9 PROOF OF THE WEINBERG SUM RULES IN... 2371

*Harkness Fellow, 1971-1973.

tPresent address.

11. Bars, M. B. Halpern, and M. Yoshimura, Phys. Rev.
Lett. 29, 969 (1972); Phys. Rev. D 7, 1233 (1973).

2J. C. Pati and A. Salam, Phys. Rev. D 8, 1240 (1973).

Sp. W. Higgs, Phys. Rev. 145, 1156 (1966); T. W. B.
Kibble, ibid. 155, 1554 (1967).

“Particle Data Group, Rev. Mod. Phys. 45, S1 (1973).

5S. Weinberg, Phys. Rev. Lett. 18, 507 (1967).

®H. T. Nieh, Phys. Rev. 163, 1769 (1967).

'T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev.

Lett. 18, 1029 (1967).

®M. Gell-Mann, Phys. 1, 63 (1964).

%, Bars, M. B. Halpern, and K. Lane, Nucl. Phys.
B65, 518 (1973).

105 Schwinger, Phys. Rev. Lett. 3, 296 (1959).

13, Okubo, Nuovo Cimento 44A, 1015 (1966).

127, Das, G. S. Guralnik, V. S. Mathur, F. E. Low, and
J. E. Young, Phys. Rev. Lett. 18, 759 (1967).

13p. A. Dicus and V. S. Mathur, Phys. Rev. D1, 525
(1973); 1. Bars and K. Lane, ibid. 8, 1169 (1973); 8,
1252 (1973).

PHYSICAL REVIEW D

VOLUME 9, NUMBER 8

15 APRIL 1974

Spectral-function sum rules in asymptotically free theories*

S. Borchardt and V. S. Mathur
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 22 January 1974)

We show that the necessary and sufficient condition to derive Weinberg’s second spectral-
function sum rule within the framework of a Lagrangian theory invariant under a local non-
Abelian gauge group G and the global chiral SU(2) ® SU(2) group is that G should commute
with SU(2) ®SU(2). The SU(3) ®SU(3) spectral-function sum rules for currents and sum
rules involving spectral functions of scalar and pseudoscalar densities are also discussed.

I. INTRODUCTION

The discovery of asymptotic freedom in non-
Abelian gauge theories by Gross and Wilczek'
and by Politzer? has already led to important re-
sults in understanding Bjorken scaling in electro-
production. The success of current algebra, on
the other hand, suggests the relevance of chiral
symmetries to strong interactions. The simplest
synthesis of these considerations is to assume
that the strong-interaction Lagrangian is locally
invariant under some non-Abelian gauge group G,
and also globally invariant (or approximately in-
variant) under the chiral SU(2) ® SU(2) group. It
has been suggested in the literature that the gauge
group should commute with the chiral group. The
motivation for this suggestion comes from the fact
that if one attempts to break the gauge symmetry
by the Higgs mechanism (to avoid massless gluons),
one also seems to lose!*? asymptotic freedom. It
has been conjectured by Weinberg® and by Gross
and Wilczek* that the gauge group G may not be
broken at all, but a certain “shielding mechanism”
may be at work due to the rather serious nature
of the infrared-divergence problem associated
with the non-Abelian symmetry, whereby only
those particle states that transform as singlets
under G can be observed (which would include all
the observed hadrons, if G commutes with isospin

and charge), but the massless gluons (and also
quarks) which are not singlets under G are unob-
servable. This is an attractive idea, but whether
it works or not has yet to be demonstrated. It has
also been shown by Weinberg® that strong inter-
actions generated by a non-Abelian gauge sym-
metry can be incorporated into the unified theory
of weak and electromagnetic interactions in a
manner which naturally conserves parity, strange-
ness, etc. Among other conditions, this synthesis
requires that G should commute with Gy, the weak
and electromagnetic gauge symmetry group, which
contains charge as a generator.

In the present paper, we wish to study more
directly the relationship (or lack of it) of the
gauge group G and the chiral symmetry. The ex-
tra information comes from considerations of the
Weinberg sum rules.® The first sum rule is a
statement about Schwinger terms and follows from
current algebra’ without any constraints on G.
However, it is well known that the second Weinberg
sum rule is model-dependent. The main result
of our paper is to show that the necessary and
sufficient condition under which the second sum
rule can be derived is that G should commute with
SU(2) ®SU(2). It should be pointed out that the
second sum rule plays a crucial role in the cal-
culations of Das et al.® in proving that the mass
difference between 7* and 7° is finite in the
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SU(2)®SU(2) limit. For Weinberg-Salam-type
unified theories of weak and electromagnetic
interactions, although one does not need the sec-
ond sum rule® for convergence of the mass dif-
ference, the numerical value of the mass dif-
ference would be hard to understand if the second
sum rule were false.

A general approach to Weinberg sum rules was
suggested'® some time ago through the concept of
asymptotic symmetry. The notion of asymptotic
symmetry has, however, been somewhat vague.
This is because it appears to be “intuitively ob-
vious,” so that one would, for instance, expect
that the second sum rule is good not only for the
SU(2) ®SU(2) group, but also for groups like
SU(3) ®SU(3) and SU(3), even when strong inter-
actions are not invariant under these symmetries.
The intuitive argument is of course naive, and
indeed one knows that the second Weinberg sum
rule (in the pole-dominated form) is contradicted!!
by experimental data for the SU(3) case. We hope
to provide clarification of the notion of asymptotic
symmetry. We show in particular that Weinberg’s
second sum rule, corresponding to some group H,
which commutes with the non-Abelian gauge group
G, can only be derived if strong interactions are
invariant under the global symmetry H. If the
symmetry H is realized in the normal fashion with
vacuum invariance [like SU(3)], this result is
trivial. The nontrivial case arises if H is a
Nambu-Goldstone symmetry, like SU(2)® SU(2) or
SU(3) ®SU(3).

We shall work within the framework of renor-
malizable field theory. The Lagrangian will be
chosen to be invariant under a local gauge group G
and also under a global group H. If G is non-Abe-
lian, the theory will be asymptotically free, and
if H is identified with the chiral SU(2) ® SU(2)
group, realized in the Nambu-Goldstone way with
pions as Goldstone particles, the current-algebra
results will be incorporated. The question whether
G commutes with H or contains H will be left open
to start with, For purposes of clarity, however,
we shall adopt a specific field-theory model, and

]

9
write the Lagrangian in terms of the quark and
gauge fields and their interaction

£=—%F;VF:U—$YMDM¢_EM¢’ (1)

where
F;u=auB:—asz—cachzB; )
D,=9,+i0" B} .

M is the quark mass matrix, C,,. are the structure
constants of the non-Abelian group G, and ¢° are
the matrices representing the ath generator of G on
the quark fields . If G commutes with H, the
gauge fields B} will be H singlets, and it is con-
venient to think in terms of the “colored” ®, :,
quarks, with G being the “color” SU(3) group. In
this case, if H is identified with the chiral SU(2)
®SU(2) group, the Lagrangian (1) will be invariant
under H only if the ® and X quarks are massless.
Note that the mass matrix is already color-degen-
erate due to invariance under the group G. On the
other hand, if G D H, and H is, say, SU(2)®SU(2),
one requires both vector and axial-vector gauge
bosons appropriately coupled and carrying, in
particular, isotopic spin.

Our investigation employs the techniques of
current algebra and the short-distance expansion
of Wilson.!? In fact, some time ago Wilson'? used
the short-distance expansion in a non-Lagrangian
framework to study the Weinberg sum rules. We
find that his results can be reproduced by field-
theory models like (1), as long as G commutes
with SU(2)®SU(2). Our analysis is closely related
to his, but for completeness and because of some
obvious differences we shall present our arguments
in some detail.

II. WEINBERG SUM RULES FOR CHIRAL SU(2)®SU(2)

In this section we identify the symmetry group
H with SU(2) ® SU(2) realized in the Nambu-Gold-
stone manner. To derive Weinberg sum rules,
we start by considering the following combination
of matrix elements:

My, (q, k) = (ZkoV)ifd‘xe""‘[(ﬂ"(k)l TV(%) V3 (0) | 7 (k) = (m°(R) | T Vi (x) V3(0) | n°(k))] , @

where V§(x) is the neutral isovector component
of vector current. The matrix element M, ap-
pears in the 7*-7° mass difference calculations,
and the reason for studying it here is that, using
current-algebra techniques, it is well known from
the work of Das et al.® that (2) is related to the
difference between the propagator functions for

r

vector and axial-vector currents. Indeed, using
the partially-conserved-axial-vector-current
(PCAC) hypothesis, and the SU(2) ® SU(2) current
algebra, we obtain in the soft-pion limit 2—~0

My, (g, k=0 =—;‘:—2[Vi,%(42)—Affu(qZ)]. 3)
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In deriving (3), we have made the usual assump-
tions that the Schwinger terms are ¢ numbers and
the ¢ terms have no /=2 component. V}}(g?) is
the vector-current propagator function

Vi (@9 =i [ dixd QI TV VOO @)

‘and Af,’,,(qz) is the axial-vector current propagator

defined in the same way as V}% (¢?) with V replaced
by A. f, stands for the 7 decay constant.

We now discuss Eq. (3) for large spacelike 4-mo-
mentum ¢ (¢%>0). The matrix element M,, is
then dominated by the short-distance singularities
of its integrand, and we shall use Wilson’s ex-
pansion!? to study these singularities. First note
that the operator product V?3(x) V3 (0) has only
I=0,2 components, and since the /=0 component
makes no contribution to the difference of 7* and
7° matrix elements, only [V3(x) V3(0)];-, con-
tributes to Eq. (2). Since isospin is a good quan-
tum number, in the Wilson expansion only /=2
local operators need be considered. To search
for operators responsible for the leading singu-
larities at short distances, we may consider the
following subcases:

(i) The non-Abelian gauge group G commutes
with SU(2) ®SU(2). In this case, the gauge fields
are isospin singlets and cannot contribute to
[Vi(x) V5 (0)];=, by themselves. Since bilinear
quark operators cannot carry /=2, it is easy to
see that the most singular contribution will arise
from operators with four quark fields and hence
must have dimension six. Since the theory is as-
ymptotically free, it follows* that in the deep
spacelike region for ¢, M,, goes to zero as (Ing?)*/
q*%. The log term arises from the exponential
function in the asymptotic solution® of the Wilson
coefficient, and the specific value of a is of no
importance to us in the present work. It follows
then from Eq. (3) that

Lim [V (@) -A%

(¢®]=0, (5

lim ¢*[V (¢®)]=0. (6)

2>

i (a®) - AL

Equations (5) and (6) are identical to those obtained
by Das, Mathur, and Okubo'® from considerations
of asymptotic SU(2) ® SU(2) symmetry. We may
now use the standard Lehmann-Killén representa-
tion

Vi (%) = 5, f&_(udm

rq f"( dm?
Wl )on2(q? +m2)

T 0

- 5# 40u4

and a similar representation for A}}(¢%), where
p, is the spin-1 spectral function and p, =p, +p,,
with p, as the spin-0 spectral function. Equations
(5) and (6) then lead to the usual Weinberg sum
rules®: '

fﬂz————”f:’f’ ") dm2=f5—!——s£:;2 A) a2, (8)

| 322, VY dm? = fp;*s (m2, A)dm?. )

Note that Eq. (6), which leads to Weinberg’s sec-
ond sum rule, also seems to imply

fpg"’ (m?, V)dm2=fp2”3 (m?,A)dm? .

However, for conserved isovector currents

33 (m?, V) =0, whereas for isovector axial-vector
currents [ p¥® (m?,A)dm?=0, since the only non-
vanishing contribution to this integral could have
come from a pion pole, but this contribution is
proportional to the pion mass, which vanishes in
the SU(2) ® SU(2) limit that we are considering.
Thus there is no extra sum rule. Note also that
in the first sum rule (8) we can of course replace
P32 (m?, V) by p;® (m?, V) on the left-hand side, but
cannot replace p3® (m?,A) by p;® (m?,A) on the
right-hand side since

[REA 4

receives a nonvanishing contribution from the
(massless) pion pole.

(ii) The non-Abelian gauge group contains SU(2)
or SU(2)®SU(2) as a subgroup.'® In this case the
gauge fields would carry isospin, so that in the
short-distance expansion of [V (x) V3(0)]-, the
most important contribution will come from the
I =2 components of gauge-invariant operators
like 6, F;4(0) F;4(0) or F,(0) F;,(0). These
operators have dimension four, so that for large
spacelike g, M,, would now behave as 1/¢° times
some power of Ing?, for the asymptotically free
theories. This asymptotic behavior leads to Eq.
(5), but not (6), so one can derive only the first
Weinberg sum rule (8) and not the second.

From the arguments outlined in the cases (i)
and (ii), it follows that the necessary and sufficient
condition to derive Weinberg’s second sum rule
for a Lagrangian field theory invariant under a
non-Abelian gauge group G and under the chiral
SU(2) ® SU(2) group is that G should commute with
the chiral group.

A few remarks are in order at this stage.

(a) It is easy to see that Weinberg’s first sum
rule follows directly from Eq. (3) if we multiply
it by ¢, and observe the Ward identity
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quM,, =0 . (10)

This follows from (2) by current conservation and
the assumption that the Schwinger term is a ¢ num-
ber (it is actually sufficient to assume there are

no I=2 Schwinger terms). Now from Egs. (10) and
(3) and the Lehmann-K#llén representation for

Vv and A, we directly obtain Eq. (8). This is not
surprising, since it is well known that the first
sum rule which states that the vector and axial-
vector Schwinger terms are equal can be obtained’
algebraically from current commutators.

(b) The Lehmann-Killén representation in the
form (7) assumes no subtractions. However, it
is easy to see from the renormalization-group
equations that V,,(q?) and A, (¢%) behave as ¢*
for large g, so that subtractions are needed in gen-
eral. A prescriptionfor performing the subtractions
has been discussed by Wilson.!* For our purposes,
suffice it to say that these subtraction terms must
be identical for V33, (¢?) and A3} (¢°) in the SU(2)
®SU(2) limit.

(c) It is of interest to see how the above analysis
is modified if the theory is not asymptotically
free. Suppose as an example that G contains an
Abelian subgroup. If the gauge fields do not carry
isospin, in the limit ¢ -, the most important
contribution to M,, will come from a local oper-
ator quadrilinear in y, as discussed before. How-
ever, such an operator will now have anomalous
dimensions, and M,,(¢) will behave asymptotically
as (¢?)?/q* times some power of Ing?, where y
is the anomalous dimension. The second sum rule
will then follow only if y<1.

III. WEINBERG SUM RULES FOR CHIRAL SU(3)®SU(3)

Before we discuss the generalization of Weinberg
sum rules to the SU(3) ® SU(3) currents, it is in-
structive to reconsider the derivation of Sec. II
in an alternative way. Consider the matrix ele-
ment

T3 (a, k) = (26, V)%
xfd4xe‘¢‘*(o|Tv;',(x)A,{(o)ln"(k)).
(11)

Using PCAC and current algebra, one obtains in
the soft-pion limit

T80, 8 =0) =22 [frA3h (@) 44 V4 @), (12)

In particular for i=1+42 and j=1 -2, we obtain
using isospin invariance

o1 2V2i
T} 124742 (g, k= 0) =71 (V33 (g) -A% (7).
. L:

(13)

As before, we now discuss Eq. (13) for large
spacelike g. We shall henceforth assume that the
gauge group G commutes with SU(2) ® SU(2). We
now seek the Wilson expansion for the operator
product V}**2(x)AL™*2(0), and from isospin in-
variance we now expand this product in terms of
local operators corresponding to /=1, Thus, in
contrast with the case in Sec. II, contributions
from operators bilinear in the quark field can no
longer be dropped on the basis of isospin argu-
ments. There isof course no contradiction, as
the following argument shows. Note first that
Lorentz invariance together with parity and iso-
spin conservation shows that, in the limit 2 -0,
the operator with the least dimension that contrib-
utes to the left-hand side of Eq. (13) is given by
8,4 (Zvs49);-,, Where g stands for the quark proton
or neutron field. Note that only the pseudoscalar
density can contribute in the 2 -0 limit. However,
qvsq is proportional to 8,(7y,7sq), whose matrix
element between a pion and vacuum state must be
proportional to M,?, vanishing in the chiral limit.
It is easy to verify that in the Wilson expansion
the most important nonvanishing contribution
comes from operators quadrilinear in the quark
field with dimension six. For asymptotically free
theories, as before, Weinberg’s second sum rule
for SU(2) ® SU(2) currents follows immediately.

The above procedure can be easily generalized
for the SU(3)®SU(3) currents. Before we do this,
however, we would like to generalize the argument
that leads to vanishing matrix element for the
pseudoscalar density gy.g, as discussed above.
This conclusion follows, in fact, from v, book-
keeping. Under the chiral SU(2) transformation
on proton or neutron quarks ¢ =($),

q"‘ysq; q"-zl_'}’s, (14)

note that the isovector currents V}, and A} are
even (go into themselves), but the isovector pseu-
doscalar density is odd. If the theory is invariant
under chiral SU(2) transformations, it is clear
that in the Wilson expansion of the operator product
like V1" *2(x)A1"2(0), pseudoscalar density terms
like P“fﬁyf,%kgq cannot contribute. However, if
the theory is not SU(2) ® SU(2)-invariant, because
of mass terms, the pseudoscalar density terms
can contribute, but are multiplied by an odd power
of m, the proton or neutron quark mass, since in
this case the theory will be invariant under the

¥s transformation (14) together with mass reversal
m——-m.,
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For the SU(3)®SU(3) octets of vector and axial-
vector currents, one can easily see that the
strangeness-preserving currents V}?**® and
Al}*%8 are even under the SU(2) y, transformation
(14). Furthermore, for strangeness-carrying
currents the V —A combinations V3 +A%s, v
+AS""" together with their Hermitian conjugates
are even, whereas the V+A currents V'S — A%
V&7~ A%"" and Hermitian conjugates are odd under
the transformation (14). If SU(2)®SU(2) is a good
symmetry, the property of evenness or oddness
must be preserved in the Wilson expansion of
operator products of currents. It is now easy to
show that if the theory is SU(2) ® SU(2)-invariant,
but not SU(3)® SU(3)-invariant, the second Wein-
berg sum rule for strangeness-carrying vector and
axial-vector currents cannot be derived. Consider
the case when the indices 7 and j in Eqgs. (11) and
(12) refer to strangeness-carrying currents. It
is clear that in order to derive the second sum
rule the matrix element T, must vanish suffi-
ciently rapidly as g — « so that the left-hand side
of the formula (12) does not receive contribution
from the pseudoscalar density operator P, in the
Wilson expansion of the product V},(x)A}(0). Since
P, is an odd operator, the way to guarantee this
is to start with the product of currents which is
even. However, it is easy to verify that for even
combinations like

[V 52) +AS5(0) [V3%0) + 43(0)
or
[Vz-r»is(x) _Ar}is(x)][v?l-ﬁ(o) —A:-‘E(O)]

the right-hand side of Eq. (12) vanishes. On the
other hand, this right-hand side is proportional
to the desired difference between the propagator
functions for strangeness-carrying vector and
axial-vector currents only if we start with odd
combinations like

[Viris(e) + AL ()] V5(0) - A% (0)]

in the definition (11). In this case, however, op-
erator terms like P, will contribute in the short-
distance expansion, and one cannot derive the
second sum rule for strangeness-carrying cur-
rents. Note, however, that the first sum rule

44 2 44 2
[V gz [0 A) (15)

does follow.

It is of interest to note that the second SU(3)
®SU(3) sum rule can be derived if the Lagrangian
is SU(3) ®SU(3)-invariant. In this case the @, 3, 1
quarks are massless and the theory is invariant
under the y, transformation ® -y ,®, N-y N, and

A—~ys\. It is easy to see that under this extended
ys transformation V} and A} (i=1,...8) are all
even, but P® is odd. Thus, if we choose i=4 +i5,
j=4-15 in Eqgs. (11) and (12), the asymptotic be-
havior of T, will be determined by operators of
dimension six or more, and both SU(3) ® SU(3)
sum rules can be derived. Alternatively, one
could start with matrix elements of suitable cur-
rents sandwiched between a kaon and vacuum
states, and use kaon PCAC to derive the two
SU(3)®SU(3) sum rules. Clearly the validity of
the second SU(3) ® SU(3) sum rule then depends on
how good SU(3)®SU(3) symmetry is, and, at
least, one expects that it is not as well satisfied
as the second SU(2) ® SU(2) sum rule.

IV. SUM RULES FOR SCALAR AND PSEUDOSCALAR
DENSITY SPECTRAL FUNCTIONS

In this section we apply our technique to study
the spectral-function sum rules for scalar and
pseudoscalar densities

S (x) = Px)3A H(x),
Pu(X) = iWX)TS%A a‘p(x) ’

where «=0,1,..., 8. Note that the nonets S® and
P® transform as the (3, 3)® (3, 3) representation of
SU(3)® SU(3) and satisfy the following commuta-
tion relations:

[Vi(x),S 0} =0=fi asS 8(0)6°(x),
[Ve(x), PO, p-0=ifi s PP(0)6%)(x),
[A(%), $(0) ], =0 =id ;s P?(0)8°(x)
[A4(x), PN0) ) =0= —id; apS P(0)8%(x),

where i=1,..., 8 and a, 8 can take the values
0,1,...,8. Define the matrix element

(16)

1m)

TaB(q’ k) = (ZkoV)Uzi
x [ dtx e**(0] TS *(x)PP(0) [ 1°(k)) .

(18)

Using PCAC and the commutation relations (17),
one obtains in the soft-pion limit

Taﬂ(q, k-0)= %[dsaypys(qz) —dsﬁysay(qz)],

(19)

where S ®® is the propagator function for scalar
densities

$°(g? =i [ d'x Ol TS (S 0)0)  (20)

and P*? is the corresponding function for pseudo-
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scalar densities.

If SU(2)®SU(2) is a good symmetry, it is easy
to verify that for strangeness-preserving densities
S°—v2S% and P°-V 2 P® are even under the 7,
transformation (14), whereas V2S°+S%, V2P°+P®,
S1:2:3 and P'?:* are odd. For strangeness-carry-
ing densities, S**'5+iP**5 §®*7 . iP®7 (and Her-
mitian conjugates) are even, while S$**5 - iP5
§8*7 _ {P8*7 (and Hermitian conjugates) are odd.

As before we choose an even operator product
in Eq. (18), so that in the Wilson expansion the
operator term proportional to P® does not contrib-
ute. For strangeness-preserving densities, op-
erator products even under the y, transformation
(14) and odd under G conjugation are [V/2S%x)
+5%(x))P%(0) or [V2P%(x)+P*(x)]S*(0). Defining

V2 P%(x) + P8(x)
ﬁ ’

with a similar definition of S_(x), we obtain the
following asymptotic relations:

Lim [P*(g?)-$7"(¢*)]= Lim [S**(¢*) - P~"(¢*)]

P_(x)=

=0, (21)
]éiixl q%[P*(q?) ~S""(g?]= Lim ¢q%[S**(¢g?) - P "(¢?)]

2

=0. (22)

Equation (21) implies that although the spectral
representations for S *® and P*® individually may

require subtractions, no subtractions are needed
for the combinations that appear in Egs. (21).
Equation (22) leads to the spectral-function sum
rules

f p="(m?, PYim*= [ p*(m?, S)am?, (23)
[ o7=(m?, S)am? = [ e2m*, Pram. (24)

Note that these are the only sum rules that can be
derived on the assumption that the theory is SU(2)
®SU(2)-invariant and the gauge bosons do not
carry isospin. As in the case of vector and axial-
vector current densities, it is easy to check that
in the SU(2)® SU(2) limit no sum rule for strange-
ness-carrying scalar and pseudoscalar densities
can be derived. All one can obtain in this case
are results similar to Eqs. (21), which bear only
on the question of subtractions in the spectral
representation. However, if we assume that the
theory is invariant under the higher symmetry
group SU(3) ®SU(3), additional sum rules can be
obtained.!® Since the experimental information on
scalar mesons is somewhat sketchy, it is not
very useful to discuss the saturation of the sum
rules (23) at the present time.
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