
PHYSICA L REVIEW D VOLUME 9, NUMBER 1 1 JANUARY 1974

Peripherality of tensor and vector exchanges in an

approximately unitarized dual mm model. II*

Louis A. P. Ballzs
DePartment of Physics, Purdue University, Lafayette, Indiana 47907

(Received 20 June 1973)

We consider a simple xm model in which we first dynamically generate a low- and interme-
diate-energyabsorptive. part A and then calculate effective Regge residues in terms of A via
finite-energy sum rules (FESR). In an earlier paper, A was calculated by unitarizing the
Lovelace-Veneziano model. In the present paper we follow a somewhat less model-dependent
procedure. In states and energy regions where no important narrow resonances are present,
we evaluate the (background) A by using approximate unitarity and the duality assumption that
amp1itudes are well approximated on the average by Regge exchange. Elsewhere the reso-
nances (p and f ) are put in by hand. Pomeranchuk (P) parameters are taken from experiment
or calculated from simple models. Exchange degeneracy and two-component duality are not
assumed a prio~, although we Gnd that exchange degeneracy is approximately satisfied by
our output Regge residues at t = 0. For t &0, on the other hand, we find that it is broken.
Specifically, p exchange is peripheral, as required by the dual absorptive model, whereas f
exchange is not; a similar conclusion was reached on purely phenomenological grounds by
Barger, Geer, and Halzen for other reactions.

I. INTRODUCTION

In an earlier paper' it was found that, if we sat-
urate vs finite-energy sum rules (FESR) with an
approximately unitarized Lovelace-Veneziano mod-
el, we obtain a vector exchange which is periph-
eral, as predicted by the dual absorptive model, '
and a tensor exchange which is not. This is con-
sistent with recent experimental evidence, which
points to a similar conclusion for the s-channel
helicity-nonf lip amplitudes of other processes. '
Unfortunately our approach was based on the rath-
er specific Lovelace-Veneziano model, which
might be difficult to generalize. In the present
paper we shall therefore follow a somewhat more
general approach. In states and energy regions
wher e no important narrow resonances are pres-
ent, the background is generated dynamically from
Regge exchange by combining approximate unitarity
with simple average duality; although the Love-
lace-Veneziano model is still used to calculate
certain Regge residues in practice, it is not es-
sential to do so. Elsewhere the resonances are
put in by hand, although eventually they could be
related to Regge behavior in the crossed channel.

In See. II we discuss our model for the back-
ground below the pp threshold. This is then used,
along with the p and the f' resonances, to calculate
effective Regge residues via FESH in Sec. III, with
the parameters of the Pomeranchukon P taken
from experiment. In Appendixes A and 8, how-
ever, these are calculated theoretically.

II. A SIMPLE MODEL FOR xm BACKGROUNDS
BELOW THE pp THRESHOLD

If one looks at the empirical situation fox gg

scattering below the pp threshold' one finds:
(i) The prominent peaks are the peripheral p and

f' resonances, which dominate in the 0&s&2m~'
and 2m''&8&4m'' energy intervals and the I=1,
J = 1 and I= 0,J = 2 partial waves. %e shall approx-
imate their contributions to the absorptive part A
in the usual way by 5 functions, assuming masses
mz = 765 MeV and mf = 1267 MeV, and widths I'z
= 125 MeV and I'& = 150 MeV. Any residual back-
grounds under these resonances are also assumed
to be absorbed by these 5 functions. This was
checked explicitly for I=0 =1 using experimental
phase shifts4 and found to be a good approximation.

(ii) All other partial waves and energy intervals,
which then constitute a background, appear to be
either smooth or to have, at worst, broad gentle
bumps, such as the c. This is in spite of the pres-
ence of a second-sheet pole like the 5*, which has
very little effect on the NI cross section, even
though it may be prominent in Xg scattering. ' In
fact we will completely neglect the effect of the
Eg channel and assume that nn scattering is ap-
proximately elastic below the pp threshold. This
may be a poor approximation if we are interested
in the fine details of our process, but should be
reasonable enough if all we want is the average
absorptive part over a broad interval.

In such background situations, where no promi-
nent peaks are yresent, duality suggests that it
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should be reasonable to set T= T„, at least on
the average, even at relatively lorn energies. ' In-
deed it may even be possible to approximately re-
produce broad bumps in this may, at least within
a given partial mave. ' Once me have T, we can
generate an absorptive part A =ImT via the approx-
imate partial-wave unitarity condition'

T„';*,=-pV(t, u), (2a)

where q is the c.m. 3-momentum and s = (energy} .
In this way we obtain a finite absorptive part even
in situations where TR,~, is purely real, as might
happen in an exotic channel. '

Since Eq. (1) will be applied at relatively low en-
ergies, me wiB drop the contribution of the P in

TR~ and assume that it is given by the Lovelace-
Veneziano model. ' In othex words, we are assum-
ing that such a dual exchange-degenerate model is
a good zeroth-order approximation to the amplitude
and should be adequate for calculating background
terms, mhich are, after all, basically just eorree-
tions to the p and f resonance contributions. (In
a more accurate calculation, of course, ImT„~,
should be made self-consistent with the output AR~
which we mill calculate in Sec. III, while ReT
should be calculated from Im T via a dispersion re-
lation. ) We then have

A= 2J+1 A &~ 1+/ 2q (5)

In calculating the background A~ we have assumed
that Regge behavior has some kind of validity even
at rather low energies. This may seem somewhat
dubious for ss 2m&'. Nevertheless, it tuxns out
that the resulting average A~ for 0&st 2m&' is
within roughly 10% of the value obtained from the
experimental phase shifts for the I=O, J =0 state. 4

The situation is somewhat harder to check directly
for the I=2, J=0 state, where the phase shift is
very poorly known. ' However, in this case Eq. (4)
is already a smooth function and so me can calcu-
late A~ directly without using the asymptotic form
(3) (see Appendix C). Moreover, it can be explic-
itly shown that for other exotic channels, such as
K'p and pp scattering, the absorptive part is given
to within roughly 30$ by P exchange. ~ If we assume
the same thing for I=2 gg scattering, with the P
residue given by factorization in terms of the @
and pp cross sections, we find that the resulting
absorptive part agrees quite well mith our calcu-
lated value. Actually it turns out that even if we
reduce the contribution of the I=2, J=0 state for
s&2mp' by a factor of 2, none of our qualitative
conclusions are changed thereby, and even our
quantitative results are not changed by more than
about 10'.

T„'='.=-P[V(s, t}-V(s, u)],

Ta',~ = --,'p [3 V(s, t) +3 V(s, u) —V(t, u}],

where

V(s, t) = I (I —a(t))(-s)""&,

which is just the asymptotic form of

(2b)

(2c}

(3)

III. EFFECTIVE p AND fREGGE RESIDUES

As in Ref. 1„we mill nom make the Harari as-
sumption that the high-energy absorptive part (but
not necessarily ReT) can be approximated by the
effective Regge behavior

=Pb (t)s «' (8)

I'(1 —a(s))l'(I —a(t))
I'(I —a(s) —a(t)) (4)

and where s, t, u are the usual Mandelstam vari-
ables, a(t) =-,'(1+ t/m p ) is the Regge trajectory,
and P is given in terms of the p width I'z. %e mill
take P =0.6, which corresponds to X'z =125 MeV.

The approximate partial. -wave projection of Eqs.
(2) is discussed in Appendix C. The resulting

mere then used to evaluate A~ through Eq.
(1}in the 0&s &4m~' interval for I=O, Z=O and
I=2, J =0, and in the 2m' &s&4mz' interval for
I=1, J=1. The 0&s&2mp' interval for I=1, J=1
and the 2m''&s&4mz' interval for I=O, J=2 are
given in terms of the p and f' resonances, as we
have seen already; elsewhere A~ can be neglected
since it is a sufficiently high partial wave for
s &4m~2. Combining these background and reso-
nant A we can nom calculate the full absox'ptive
part A by using the partial-wave expansion:

with a, (t}=a,.(0)+ a,'t. This assumption is approx-
imately consistent with experiment and leads to
the FESR

r
N

ds(A-A„., ) =0,
0

where we take A from Eq. (5). Equations (6) and
(7) now enable us to calculate the b, (t).

Although our numerical values are somewhat dif-
fexent, our qualitative conclusions are identical
with those obtained in Sec. HI of Ref. 1 [but with
the central T~ "backgrounds" now given by Eq.
(1)]. If we also take the same N, a, , u [= /b~]b,
and It [=b~(0)/b~(0)], "we obtain b~(0) =0.523 and
a zero of bz(t) at t= -0.225 GeV '; this corre-
sponds to a zero of Z,(r~t) with r= 1 fermi, in
agreement with the dual absorptive model (DAM).
For I, = 0 we obtain b~(0) =0.844, which gives an
asymptotic cross section o„,=11.2 mb and zb( )0/
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b~(0) =1.61. Experimentally o;„=15mb, while ex-
change degeneracy gives an f -p ratio equal to 1.5.
On the other hand, with a~=0.5~&, the first zero
of bz(t) appears at t =0.57 GeV ', in complete dis-
agreement with DAM. To get agreement, one
needs a much larger z~. For example, a~=a&
gives bz(0) =0 at t= -0.24 GeV'. However, such an

a~ seems to be difficult to reconcile with experi-
ment. ""

It should again be emphasized that our conclu-
sions were based mainly on certain general prop-
erties of the resonance and background terms and

are not sensitive to the details of our model. This
can be checked, for example, by repeating the cal-
culation with a difference of two FESR, instead of
using a single FESR as in Eq. (7). Specifically we

took

.4m' 2

ds(A —AK%) = 0 .
~ 27ftp

(6)

This involves a rather small energy interval but

has the advantage that we do not have to assume
any kind of Regge behavior at very low energies.
None of our qualitative conclusions were affected.
The results for b~(0), b&(0), b~(0) were at worst
within about 10% of the ones using Eq. (7). The
zero of 5~ moved to t = -0.16 GeV', while that of

b~ disappeared completely for n~s 0.5ez', so that

p exchange is somewhat more peripheral and f ex-
change is even less peripheral than before. With

a.~= nz, the zero of bz again occurred at about the
value predicted by DAM, although this slope is
much larger than the experimental pp value, as
we have seen.

IV. CONCLUSION

In both Ref. 1 and the present paper we used FESR
to calculate effective Regge residues in terms of
low-energy absorptive parts. In Ref. 1 the latter
was taken from an approximately unitarized Love-
lace-Veneziano model. In Sec. II, on the other
hand, it was assumed to be given by a sum of pe-
ripheral resonances plus a background generated
by combining unitarity with the assumption that, in
nonresonant situations, T = Tg,~„at least on the
average, even at relatively low energies. Other-
wise the arguments and conclusions are very sim-
ilar, however, with the background of Sec. II play-
ing the same sort of role that the central T~ do in
Ref. 1. In both cases we are led naturally to a pe-
ripheral p and nonperipheral f exchange.

In Sec. II the Lovelace-Veneziano model was still
used for the p and f Regge residues in the back-
ground equation (1). In a more complete calcula-
tion, however, these residues should instead be
made self-consistent with the output p and f resi-

dues which come out of the sum rule (7}. Instead
of using a simple Regge-pole form for T„,~, we
should probably also use Regge behavior only for
Im T, where it seems to work better, 2 particularly
at lower energies. Then Re T could be calculated
from ImT via a dispersion relation. In effect this
is what we already did for s &2m&' in the I,=2
state. Finally, we should add P exchange to the p
and f in Eq. (1). Of course this kind of calculation
would probably be much more involved than the
one reported above.

So far, we have only applied our approach for
t & 0. By extending it to t& 0 we could also calcu-
late output p and f ' resonance widths from the
bgmz') and bz(mf') which come out of Eqs. (6) and
('I). We could then require these to be self-con-
sistent with the input resonant A~, which we in-
serted into Eq. (5}. This would lead to nonlinear
relations. In contrast with certain earlier dual
"bootstrap" programs it should therefore be ca-
pable of fixing the absolute values as well as the
ratios of these widths.
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APPENDIX A: EXTENSION OF OUR METHOD
ABOVE THE pp THRESHOLD

In this appendix the parameters b~(0} and a will
be calculated by extending our method above the

pp threshold. As long as we are still in the quasi-
two-body region we shall assume that the dominant
intermediate states are mn and RR, where R is the
low-energy 2s system. Something like sA, is ac-
tually dual to RR so that we would be double count-
ing if we included both at the same time, at least
in any given region of phase space. On the other
hand, the known resonances in this region, such
as the g (Ref. 12) and the recently discovered
p'(1500) tend to decay primarily into RR.' This
choice is also the intermediate state most consis-
tent with the Amati-Bertocchi-Fubini-Stanghellini-
Tonin model.

Above the pp threshold the only prominent peaks,
such as the g, appear to be in the I,=1 state. None
of the narrow high-mass objects reported previous-
ly have been confirmed, ' and even if they were
there, their contribution to FESR should be small
relative to the background. The broad gentle bumps
which are in fact observed' should be well approxi-
mated on the average by a background-generating
expression such as Eq. (1), provided we also in-
clude the RR intermediate state. Diagrammatically
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this is equivalent to calculating the I,=O, 2 absorp-
tive parts from Fig. 1. We will denote the contri-
butions of Figs. 1(a) and 1(b) as A"' and A"", re-
spectively.

Production experiments suggest that the horizon-
tal Regge lines of Fig. 1(b) are well approximated
by elementary one-pion exchange, provided we put
in an off-shell correction. For the latter we will
use the Lovelace prescription' of merely putting
in an over-all function of the virtual pion mass.
In addition we will assume that the low-energy ab-
sorptive part A of Fig. 2, out of which Fig. 1(b)
can be constructed, "can be approximated by a
single 5 function 4

AI (s, t) =Cz (t)5(s-m„'),
with

4mp
2

Cz (t)= ) dsAz (s, t),
t

(A1)

(A2)

p, f

R

p, f

(a}

FIG. 1. Unitarity diagrams giving (a) A~~ and (b) A~
for s & 4mp . All our external lines are pions.

where A is given by Eq. (5) and m„' =2m p', which
is the midpoint of the elastic region 0&s & 4m p' in
our model. Figure 1(b) then gives

A,""(s, t) =
I C, (t) I'w(s, t)8(s -4m„'), (A3)

where 8 is the usual step function and cu(s, t) is a
function which contains all the off-shell corrections
but is independent of I, .

In some average sense our quasi-two-body ap-
proximation should now be reasonable up to s
=9m~', at which point the RRR intermediate state
can be expected to become important. We will
therefore take N=9ms' with A=A""+A"" in Eq. (7)
and subtract from this the sum rule (7) with N
= 4mp, which was already enforced separately in
Sec. III. Using Eq. (6), we find that the resulting
I, = 0 and I, = 2 sum rules now become

9m' 2

ds[(pbbs+ bp)s p+ gbps P-Ai
4mp

2

—(-.'IC, I'+ IC, I'+~lc, l')m] =0, (A4)

9m' 2

ds[(ebs —
2 bp)s P + g bps &-Ag

4mp

—(-,'Ic, l'--,'IC, I'+~lc, l'}~]=0. (A5}

FIG. 2. Low-energy off-shell A which can be used to
construct Fig. 1(b).

We have neglected any kind of low-lying I, =2 Regge
exchange, which should be quite reasonable for s
)4mp .

To evaluate A„we could again use Eq. (1), as
in Sec. II. Since we are assuming that this is en-
tirely given by background, however, Eqs. (2) may
be too crude in this case. Instead we shall take
advantage of the fact that A""=f(t}s' s~' + ' for
large s, at least to within logarithms and P ex-
changes, which we shall ignore. This in turn im-
plies that A"" itself satisfies FESH'":

t ds A"' =f(t)N s ' /2n„(t/4) .
0

(A6)

To determine f(t) we took N=4mp2 and used the ex-
pressions for A =A'" as calculated in Sec. II for s
&4mp'. The contributions of the A'" to Eqs. (A4)
and (A5) can then be calculated by taking N=9m„'
in Eq. (A6) and subtracting from it the same FESR
with N=4m p'. If we now eliminate J wds between
Eqs. (A4) and (A5), we obtain a single relation be-
tween the Hegge parameters at a given value of t.
For simplicity we only considered this relation
and its t derivative at t = 0 (the differentiation was
carried out numerically).

If we now combine these two constraints with
those obtained in Sec. III we obtain bt(0) = 1.074,
bp(0}=0 643, an. d a=4.35 —3.20op. Our asymptotic
cross section is thus o&„—- 8.6 mb, which is smaller
than the experimental value of 15 mb. Our ratio
R=0.60 is also somewhat smaller than the value
R =1 suggested by np and pp experiments, although
it must be remembered that this ratio is difficult
to extract experimentally. On the other hand, our
ratio b&(0)/bp(0) =2.05 is somewhat larger than the
exchange-degeneracy prediction of 1.5. However,
this ratio is a fairly sensitive one in this calcula-
tion and there is in any case no particular reason
to expect exchange degeneracy to be very accurate
in view of its failure for t0.

If we insert our calculated value of a into Eq. (6),
we obtain the diffraction-peak width parameter u
=8.70+9.61m~ at s=3000 GeV'. With 0.~=0 5 o.p

=0.425 GeV ' this gives a value gg =12.8 GeV ',
which is about the value observed at ISR for pp
scattering, while z~= ap gives a value sv =16.9
GeV ', which is larger than the experimental pp
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value. This would be an added reason for not tak-
ing such a large value of n~. On the other hand,
one needs a large value of a~ in order to get the
sort of zero of b&(t) predicted by DAM, as we have
seen.

where we have put in an extra factor of 2 to take in-
to account the contribution of the backward direc-
tion and put in the lower limit to correspond to 0
=90, so as to avoid double counting. For s & 2mp'
it was also a reasonable approximation to take the
lower limit at t=-~. This gave

APPENDIX B: MULTIPERIPHERAL
MODEL CONSTRAINTS 2pr(1 —n, )(n's)"' '

(TR~e I (C3)

Up to now, we used an o.~(t) inferred from ex-
periment. In the Appendix of Ref. 1, however, we
saw that an additional relation between the f and P
parameters at any t can be obtained by assuming a
simple J-plane structure consistent with a broad
class of multiperipheral models. "" By combining
this relation and its t derivative at t=0 with the
constraints of Sec. HI, we obtain approximately the
same results for b~(0) and bz(0) as were quoted in
Sec. III. This time, however, we also calculate
n~ at the same time, obtaining n~(0) =0.986 and

o.~=0.218 GeV '. This sort of n~, as we saw in
Sec. III, leads to a nonperipheral f exchange and is
consistent with experiment.

APPENDIX C: CALCULATION OF BACKGROUNDS

r(1 —o.(t))=r(1 —o.,)e ' '«' (C1)

in Eqs. (2)-(4), where y=l"/I' and o, =n(0). We
also set (-s) =e ""s . It is now trivial to make
the partial-wave projection

dt
TRegge 2 TRegge Pg + ~gg 2 q 2q

(C2)

Since only the small-t region is important asymp-
totically, we make the exponential approximation

(r, .), =(—.r, .),=. & ~4, ),0 X 0 tt'O

$0 —1n~ S+ $77

(C4)

I (1—
g, —1 nn's f+w

x 1+ —. . . (C5)c
2

n's $, —lno. 's+in

where g, = g(1 —o,). These expressions were then
inserted into Eq. (1).

In carrying out the s integrals of Eq. (l) for
2mp &s&4mp', it was assumed that the variation
of the 1not's terms in Eqs. (C3)-(C5) could be
neglected. All these terms were therefore eval-
uated at s=1.5/n'=3m~'. The integrals J,' ~

xA'(s)ds were evaluated by using a simple Simpson
three-point rule. In evaluating A~ through Eq. (1)
it was important to keep the correct lower limit in
Eq. (C2) for s &2m'', however. For 1=2, we also
followed the more accurate procedure of using Eq.
(4) instead of Eq. (3) in evaluating Eq. (2a) for s
&2mp, even though the final results are not too
different from each other.
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