external particles
and Reggeons"' in inclusive and production am-
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FIG. 1. A representation of the discontinuity across
the two-Reggeon cut in the particle partial-wave ampli-
tude E(l, t ) arising from the t -channel exchange of
Reggeons &

&
and n2. &2 is the Reggeon-particle partial-

wave amplitude. The@'s on the wavy Reggeon lines in-
dicate that a discontinuity has been taken.

plitudes. The solution of this we defer for the
present.

II. MOTIVATION FOR A REGGEON FIELD THEORY:
REGGEON UNITARITY EQUATIONS

The cleanest indication that a Reggeon field the-
ory might be a useful tool in the consideration of
branch cuts in angular momentum comes from an
examination of the formulas for discontinuities
across l-plane cuts. These discontinuity equations
were derived in a heuristic manner by Gribov,
Pomeranchuk, and Ter-Martirosyan some years
ago" and have been formulated and discussed in
more recent work found in Refs. 8 and 9.

The simplest example of such discontinuity for-
mulas is given by the discontinuity across the two-
Reggeon cut in the partial-wave amplitude F(l, t)
for the elastic scattering of two spinless particles.
In Fig. 1 we show pictorially the t-channel ex-
change of two trajectories a, (t) and n, (t) which
gives rise to a cut in the l plane. The analyses of
Refs. 8, 9, and 10 tell us that

disc F(l, t) = ' '
'&qE 5(l —c(,(t, ) —n (tE)+EI) (Nla+i tz, &t „ta)NE(l —iz& t& t „tE)&

dt, dt a8(-n. (t& t,& t E))
-6 t, t„t, (4)

where

a(x, y, z) =(x+y -z}'—4xy

and N, (l, t, t „t, ) is the partial-wave amplitude for
the "process" particle 1+particle 2
—Reggeon ay(t y)+Reggeon n, (t,). We have sup-
pressed signature labels and numerous factors of
i's and w's in writing (4). If we switch to two-di-
mensional vectors to reexpress (4) (as pictured in
Fig. 2), so that t= —((I(' and t, = —((I, (', we may
write

disc F(E, i() = (d*&,d'&, 5(q, +q, —i))5(E —E, —E),
~N, (E +is, g, g„g,)

xN, (E —tz, fi, fl„g,),

where we have further chosen to write

E =1 —l and E, =1 —o. ,(-~II, ~'}.

This formula suggests that the Reggeon is acting
like a quasiparticle in two space dimensions and

DISCI F (q, I)

q/2-p
q/2-p q/2-k

I
I

q/2+p ' q/2+k
q/2+p q2

q/2-k

/2+k

FIG. 2. The expression of Fig. 1 with kinematics ex-
pressed in terms of two-dimensional vectors p;. t = —((I (t
in this picture.
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E =1-(r(-I%I').
Phase space is simply

(6)

one time dimension with the "energy-momentum
relation" I

Disc) F(1,0
I

qn

d'q, d q3 6 (g, +$3 —g)6(E -E,(Q,}-E3@3)). (9}

Certain conservation laws are implied by the
form of the discontinuity integral. First of all,
two-momentum is conserved. This is not a sur-
prise since the two-momentum degrees of freedom
are precisely what is left after we integrate out
two angular variables from four-dimensional
space-time to form the partial-wave amplitude.
Second, there is an energy conservation rule, but
this is trickier. The energy of the two Reggeons
E, +E, is constrained to be the net energy E ema-
nating from the black box we have called N, . It is
important to note that E is not the sum of 1 —l; for

FIG. 3. A picture of the discontinuity across the n-
Reggeon-cut contribution to F{E,t ).

the incoming particles. That, for external spinless
particles, would restrict us to E =2(l =-1), which
is not in the least implied by anyone's discontinuity
relation. We must view the external particles on a
rather different footing than the internal Reggeons
and regard the blob N, as some kind of "external
source" for energy.

The quasiparticle interpretation is made even
firmer by the formula for the discontinuity across
the n-Reggeon intermediate state shown in Fig. 3:

N n

disc E(E q)= I 11d'5 O' I q, -q)5(g EE)N,(-Es'sq 3„.. . , 1()N(d-is 3 3„.. . , ). 4(10)
f=a f=a

N„ is another source function for energy E.
One can write discontinuity equations for the

Reggeon-particle partial-wave amplitudes N„, but
it is expedient to skip this step and proceed direct-
ly to the four-Reggeon partial-wave amplitude M4
shown in Fig. 4. This is a function of E( and R; for
each Reggeon and the over-all energy E. The dis-
continuity across the two-Reggeon cut produced by
Reggeons of energy e, and momentum fl; is depict-
ed in Fig. 5:

disc)EM4(E, E„k,)

d q, d q2$ kg+ -q5E-&, -&,

XM (E+3&,E~, Q„E3,k3, &„&k„&3,%3)

XM4(E —3E'5 E)5((I)5 E35$31 E35%35 E4, k4). (11)

In this formula E is conserved in the phase-space
integration but E 0 E, +E,4 E, +E4. Here c, = 1
-a(-~g, ~3}, as in E(ls. (6) and (10). Momentum,
of course, is conserved throughout. In the lan-

5s 5
E),k) 3y k$

guage of potential scattering as used in Ref. 9,
this equation is an off-the-energy-shell unitarity
formula, as are E(ls. (6) and (10).

Now if we agree to deal exclusively with two-to-
two particle processes, then all Reggeons appear
inside internal integrations in which E is con-
served. In that instance we may, in E(l. (11), set
E =Ey +Eg =E3 +Eg that is, go on the energy shell,
and encounter the usual form of the two-particle
unitarity relation. If we want to consider inclusive
processes such as in Fig. 6 where the function N,
appears, we shall have to enlarge our treatment
to off-energy-shell processes. Even then all Reg-
geons appearing inside the black box of N, are on
shell. (A. R. White informs us that the proper
treatment of Regge cuts in inclusive processes
may involve more than merely continuing our for-
mulas off the energy shell. ) So, agreeing to con-
sider only internal Reggeons in subsequent discus-
sion, we write the discontinuity of M4 across the
n-Reggeon cut as

4 "4 ET, E'4, k4

FIG. 4. The Reggeon-Reggeon four-point amplitude.

FIG. 5. The two-Reggeon discontinuity in E = 1 -l of
the four-Reggeon amplitude. Since E &E&+E2 in this
expression, it is an off-shell unitarity relation.
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discM (E„k,)= ll d'q ii k, +k —gq ),
9=x f =1

n

X5 E +E — Eg ) M„E +lE', k, E +EE', , E', q, . . . , E„,
$ =I

x Mn+2(E~ —&&, ksi E4 —t&, k4i e» 41i ~ ~ ~ i &n i q.)
E)+B2 E3+ E4

(12)

The restriction to E =E, +E, =E, +E4, or going
to the energy shell, puts us at l =Ay+@2 1 in M4.
By the analysis of Refs. 8-10, we see that this is
the first nonsense point in the conventional partial-
wave amplitude.

There are two standard procedures for "solving"
discontinuity equations like (11)and (12). The first
is the S-matrix approach as considered at some
length in Ref. 9. This is useful when one knows or
can vigorously argue that only the two or possibly
three Reggeon cuts are at all important to the
problem at hand. This may well be the case when
o. (0) & 1 for all the Reggeons. The second is a field
theory of the quasiparticles with E(q) =1-n(- ~g ~').
This is useful when many cuts become important
and is indispensable when o. (0) =1 for any of the
trajectories. In particular, when one of the tra-
jectories is the vacuum singularity with ct(0) =1,
then as a matter of principle all cuts become im-
portant in the neighborhood of t = 0 and one must
either sum them all or indulge in generous foot
shuffling to defend any other procedure.

In a language familiar to many readers we may
describe the situation when o. (0) =1 as an infrared
or zero-mass-gap problem since the E, Q relation
is such that E(0) =0. Field theory is notably more
successful than S-matrix theory for dealing with
infrared situations, and indeed, is just the tool re-
quired.

The field-theoretic approach has its drawbacks,
of course. One can know the functions such as M„
in (12) only by solving the field theory. This is a
formidable task in general, and indeed one usually
turns to perturbation theory in some coupling of
local fields. There is also the unavoidable ambi-
guity of what free Lagrangian and what interaction
Lagrangian one is supposed to choose. On top of
that, one must face renormalization. The thing
one is guaranteed to satisfy is the full set of uni-
tarity equations to whatever order in perturbation
theory his fortitude has led him. This is the moti-
vation for writing a Reggeon field theory, and we
now turn our attention to that.

tion E =1 —o, (- ~q('). Clearly, to proceed in any
but the most formal sense we must specify the
E, g relation for the noninteracting field and then
choose an interaction. Let us start by taking a
linear trajectory

&( Iql )=&a o'0 q

so

E =n, 'q'+(1-o, ). (14)

-a, 'Vg (x, t) Vg(x, t) —n, g (x, t)g(x, t),

where b, ,=1-a,.
Varying the action

A, = J"d xdt g, (x, t)

with respect to g and P~ gives

i —g(x, t) =-o.,' V'g(x, t) +gn(x, t) (17)

for the equations of motion. This clearly leads to

E =ao'k +ho (16)

This is reminiscent of a nonrelativistic particle
with mass m = (2a, ') ' and energy gap (1 —o.,).
(Clearly, other E, g relations lead to a whole vari-
ety of theories. Some of these will be explored in
subsequent work. )

We associate with the quasiparticle a field g(x, t)
in D space dimensions and one time dimension.
The generalization to D-space coordinates is a de-
vice which will prove very convenient in the follow-
ing. Physics takes place at D =2.

The Lagrangian which gives (14) is

III. THE FIELD THEORY WITH A TRIPLE COUPLING

Our task is now to describe a field theory for
Reggeons which have the energy-momentum rela-

FIG. 6. A single-particle inclusive cross section as
s —~, t, M fixed. One encounters the "off-shel. l"+2
here.
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for the noninteracting theory.
For an interaction we have a wide range of

choices. The Feynman graph analysis" indicates
we may choose a bare coupling with any number of
Reggeons. Only the coupling of three or four Reg-
geons is renormalizable in any conventional sense,
so we will restrict ourselves to those couplings in
order to have any control over the results. If the
Lagrangian does not have a bare triple coupling,
then no three-Reggeon vertex function will ever
appear in the theory. This is, however, of prime
interest, so we will study in this paper the field
theory whose Lagrangian is

g(x, t) = i'.,(x, t) ——,'A.,[ $7(x, t)g(x, t)'+ H.c.] (19)

and consider g' couplings in other publications.
It will be important in our subsequent discussions

to record the canonical dimensions of the various
quantities appearing in Z. We distinguish between
dimensions of space and dimensions of time. Us-
ing the standard notation of [quantity], i.e., square
brackets, to indicate the dimensions of any quan-
tity, we note that

[t.] =E, (25}

[X ] =En (26)

where the distinction between incoming and outgo-
ing Beggeons is required because g is not Her-
mitian and contains destruction operators only.
Indeed

$(x, 0) = J) (2 )g&)2
e' ' "a(q),

where a(g) annihilates the vacuum,

(28)

The important point to observe is that the coupling
A., is not dimensionless. We shall shortly find a
dimensionless coupling constant.

The quantities of interest to us are the Green's
functions for m incoming and n outgoing Reggeons,

(n, m) I»
G '

(Xlk tklk ~ ' ' k nk t n kyk» t»&. . . , y„, t~m)

=(oIT[s'(y„t„)" C'(y. , t,.}C(x„t.,)

x ~ ~ ~ P(x„, t,„)]IO),

[x]=~-'

[t]=E-',
and, of course,

d xdtg =E k

This leads immediately to

(2o)

(21)

(22)

a(q) IO) =0,

[n(q), n'(q)l = 5'(q -4)

ensures that

[ 4(x, o), 0'(y, o)l = 5'(x —y)

(29)

(30)

(31)

I:el=i"'
[c.,']=El '

(23)

(24)

These commutation relations allow us to derive
the Feynman rules for the computation in momen-
tum space of the Green's functions:

n n+m n n+m

5 QE—g k, ,5' gk, . — gil, )d ''(E k,)"-„
j =n+1 j =n+1

dsx, dt„~ ~ .doy dt, exp(-ik, ~ x, +iE,t»+ ~ ~ ~ +i%„, ~ y —iE„, t„}G"''(x„t„,. . . , y, t„). (32)~ ~ ~ ~
~

~ ~ ~
~

~
~

~ ~ ~ ~

We record the following rules:
(1) Draw all topologically distinct digraphs

(graphs with arrows indicating the directions of
propagation of the Reggeons).

(2) fd qdEq around each loop.
(3}At each vertex put -iXJ'(27i)t "l".
(4) For each Reggeon of momentum k and energy

E use the propagator

(6) Conserve E and q at each vertex.
(7) Because of the ts prescription in item (4),

telling us that only the retarded propagator enters
this theory, Reggeon loops in which all momenta
go in the same direction are zero. For example,
Fig. 8 is zero.

As an example, the diagram in Fig. 'T gives the
contribution to G~" (E, k):

d,' "(E,k)=i/(E-~, k'-a, +is). (33)

(5) For each two-Reggeon loop with both momen-
ta in the same direction, multiply by —,'. See Fig.
V.

FIG. 7. The lowest-order Feqnunan-graph correction
to the Reggeon propagator ~
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2
&d'" z, k]' ' ', — d' dz

(2w)' '"" 2 ' E, -n, 'Q'-ik, +is E E-, -n, '(R-q)'-b, , +i@
' (34)

Using these rules for a=2, 6, =0, and A., =AD,

r, real, one reproduces Gribov's Pomeranchukon
interactions abstracted from hybrid Feynman dia-
grams. '

IV. RENORMALIZATION-GROUP CONSTRAINTS
ON REGGEON GREEN'S FUNCTIONS

The unrenormalized theory coming from the
evaluation of G ", to whatever order in perturba-
tion theory in A., one calculates, depends on the pa-
rameters A.„a,', A„and possibly a cutoff A to
control the ultraviolet behavior. The quantities
appearing in the Lagrangian will be renormalized
by the interaction and acquire new values A., z ',
and a. We wish to consider a theory in which both
the bare Pomeranchukon intercept 1 ko and the
renormalized intercept 1-b, are 1, so h, =b, =0.
This requires a mass counterterm in g which is a
function of A., and n, ' to be determined in perturba-
tion theory.

To define the renormalized theory we require a
"subtraction" or renormalization point at which to
define the renormalized quantities X and a '. If 6
were not zero, it would provide a natural (but not
a mandatory) normalization point. Since it is zero,
we must seek another prescription. It is conve-
nient to choose this point away from the various
branch points in E which arise in perturbation the-
ory at E„= 'nk'/n. If we look at Fig. 9, where
the branch-point trajectories are shown, we can
see that by selecting a normalization point in the
fourth quadrant of the E, k' plane we will stay off
all perturbation-theoretic cuts. For simplicity
we will normalize at E = -EN & 0 and k' = 0. Any
other choice entails a finite renormalization.

Our discussion will concentrate on the connected
proper vertex functions F "' defined by taking off
the external legs of Q'"

(Ei~ k» ~ i En+~~ &a+I)

= Q d" (E,k ) 'G,"' (E„k„.. . , „, , k„, ).

continually fret about the singularities associated
with these external propagators, or with 5 func-
tions associated with disconnected contributions
to g(n, m)

Now we place a set of conditions on the renor-
malized vertex functions F „" ' which serve to de-
fine the renormalized quantities n' and A.. First
we ask that the singularities of the inverse propa-
gator I'~~"~(E, k') occur at E =0(l =1) when k'
=0(t =0), so

r'„' "(E,k')I, , -„. , =0. (36)

This does not commit us to a pole in the renor-
malized propagator. It merely says that the sin-
gularity, whatever it may be, passes through L =1,
t =0. This is the embodiment of our restriction
that 6 = 0.

Next we want the inverse propagator to look
more or less like [G~o"~] ' and, of course, reduce
to it when A., =0. This leads us to require

ir", "(z,k') =1
E=-E ~ k =0

(37)

8
, ir'„' "(E,R') = n'(Z„). -

N'

(38)

Finally, by noting that F " in lowest-order
perturbation theory is just ia, /(2-v)~D "km we
choose our final normalization condition to be (see
Fig. 10)

(&,2)'i 1.(Elt kit Ekt 2t E8t $&IE = E;~E =E~=-8-(2', k;t k '=0
1 N' 2 3 N/2' i.

i~(E„)
(27f}(&+&)/k '

Before employing these conditions perhaps a
word is in order about the spirit of this and all re-
normalization-group investigations. What we are
doing in essence is giving up the desire or ability
to compute b, , a ', and A. from the given Lagran-
gian. Instead we are choosing their values by our

(35)

This has the simple virtue of our not having to
k/2

k/n

FEG. 8. A possible Feynman-graph contribution to the
H,eggeon propagator & ~ . Because of the ie prescrip-
tion which gives only retarded propagation, this graph
vanishes.

Eg

FIG. 9. The trajectories of poles and perturbation-
theory branch points in the E,P plane. The normaliza-
tion point E= -EN, K = 0 is chosen out of harm' s way.
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The 1"
R depend on E„k„n', A., and EN:

I'((™(E(,k„a', &, E„). (41)

We choose to eliminate X(E») in favor of a dizen
sionless coupling:

normalization conditions, and then we shall para-
meterize all the other Reggeon Green's functions
(presumably the full content of the theory is in
them) in terms of these parameters. The parame
ters a '(E») and A(E») are not to be thought of as
the trajectory slope or the renormalized triple-
Pomeranchukon coupling. The former, if indeed
there is a trajectory, is determined by finding the
trajectory and finding its slope. The latter is a
function we have called l „".It is true that as
Xo-0, a'(E„)-a, ' and X(E»)- A.„but otherwise
the parameters have no special significance.

The unrenormalized Green's functions depend
on Eg kg Qp Xp and possibly a cutoff A:

(40}

,k3

FIG. 10. The renormalized triple-Reggeon vertex
function.

E„[F "'
(E(& k(, ao', &(o, A}]=0. (45)

Using the relation between I' and I'„, we note that
this translates into

r(y) =E„ lnZ(ao', Ao, A, E„)B

N ap', }i.p, A fixed

(47)

B a B
+P(y) —+f(y, a'), ——,'(n+ m)r(y)

BE& 8$ BQ

xl'(„"' ((E„fc„y, a', E„)=0, (46)

where

~(E») D/4 1y(E») [,(E )]D-/. E» (42) t((y) =E, , y(E.)
N ao', Xo. A fi ed

(48)

Note at this juncture the simplicity which trans-
pires at D =4."

The renormalization procedure consists of re-
placing g(x, t), the unrenormalized field operator,
by g„(x, t) which is related to (t& by

g„(x, t) =Z '/og(x, t). (43)

The proper vertex functions I'„"' and l "' ' are
given then as

F '„" '(E„k„a,y, E„)= Z'"'"'"

XI" "' (E(,k(, ao & ~o& A} ~

(44)

The so-called renormalization-group equations
then follow from the straightforward observation
that I' "' ', not knowing about EN, cannot depend
on it, so

[ F(n, m) ] EkD (»+m) D/2-
R

This means we may write

(50}

e(a', y)=E» sE a'(E»)
a

N a, ', }p,Afi ~
The functions P and y are familiar from modern
renormalization-group analyses"; the function g
is present because n ' is renormalized in theories
with bare linear Regge trajectories. By dimen-
sional analysis, P and g/a ' can depend only on y.
If the E, k' relation had been E' = -a$', g would
be zero. Although the functions P, y, and & will
be known only in perturbation theory, they serve
as we will now see to determine nonperturbative
properties of I'R' '.

The dimensional analysis of Sec. III tells us that

(2-n-n) a&4 l
(n, nt) ~E eF ((™(E;,k(, y, a ', E») =E» , —k, k„y).Q N N

This observation tells us that

r.""( &, ,4, &, y', 4)= &, ,
'"

&„. ', &, &„y)

p (n ~ fn) E k y
n' E

R 4P St

(5l)

(52)

In the renormalization-group equation we may eliminate E»e/eE» in favor of $(e/(( g} using

(n ~) (n m)$ —F "' ~()E„k;,y, a', E„)= I —a' —,—E I' "' (tE„k„y,a', E ),
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so

~ ~ ~ ~

~—p(y) —+ a' —g(n', y), +
2 y(y) —1 I'„" ((E„k„y,n', E„)=0.

The solution to this equation is standard" and is given by

0
I'~g' '() E&, R&, y, a ', E„)= I' ~g' ~(E„k&,y(-t), n '(-t), E„)exp dt' I 1 ——2(n+ m )y(y(t'))j,t'

(55)

(56)

where

= -t)(y(t)), (57)

fr&' ~ '&(E, P,a, ', X,)

g 2'�&t2p(1 D/2)
2(2w) (2a ')~1' 2

da '(t)
„;

=- (t}-~r (t), y(t)),

t =ln(.

(58)

(59)

which gives

1 X '7m ' r(2-D/2)(E„}
Z

— +
2(2v)n (2a, ')n&2

(62)

(63)

1 = —ti'&'~~(E g')a

Z(a, ', X„A,E„) eE E=-E~, kB=0

(60)

Knowing I'~'" also allows us, via Eq. (38), to de-
termine a '(E„):

I(g' " = -, tr" "(E,k2) . (61)Z Bk ' E- E'

We will evaluate I "'"to the lowest nontrivial
order in perturbation theory by considering the
graphs in Fig. 11. This yields

Eq,q

E,k
E-Eq, k-q

FIG. 11. The lowest-order perturbation-theory graphs
evaluated to determine Z and u'.

If we were to know P, g, and y, then the renormal-
ization-group constraint in (56) would enable us to
study I'~s' '(E„k,) as the E, vary for fixed k, .
Equations similar to (55) can be derived for the
response of I' „"' when the E, are fixed and the
k, vary, or when both the E; and k& vary. The
Reggeon field theory is richer than relativistic
field theory because of the absence of Lorentz in-
variance linking E and k dependence. In Eq. (56)
we are interested in E; = 0 or $- 0 or t- -~.

Alas, knowing P, g, and y exactly is tantamount
to having solved the full field theory. In that case,
of course, the renormalization group is a rather
redundant device. So we turn to perturbation the-
ory to act as our guide. First, we wish to know Z.
This we evaluate by computing I't"~(E, k') to some
order in A,, and using the normalization condition
(37) to find

and "r(3-D/2}
y(y) =, 2 2(2„). ~ (64)

1 v ~~' I'(3-D/2)
0(a y) 2 2 2(2 )g) (65)

The evaluation of X(E„) and then P(y) involves
the computation of the graphs in Fig. 12 at the
normalization point. Then

-E k q

qvq

~+Eq, k~+q E,k

+E k~+q E2,k2

qvq

E~,k~

FIG. 12. The perturbation-theory graphs needed to
determine the renormalized coupling A(EN) and the func-
tion P.

In writing this expression we have not introduced
a cutoff. Instead we use the simple device of
keeping the dimension D of space a free parameter
and letting it define a regularization procedure.
This trick has been widely employed and discussed
by 't Hooft and Veltman" in the context of relativ-
istic field theories, especially gauge field theo-
ries. In all expressions where there is no singu-
larity at D =2, for example y, one may freely set
D =2.

Similarly computing a'(E„) we find for f(a', y}
to this order in perturbatioo theory
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This yields for P(y}

p(y) = --,' (4 D-)y (TC-+ ,'D-Z)y'',

where K is the constant appearing in y and g

II ~/' I'(3-D/2}
2 4(2w)n

if=+[sf (D)-3],
2j.-a/2

f(D) =2

(69}

(VO)

Since the dimension D is at our disposal we see
that for D near 4 the zero (a classic Gell-Mann-
Low zel'0 ) 111 P(g) is fol' smaQ [O((4-D) / ) ] I'e-
normalized dimensionless coupling g. The impor-
tance of this observation comes when we look at
Eq. (56), the solution to the renormalization-group
equations. We want to know, for (-0, g(-f) as
t=ln)--~. Now

=+-,' (4-D)g- xg',

Noting that f(4}=1, f(3)=2(2-&2) &-.', and f(2)
=ln2&&, we see that in the range 2 ~&~4 the
constants K and K are positive numbers. The
function P(y} has the form shown in Fig. 13.

The general analysis presented in Ref. 12 in-
forms us at this juncture that the zero in p(y) at
y = 0 governs the behavior of I'()E) as f-~ be-

with X&0. This has the solution

-1/2
g =8-

(f) H4-II)/4) I @
( 84-s)/2) I+

g

using the boundary condition g (0) =g, so

P(y) =f[=' (4-D)g+ (f~+ -'Df~)g']

=fp(g}.

(72)

(73)

The term p(y)8 jsy becomes p(g)8/8g in the re-
norma11zation-groul) equatioll (55). A fullctioll

P(f) replaces y(f) in all other formulas where

= --,'(4-D)& 0
el@

for D& 4. The asymptotic behavior as g-0 which
is of interest here is governed by a zero, absent
in (67), where dp/dy&0.

The astute reader will have observed that until
now our entire analysis has been carried out with

Ao, A,, and y real. The Gribov study of Feynman
graphs tells us that in fact Ao is pure imaginary:
X, =w"„A.=is, and y=ig. This means

If 8=4, or better g„ is small, then the infrared
behavior of I'z~"' ) is governed by small renormal-
ized coupling and one may hope to determine to
excellent accuracy the full I" "' by solving per-
turbation theory on the right-hand side of (56).
This whole scheme is entirely self-contained
when we recall that we only know the crucial func-
tions P, y, and g for small ganyway.

What is suggested then is an expansion in the
parameter e =4-D of all Green's functions. Away
from points of known nonanalyticity in the I'i"' )

this ought to be a meaningful procedure. The just-
ifiably nervous reader will observe now that for
D =2, which is where physics is, e =2, and in
most ways of reasoning that is not a small num-
ber. However, examining the functions y and g as
an expansion in & we see that near g=g,

Now the important change brought about by this
alteration in X is that P(g), shown in Fig. 14, has
a zero where dp/dg& 0. The general analysis tells
us that this zero at

y- -e/12

g/u'- -e/24, (60)

(4-D)
~+ az

governs the infrared or E 0 behavior of

which is much more to one's taste in expansion
parameters.

FIG. 13. The crucial function P (y) computed from the
graphs in Fig. 12 using a real coupling constant.

FIG. 14. The function P Q') when the bare triple-Pom-
eranchukon coupling is chosen to be pure imaginary. The
zero at gi is proportional to (4-D)~2.
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V. GENERAL CONSEQUENCES OF A ZERO IN P(g}

In Sec. IV we discovered, albeit in perturbation
theory, that when the bare triple-Pomeranchukon
coupling was taken to be purely imaginary, a zero
appeared in the crucial function P(g) at g=g,
where dP/dg& 0. Here we would like to explore
more general consequences of such a zero in P
which may or may not occur at small g=g, .

First, suppose that the renormalized coupling

g chooses to lie exactly at g„where P(g, ) = 0.
Then turning to the solution of the renormaliza-
tion-group equations we find

dg(~) 0 ~(f)

and

«'(~) &(n', g)
n'(f) df n'

so

In perturbation theory z(g, ) & L.
The renormalization-group equations tell us that

r(n, a)(~z k g nl E ) I (n,m)(z )t g nt~ »(g&) E-) ~x- [(»+st)/2]y(»)) (84)

(u/@)(2-n -ss) g k kot'
g&-((~+~)/2) v(»z)+~(», )(u/4)(2-s-~)z

N

(85}

using the dimensional analysis of the last section. This result implies that r((E„.. . ) has a very important

scaling property:

g (D/4) (2-n -m) g X-t'(I+sr)/2]y(g~)+g(g~)(g/@(2-g -Nt)

r(" ")(E„%„g„n',Z„)=Z„
Of N

(E, z -*«)%, R,"~" ~&Z' ' E E,
' (86)

where P„ is a function not determined by this
analysis and E =Q ", ,Z„ is a convenient energy to
use for the scaling. What is new in Eq. (86) is the
fact that, g„depends on E/E„and n%, j(/ only in

the product form indicated.
This scaling result for 1 ("' ) can be found in the

work of Gribov and Migdal, who discuss it for
n+m=2 and 3 at D =2 in their Schwinger-Dyson
equation analysis. The indices y and z are unde-

termined by them. At least in principle we know

how to proceed to find y and z here. The
Schwinger-Dyson equations do provide a set of
extremely nonlinear equations which yield up
the P„

There is an immediate consequence of the scal-
ing equation which is of some importance. Con-
sider I'(„""which takes the form

E I )'(»~) ( E E(»1) P n-II'(„""(E,k', g„n', E ) =E P, ,
i

—,g,
i

.
g ar j

(8V)

If r(„'"has a zero which moves with P, then that
trajectory must have the structure

&(Ra)=-& ( z™),f(a),
where f(g, ) is just some function of g, . Clearly
the trajectory function 1.-E =a,

k2g I I/c(gy)
n{k )= I+E» f(g, ), (89

is not analytic at k' =0 in general. Our perturba-
tion-theory analysis indicates that s(g, ) & I, so
that the slope of n{k') at k'=0 is infinite. The

situation described here is what the renormaliza-
tion program tells us to expect on quite general
grounds. It means that the "weak coupling"
Pomeranchukon favored by Gribov is suspect. On

the other hand, we shall later see that the re-
normalization group also suggests a Pomeranchuk-
on which is somewhat different from the Gribov-
Migdal "strong coupling" Pomeranchukon.

%'e have assumed thus far in this section that
the renormalized coupling g chose to sit precisely
at a zero of P(g). Now we relax this and imagine
that P(g} has a zero at g, with positive slope and
that g lies either above or below g, but between
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g, and the next zero of P(g). We approximate
P(g) as

I-'l(g) = P.(g -g, ), P„)0. (90)

We may solve for g(t} now:

For the term in the expression for 1'~s' ((E„.. . )
reading

0

exp dt' 1-2 n+m y g t'
-t

to find

= t}.[Z(t) -g, l, (91) we find for t--~, that is, $ 0,

Cz exp f t [1-2 (n+ m) y (g, )]+0 ($ 0)], (96)

g (t) =g, + $ 0 (g-g, ) .
Similarly we may solve for a' (t) for t-~:

o.'(t) = o.' C„exp [z(g)t + O(e o')],
where

(92)

(93)

where
oo

Cz = exp —', (n+m)g y„(g -g, }"/tt,n
N =g

and the y„are the coefficients of y (g) in an ex-
pansion about g,

(97)

C = exp gz„(g-g, )"/P,n,
it=i

and we have written

(94)
y(g) =y (g,)+gy. {g g)"-.

ff =g
(98)

z(g) =z(g,)+gz.(g'- g, )" .
tl =g

(95)
Using these results in the dimensional analysis

above we find that for small 8& and fixed k&

I'~s' (E, , k, , g, a', E„)
i4i E j+~ ~+|i(~t'4~~2- - ~L( + i/2 j ~~~i) i EE 1 i )iL) E

~&EN C ' E E C. , g,a& N N N j
(99)

In other words, the scaling result is essentially
the same with two dimensionless functions of g and

g„C„, and C„, which rescale a' and Q„„, re
spectively. We have also derived the renormaliza-
tion-group differential equations when the k& are
scaled to zero with the E& fixed, and when both are
scaled together. We find that Eq. (99}continues
to hold in both these limits, and is therefore true
when either E, or k, (or both} is small.

From our scaling formulas we can make an in-
teresting observation on the renorrnalized triple-
Pomeranchukon vertex I „".Suppose F ~" yields
up a trajectory E~(k')'i'. Set the E, in F~s"ion
these trajectories and then let k, -g"'k, and con-
sider. the limit as g-0. That is, consider the limit
of I' „"as the E; -0 and the k, go to zero staying
on the Regge trajectories. Then F &' behaves as
())}'")' ' ' ' '& which, in perturbation theory,
vanishes as g-0. So the renormalized triple-
Pomeranchukon vertex vanishes in general as a

noninteger power of its arguments. All discus-
sions of the triple-Pomeranchukon vertex which
have an analytic vanishing as the arguments go to
zero would seem to require reexamination.

Our general scaling results permit us to calcu-
late the scaling function P„, as a power series
in c. This will complete the program discussed
in Sec. IV and lead to some important points. As
an example, we consider Q, ,(p, e), where

(
k

)
'(' k, ki

(100)

and we now regard the dependence on g, as a de-
pendence on e. We suppose Q, , can be expanded
as a power series in its second argument:

0, , , (t), ~) =g e" 0',", ', (t)) .
ll =Q

Using this we write the right-hand side of Eq. (87)
as a power series in e. The first two terms are

-y(p)
)'(„" k', N(), k', E ) = E(-

N

Q, , pp+ Qy'y pp y'Oln — @y j pp -pp 0ln —
dN E dp 1 1 P

(102)



2408 HENRY D. I. ABARBANEL AND J. B. BRONZAN

where
g -& (0) +& k2

@N @N

We use y (e) = —e/12, z(e} = 1+«/24, and the renormalised second o-rder inverse propagator

zF "(E kk' gk, (e) ko(')EP() =E a'k-'= -E ln -1 +0(e')
N

(103)

to find the leading behavior for large p

-p(» p)"
0 I 8 (P) )(24)E

(109)

(105)

These results strongly suggest the presence of a
Pomeranchukon pole near

p = -1+—(1+ln2)
24 y (106)

1 -(e/24)(1+. ln2)

1/( X+~/24)

(107)

When t is negative, there are poles at both a(t }
and its complex conjugate.

Two final points are worth noting. When k'=0,
we find

&/a2

1 E „' (E, 8, 8, k', E„)= (1- )E (
——(188)

In Sec. IV we shall see that I' „")makes the lead-
ing contribution to the total cross section. From
Eq. (106) it follows that this contribution is posi-
tive, so the renormalization group avoids the prob-
lems which lead to a negative cross section in the
Qribov-Migdal strong-coupling theory.

The second point is that (j), ,(p, e) should behave
like const, x p

' ' ' ' for large p, so that
F ~" is finite for general k' and E =0, as it is in
perturbation theory This m. eans that (t)&,

"
I (p) has

This behavior is verified for (j),", and (j)8"El . We
observe that the natural expansion parameter in
Eq. (101) is elnp/24. Thus, while Eq. (99) is
valid for finite k' when E is small, any finite
number of terms in Eq. (101) are not useful in this
limit. This is not surprising since we have only
had to calculate the two-Pomeranchukon cut to
obtain the first two terms.

VI. USE OF THE SCALING RELATIONS ON
REGGEON GREEN'S FUNCTIONS

Vfe would like to apply our scaling formulas on
the Reggeon Green's functions to study the asymp-
totic behavior of total cross sections and some
properties of elastic cross sections. %'e proceed
by assuming that there are some given particle
Heggeon couplings N& which take two particles
into j Heggeons as in Fig. 15. Further, we as-
sume N& is just a constant independent of E =g~~,E&.

With this we can write the contribution to the
partial-wave amplitude E(E, q) coming from s
Pomeranchukons being emitted from the left ver-
tex by N„ interacting in all possible ways via
jg("" and producing m Pomeranchukons to be re-
absorbed on the right by N; see Fig. 16. The
analytic expression for this is

1, , (E,k)=E"„E„"fd k, ''' d k„,„dd, ''' dE„

x 5 (EE + ~ ~ +EE -E)5 (kk + ~ ~ ~ + k E -q) 5 (Ed ~8 + ' ' + EE,~ -E)

n ... (N, e)6 (kd+8+ ' ' +k)k+8k-q)G d8 (Ekkkkk . . . 8EEdddk kE+~). (110)

FIG. 15. A j -Reggeon-two-particle vertex in the
model. for coupling particles into the Pomeranchukon in-
teractions.

FIG. 16. The (n +m)-Reggeon contribution to the par-
ticle partial-wave amplitude. The center is the renor-
malized (~, m)-Heggeon Green' s function.
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Now using the scaling properties of I' "„' derived
above we find that the integral I„can be scaled
to yield

(@ q) E-i+y(c, )

@(n+m- 2)Ly(f )/2+0/4) t&&~~F /I ql2/Z~(&&~ )x,E 1

(111)
This result involves no approximation when g=g„
the zero of P(g). When gag„we proceed some-
what differently. The function I„can also be
written as an integral over unrenormalized
Green's functions G "', with external unrenor-
malized vertices N„=N"„(Z)"/ 2The equality of
these expressions allows us to repeat the steps
of Sec. IV: A differential. equation analogous to
Eq. (55) can be derived, with its solution again
yielding Eq. (111)for either Z or q' small. The
reason this rederivation of Eq. (111)is more than
an academic exercise is that the energies and
momenta in the integral are not necessarily small
when E or q are. Finally, we note that discon-

nected parts of 6 "' ' give rise to no problems in
the integral.

From the Sommerfeld-Watson transform we
learn that the elastic amplitude given via contri-
butions like I„ is

T„(s,t ) = s(lns) &t~x~

-&&~-&)fy(Sy)/2+( /4)4(pg))

xF„(t(Ins). +'x ) . (112)

and

z(g, )=1+ ~= ~

(113)

(114)

To a good approximation then we may write for
large s, fixed t

In perturbation theory for D = 2 we learned above
that

T (s, t )- s(lns)'/8[F, ,(t (Ins)" ")+(Ins) "'F, (t(lns) "'")+0((Ins) '}] (115)

or(s) - (Ins) "'[A+ B//(Ins} "'+ ~ ] (116)

in which, if we take the simple model we have
made quite seriously, the leading teem, A,
factorizes (see Fig. 17).

From this expression we have an approximate ex-
pansion of or(s):

(2) When such an infrared-stable zero (Gell-
Mann-Low zero') is present, the Reggeon Green's
functions obey the scaling properties summarized
in Eq. (99).

(3) In a model of the couplings to particles using
the values of the renormalization-group functions
found in perturbation theory we find, for example,
that

VII. DISCUSSION
or(s) -A(lns)"'[I +O((lns) "')], (118)

In this paper we have considered in detail the
implications of the renormalization group for the
most simple physically interesting interacting
Reggeon field theory. We chose a Lagrangian

Z(x, t) =-,'if'(x, t) 8, g(x, t) —a, ' &g VP

——', X,[ g (x, t)g(x, t)'+H. c.],
which represents a bare quasiparticle with an en-
ergy-momentum relation E =n, 'k' interacting with
a triple coupling. Our major observations about
this theory are the following.

(1}When A.,= ir„r, real, as suggested by
Gribov's' treatment of signature, then the renor-
malization-group equations for the renormalized
vertex functions I'„(Z&, k;) have an infrared-stable
zero of order (4-D)"', where D is the number of
space degrees of freedom. When D =4, this sug-
gests a perturbation theory (akin to the e expres-
sion" of statistical mechanics; indeed suggested
by it) around the four-dimensional theory.

where A factorizes.
(4) We have pointed out the radical difference be-

tween the renormalization-group results and the
"weak coupling" Pomeranchukon of Gribov. Typi-
cal instances of this difference are the cusp with
infinite slope in the Pomeranchukon pole trajectory
at t =0, and the fractional power vanishing of the
triple-Pomeranchukon vertex function. On the oth-
er hand, we also disagree sharply with the Gribov-
Migdal strong-coupling solution. At k' =0, we
have l „"vanishing faster than linearly in E,
whereas Gribov and Nigdal have I „"vanishing
less rapidly than linearly. We might point out that

NI

FIG. 17. The leading behavior of T&(s,t ) and 0'z(s)
comes from this contribution in the simple model dis-
cussed in the text. This yields a factorized contribution
to a'&(s) which behaves as gns)
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a strong-coupling solution also seems to have dif-
ficulties when the triple-Hegge coupling is real.
Figure 13 indicates there is no Gell-Mann-Low
zero near the origin for D & 4; and for D & 4 the
theory is nonrenormalizable. Thus any zero, if it
exists, cannot be calculated by searching for a
scale-invariant dimensionality.

The fact that Green's functions like the inverse
propagator vanish more rapidly than linearly in F.
or k' raises a subtle question. Gribov has
stressed that the high-energy and momentum

parts of Reggeon graphs are really arbitrary be-
cause the bare vertices and trajectories have de-
pendence on energy and frequency which has been
suppressed here. If we arbitrarily modify the
high-energy and -momentum tails of graphs, it
would seem that linear terms in E and k' would

appear in Green's functions like F„". This would

imply that the results we have found depend on a
special treatment of the high-momentum and -en-
ergy parts of graphs, and are unstable against
small modifications of graphs. It is difficult to
characterize such modifications systematically
and to treat them by the renormalization group be-
cause the vertices and propagators have new ener-
gy and momentum scales in them. However, we

have checked the effect of keeping a finite cutoff A

in the graphs, and find thai the behavior cited in
Eq. (99) still holds. Perhaps, then, the adChfive

argument we have given is invalid because the re-
normalization group is multiPlicative. Further
studies are planned.

Any number of future investigations are suggest-
ed by the analysis we have carried out. The most
straightforward set of investigations would include
the fbllowing steps: (a) Alter the E, fc' relationship
of the "bare" or noninteracting theory, (b) change
the nature of the interaction (the P' theory corre-
sponding to the t)

' theory in this paper has been
studied by the authors; the results will be pre-
sented elsewhere), and (c) try to bootstrap the re-
normalization-group functions y and f, which gov-
ern the structure of T,„,„,(s, f), by studying the
Schwinger-Dyson equations of the field theories.
Clearly, the interesting possibilities are legion.

At our present stage of understanding of the Reg-
geon field theories, it would perhaps be hasty to
point directly at the most physically significant
possibilities. One can argue with some confidence,
both on the basis of the present work and that in
Ref. 2, that the major alterations of the conclu-
sions established here will be in details, no doubt

interesting, involving the renormalization-group
functions.
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