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Both sets of Weinberg spectral-function sum rules are proved in the context of the Bars-
Halpern-Yoshimura model. We f'irst discuss how to obtain the appropriate weak currents of
the hadrons in such a gauge model, and then obtain the results by proving the equal-time
commutation relations [Vp, Vq ] = [A,",~,'], a d [e,V,"-a,. V,",V~] = [a~,". -e,.a,",X,']; the
proof allows the spectral-function integrals involved to be different for the separate I-spin
multiplets.

I. INTRODUCTION

Recently, models have been proposed for a uni-
fied theory of strong, weak, and electromagnetic
interactions, "based on the ideas of local gauge
invariance and the Higgs-Kibble mechanism. ' In
one of these, ' the strong spin-1 gauge bosons are
identified as the usual low-lying nonets of spin-1
mesons, ' i.e., the p, &„etc., and (some of) the
spin-0 mesons as the corresponding pseudosealar
and scalar particles, i.e., ~, 7f~, etc.

In such a model, it seems natural to check

whether the Weinberg spectral-function sum rules'
for the weak currents of the hadrons can be proved,
since there is no convincing proof to date. ' The
very interesting algebra-of-fields approach em-
ployed by Lee, Weinberg, and Zumino' has the
basic drawback of being based on a nonrenormal-
izable model. Accordingly, in the present paper,
we use the renormabzable gauge model of Bars,
Halpern, and Yoshimura as a convenient vehicle
in which to prove the equality of the two sets of
time-space equal-time commutators for the vector
and axial-vector currents from which Lee et al.
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derived the two sum rules. It should be remarked
that the sum rules are proved in their less re-
strictive form, i.e., there is no reason for the
spectral-function integrals to be equal for different
values of the I-spin, and the loosening of this con-
straint is welcome, since certain undesirable con-
sequences for &» parameters are thereby avoided. '

The format of the paper is as follows. Section II
contains a brief summary of the Bars-Halpern-
Yoshimura (BHY) model, while Sec. III has a more
detailed discussion of the U-gauge fields and their
couplings, since it is important to be able to iden-
tify certain fields with known physical particles.
In See. IV we define the weak currents of the had-
rons (in the sense of Gell-Mann's current-algebra
currents), ' and then demonstrate, using the canon-
ical commutation relations of the fields, how these
currents do satisfy the usual current-algebra re-
lations, and also those equal-time commutators
(ETCs) including both time and space components,
from which both Neinberg spectral-function sum
rules ean be deduced. ' Finally, Sec. V contains
some concluding remarks, including a summary of
general conditions, obtained by Bars, Halpern, and
Lane, ' under which both sum rules must be valid
in a large class of renormalizable models.

II. BARS-HALPERN- YOSHIMURA MODEL

In this section, we give a brief summary of the
above model and introduce our own notation for
later convenience; the original paper' contains a
detailed explanation of the choice of groups, rep-
resentations, etc.

The gauge group of the strong interactions is
chiral U(3)~ R U(3)s, with three independent sets
of 18 real fields X, Y, and Z (in a 3X3 complex
matrix notation) respectively transforming ac-
cording to the (3, 1), (1, 3), and (3, 3) representa-
tions; i.e., the X couple to the "left-hand" gauge
mesons J'„, the 7 to the "right-hand" A'„, and
the Z to both (a runs from 0 to 8). Under parity
transformations, X—F, Z- Z', and L„—8„.
In addition, there is a further global chiral U(3)~
8 U(3)s group under which X and I' transform as
(3, 1) and (1, 3), respectively, with the remaining
fields all being singlets. The set of hadrons is
completed by two sets of quarks, q~ and q~, which
transform as triplets under the appropriate gauge
groups, and are neutral under the primed group.
The vacuum expectation values of the spin-0 fields
have the form

This ensures that the vacuum is invariant under
parity, I-spin, and hypercharge transformations.

To introduce the weak and electromagnetic inter-
actions in the manner of %einberg, we have four
new gauge fields W„' (a=1, 2, 3) and B„belonging
to an SU(2)~ 8 U(1)" group which has to be em-
bedded in the hadronic primed group. However,
in order to eliminate all strangeness-changing
neutral processes to first order, BHY found it
necessary to enlarge this primed group to U(4)~
S U(4)s, so that the matrices X and F now acquire
an extra column each. Furthermore, since the
weak bosons couple both to strange and nonstrange
hadrons, the SU(2)~" group has to undergo the
Cabibbo rotation relative to U(4)~, so that it is
a rotated 8'„matrix, 8'„=—AR'„'T'A ', which cou-
ples to thehadronsX: Here, the sumona includes
the first three generators T' of the U(4)~ group,
and 8 represents the Cabibbo rotation:

1 0 0 0
0 cos8 sin6) 0
0 -sin8 cos8 0
0 0 0 0

Finally, the generator of the U(1)' group is fixed
by the properties of the electric charge generator
Q, and its relation to the generators of the primed
and unprimed groups.

The leptons are introduced into representations
of the rotated primed group, as is the "%einberg
scalar" field Q- P= pT'+i(u'T', where a again
runs from 1 to 3. The vacuum expectation value
of P, &Q) =qT„ is responsible for the major part
of the W„mass and for the lepton masses (just as
the quark masses are proportional to (Z)). Also,
there is a gauge-invariant coupling of ft) to the
hadrons, which induces mixing between hadrons
of different J spins, hypercharge, and parity;
clearly, the effective coupling is "weak, " and
must vanish when the electromagnetic and weak
interactions are switched off. Details of the lep-
tonie part of can be found in BHY, ' but will
be omitted here as we are primarily concerned
with the hadrons.

III. U-GAUGE FIELDS

Before making the appropriate gauge transfor-
mations, we shall simplify matters somewhat by
introducing a vector notation for all of the fields,
rather than a matrix one. For example, the ele-
ments of X—= ( /&12)A. , (y i +), o(summing over all
16 generators of U„but with four omissions be-
cause y is a 3X4 matrix, not a 4X4 one), are
rewritten in the form of a 32-component column
vectcr, with the first 16 elements being the
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16 yq,
'

)I', =(Q in block form. Then, under the
full group,

Nigf =(X)TiX+(Z)TiZ

=i[&(f"X-d"o )+C(f"L -d"y)] =-0, (4a)

where

exp(8~ ' T~ + 8~ Ts);gX, , (la) where &I, is simply the normalization factor, (X)
=(;), (Z)=(0), and the tilde denotes the transpose.
Similarly,

A ~A
2(~A) fig f,J «

L, «4-
~«-ye, f ~ «-le, i-&6

and f" =f "' d".=d'"' with f'" d'"' the usual
SU(4) structure constants, extended in the normal
way to include i, A, or j=I6, viz. ,

f'" =0 if any index =16, d'""=—5'", etc.
&2

Also, 8~ «7.'~ denotes the sum

fe.).p. )..
I"-1

Similarly, F=(z~), Z=(~t), Q=(f), where p and
w have only one and three nonzero components,
respectively. Then

F- exp(8s T~ + 8s Ta) F,

Z exp(-8~ T~+8s. Ts)Z,

P- exp(8~ T~ + 8s ~ T„)P,

(lc)

where for P the sums over 8~ and 8s involve only
four generators altogether.

The covariant derivatives of these fields are
then

6qX = (8 q + hl. ~ Ti +gW~ Ts+g'B~Ts)X, (3a)

A„Y'= (8„+hR ~
.T~ +g'BqTs) F, (3b)

A„Z =(9„+hL„T~+hB„Ts)Z,
Aqg=(sq+gWq. T~+g'BqT~, „}$,

(3c)

(3d}

where h is the strong coupling constant, g and g'
are the electromagnetic-weak constants, and T
is the generator of the U(1}"group.

Now, in order to go to the 0 gauge, we must
find the different combinations of these spin-0
fields which constitute the Goldstone bosons cor-
responding to each generator of a local gauge
symmetry, and then perform the appropriate
gauge transformation which makes these Goldstone
fields vanish. Vfe shall then be left with a set of
massive spin-1 mesons (together with the photon)
and only massive spin-0 mesons (assuming that
there are no pseudo-Goldstone bosons around}.

To begin with, the Goldstone bosons for the gen-
erators of U(3)~ are g~, where

&s 8's = (X)TsX+&WTsI'+ (4)(T, + Ts)'P =-0, (4d)

where the matrices f",d" in Eq. (4c) are the
Cabibbo-rotated f and d, and appear operating on
the X fields since the 8'"„couple via T&, not T+,
to X; of course, the normal generators f, d operate
on the Q term. In addition, in Eq. (4c), & takes
the values 1, 2, 3 only, whereas in Eqs. (4a) and
(4b), A takes the values 1, 2, . . ., 6, 16, corre-
sponding to the U(3) subgroup of the U(4) group
in which X has been embedded.

As a particularly simple example, consider the
CRse of g~ and g~.'

gL =0 QQ3+CP =03

go=0 ~QP@ cp~:0,
In the absence of the conditions for gI and g& to
vanish (i.e., when the electromagnetic and weak
interactions of the hadrons are turned off), we can
eliminate &, Rnd p, in favor of y, throughout the
Lagrangian 2, and find that the appropriate kinetic
term is ~(1+2c'/a')(s„y, )'. Hence, if we define
w, =-(1+2c'/a')"'y, =-&y„ then s, has the normal
kinetic term for a pseudoscalar field, and we can
relate it to a physical particle if its other prop-
erties permit: In the present case, this would be
with the I' meson, since ~, would be massless if
Z were invariant under the global U(4)~ S U(4)„'
symmetry. Also, under the SU(2) subgroup of
the diagonal U'(3) =- U(3), e U(3)„~ U(3),' e U(3)„',
the vacuum is invariant, so that we associate I
spin with this group, and ~, is part of an I triplet.
In similar fashion, we can eliminate all nine sca-
lar Rnd nine pseudoscRlRr Goldstone bosons, Rs-
sociated with the strong gauge group, from the
model.

It should be noticed that since only u„a„, and
a«are nonzero, the U(3) Goldstone bosons gz
and g~ do not involve any of the additional. X«, e«,
etc. (i=9, . . . , 15}which constitute the fourth col-
umns of the I and F matrices, and which were
added when the primed groups were enlarged from
U(3) to U(4) in order to accommodate the weak and
electromagnetic interactions. This reflects the
fact, mentioned in Appendix A of SHY, that these
fourth columns have no impox'tant role to play in
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the purely hadronic system. Therefore, under any
strong gauge transformation on the fields, the
elements of these columns just mix among them-
selves, each covariant time derivative corresponds
to the appropriate conjugate momentum, and no
extra problems arise in identifying such covariant
derivatives when the current commutation rela-
tions are being evaluated.

If we now turn to the conditions g~ =—0 and g~ =-0,

we find immediately that interaction terms are
introduced into Z which violate I-spin, hyper-
eharge, and parity conservation. For example,
since@ =f'cos8 f's-in8, we find

where, for example,

P& (f )
—8 f 4 8 I A+Ijf jjjjcfBf c

and

&qq=—(Bq+ifjL~qgA }q.
For the "physical" U gauge for the system, all of
the Goldstone boson fields are set equal to zero,
the fields }t„etc.are expressed (through these
conditions} in terms of the physical hadron fields
such as jj, and all of the spin-1 mesons (except for
the photon) are massive, with three independent
degrees of fr'eedom each.

g~j - jj cos8cjj —sin8[—,'(a —b)jt, +-,'(a+ fj)cj,) —q&d j—= 0. IV. HADRONIC WEAK CURRENTS

Now, u, = -(c/jjÃ) jj, [using Ejls. (5)], and g, and

u, are constituent parts of both E, and x4.. Since
the potential part of 2 contains several terms in
which p couples to the regular hadrons in X, K,
and Z, then the replacement of &, in such terms
by the above combination of a„a„and X,, causes
the aforementioned symmetry violations. In fact,
such terms are of order I/j}' jj./M~', so there is
no need to be concerned (the last-mentioned a is,
of course, the fine-structure constant, and not
the field).

One interesting effect which arises from this is
the direct coupling of some spin-0 mesons to the
leptons. The Lagrangian contains a term
Tr(ljjpl+G+H. c.), where G is a numerical matrix,
E~, l~ are the particular matrix representations of
the leptons described in BHY (called Pjj and fs
there), and qj is also in matrix form above. The
vacuum expectation value q of y then obviously
gives a mass term m, to the leptons, while the
td, , terms lead to a direct coupling of spin-0 had-
rons to a lepton-antilepton pair, with a coupling
constant which is easily shown to be (jjjj/rP}
x(&/A) cos8 for w. In the current-current model
for weak interactions, the effective coupling is
2W2(G/v 2 )f„jjjj cos8 (where f„is the coupling of the
jj field to the axial-vector current); in gauge mod-
els involving 8'„bosons, we have the usual re-
iation G/0 2 =g'/SM ' Here M '= —g'(jj'+ j}')
= ~ g'q' since the condition q» a is necessary for
the 8'„mass to be very much larger than the
masses of strong-gauge mesons, i.e., the p, A„
etc Thus we. can identify the pion decay constant
(approximately} with W2c/¹

The kinetic part of is thus

& = -N&".(f )l' [&"„.(&)]' P'"„,(Ii")]'+[+„.(&)]9
+ a [(&j Xj)'+ (& j I'j)'+ (&„~j)'+ (&„0j)']
—aqua" 4qq —iFy "a~l, ( I)

In this section we define a set of currents for
the hadrons which bear the closest resemblance
to the vector and axial-vector currents which
Qell-Mann chose to satisfy his current algebra.
At that time, the Lagrangian for the weak inter-
action was written in one of two forms,

S~ = —/~A" or S~ =g(8 "&t H+.c.) .G2"
In either case, the current ~g„was considered to
be the sum of a purely leptonic part and a purely
hadronic part; it was (the time component of) this
hadronic part, along with the Hermitian-conjugate
current and the eleetromagnetie current of the
hadrons, which was postulated to generate an
SU(2) U(1) algebra.

To find the appropriate current in a proper field-
theory model, we must first evaluate the quantity
(1/g)(&&/&iy"„), which clearly interacts linearly
with 8"p ln g. The purely hadronle part ls then
isolated by turning off all weak and electromagnetic
interactions completely, which means not only
letting g-0 and jl-~, etc. (which decouples W„
and qj from the hadrons), but also ignoring the
conditions g~ =-0 =-g~, since their expression in
terms of both hadron and g fields assumes an
interaction between these same fields.

Following this procedure, we find that the total
current g „coupling to W"„ is

jj
-- rj jjXj (&jj)jjXj + A q(jTjjjj)jjQ j

.
I jig' I ~B (ljjj}fjjAcgjve

However, the purely hadronic part of this, J"„
(which has now been Cabibbo-rotated back) is

Zq ——(jj qX) T~
j[(~ Sl)rTJLSI (~ Dl)r Ag)Tl ]

+ g [(jj.pS') TjjD'+ (rj qD') TsS']

j(@4+~A)
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$+ ~ ~ ~
JJ gJ

& g' +'' -0+'''
p w (10)

where

s'—= r (x+Y)= —
( ),

1 x-0D' =——(X—I') =-
vs v2 o'-P '

Before examining the commutation relations of
these currents, consider those terms including
only the derivative of a spin-0 field, and for sim-
plicity take A =1.

g'„= (I/W2) {acos 8s „a,
-sin&[-,'(a —b)e„Z, + z(a+b)s„u, ]

nience, we drop the terms in X and Y correspond-
ing to the extra column in each matrix; the above
gauge transformation just mixes these terms
among themselves, and the removal of these
terms does not affect the results which we are
about to prove. Thus, in the above notation, the
column vectors S, D, z, and u each contain nine
components.

The covariant derivatives for the parity eigen-
states S' and D' now become

+~S ~ ~~ + TI v~ + a~

8 &S+ f ~ (v„S+a&D)
h

h

2~2 d (v„S+a„D)
i.e., there is no spin-0 pole in the current. Of
course, this is not surprising, since it is the re-
moval of such terms as TP&~"gw in 4 which defines
a gauge transformation from the A gauge to the
U gauge. However, we cannot set g» =0 when
there are no weak interactions, so that +y is a
separate field from the e's and g's. However, u
does not couple directly to the strong gauge bosons
at all (nor to the spin-0 hadrons in this particular
limit), so it does not contribute to the hadronic
current. The corresponding term in J'„ is

(I/v 2)s„(ao.,) =--,' e„z„

D'
]l

B„D+ f ~ (v„D+a„S)
h

h
d (v„D+a„S)

hB„z+ ~2 (f v„z —d a„u)

h
B„u+ ~ (d a„z+f v„u)

(11a)

(11b)

and we see that the axial-vector currents'„has a pion-
poleterm, with coefficient —&2c/N= -f, , as shown
above. Thus, although these currents are not so
useful now for looking at the weak interaction of the
hadrons, it is rather gratifying to know that the
pion pole still couples to the axial-vector current with
a residue (almost) equal tof, .

Now, in order to evaluate the ETCs for the cur-
rents by using canonical commutation relations
for the fields, we must work in a U gauge, since
all of the fields there have regular properties
(e.g., no indefinite-metric fields as we find in an
R gauge). We say "a U gauge" and not "the physi-
cal U gauge" as previously described, since it is
a rather tedious algebraic problem to express all
time derivatives in terms of conjugate momenta
for the physical fields. However, we perform an-
other gauge transformation on the hadron fields so
that they have the following simple form:

(11c)

Zg ~ = AQzg y ug: pg = AQg

l(v) aA. lilt — P()a( )

(12)

where the index a runs'from 1 to 9 in each case.
In order to eliminate b, QS, and b, QS, from the

currents, we use the field equations for v," and
aA,

Q ~

where v„—= (I/v 2)(L„+R„) and a„—= (I/M2)(L„-R„)
are the 1 and 1' fields.

Next, we write down the fields and their conju-
gate momenta:

X-, y, Z-

Parity eigenstates are now S = (I/M2)(x+y), z, (0'),
and D =—(I/M2)(x —y), u, (0 ). In this gauge, the
spin-1 mesons are still massive, although 2 now
contains terms of the form L"B„x. For conve-

+ ~2 [II f S+II f D+4 S,d, S

+r.,u. d.",D,]

+ ~2 [ fl,f "z +II„f"u+—'III, &"q] (13a)



PROOF OF THE WEINBE RG SUM RULES IN. . . 2369

and

-B,II',"=~&[II„'f"si+ fl.'f "v,]

+ [II,f D+ II+"S+ d 6 d, D

+ a, u, d,",$((]

[11~ d "u + D„d"z --,' iII, &"gq]. .
W2

(Isb)

and

2V", = (B(S)f"S—
2~2 (Sv, +Da, ) (ff"—dd")S

+(B,D)f"D — ~ (Dv, +Sa, } (ff" dd-")D,

(15a)

2Af =(B;S)f"D— ~ (Sv&+Da, ) '(ff" —dd )D

It is then straightforward to show that

V,"=II, f"S+II,f"D I+I,f"z +II„f~u

+IItf"v& +H', f"a& + &2B&11"„'+ll z I X"q, (14a}

f D+II f $ —II d u, +II„d z

+II'„f"a,+II,'f"v, +@2 B, II", '+Il, —,'i X"y,q

(14b}
Also,

+(B,D)f"S — ~ (Dv, +Sa, ) (ff" -dd")S.

Finally, it can readily be shown that

(15b) .

B,Z", B, Z,"=—aX(T;-II,') TAX+2(n. ,X)'7"„~,X.

(16)

From this, we find

2(B,V" —B, V") =(n., S)r(f"II +d"n. 2)+(a S)r( d"II -+ f"O, S)+(n, , D)r(f"II +d"b, 5))

+(a 5)) (-d"II + f"b, I))+—'(SII„'+DII, ')(f f"S+d d"S)-—'(SII, '+DII, ')(f f"D+d d"S)

(17)

The corresponding expression for (BOA& -B&AO) is
obtained by replacing each II, and h,S, b & by its
opposite parity partner.

We are now in a position to evaluate the current
commutation relations. First of all, it is straight-
forward to show that the usual current-algebra
relations are satisfied, viz. ,

[V",(x), V, (y)] 5(x,-y,) =[A",(x), Aso(y}]5(x,-y,}

=if~' V', (x)5'(x y), -
[V",(x), A,(y)] 5(x,-y, ) =if~oAoo(x) 5'(x-y) .

[V",(x), V, (y)]5(x,-y,)=[A",(x), Af(y)]5(x,-y,),
(19)

since the first spectral-function sum rule (SFSR)
follows, as shown by Lee, Weinberg and Zumino,
viz iy

du'[u 'p'."& (u')+ p."& (u'}1»

dp, p, p(Q I + p() u2 20

Next, we prove the relation

(16)
where, for example, (pIO~ }» and (pI,'~~)» are the
spin-1 and spin-0 spectral functions of the vector
current V&.

(ol("„(x)("(0)10(-=(mlr) 'I&'p&((t.)~"'* p'" ((')((. — " ")+p'~, (p')0 p. . (21}

Again, it is easy to show that both commutators
in E(I. (19) have the value

i5'(x-y}f~'V', ( -x-,}' i(B)5x'(x-y)

y [$(f&f& d &d & }$+ y(f&f& d

&de�

)D]

where all of the fields inside [ ] are functions of y.
Finally, we must show that

[B,V f(x}-B,V,"(x},Vs, (y)] 5(x,-y, )

= [B,Ag" (x)-B,A", (x), Ay (y}]B(x,-y,), (22)
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since the second SFSR follows, viz. ,

Instead of writing down a long and not particularly
instructive expression for the commutators, we
shall point out how corresponding terms in each
current produce the same result. The expression
for 80A, -8&AO diffex's from that for 80 V&-8& Vo by
the term by term replacement of II, for II~, II,
for II„48 for 4,, etc., while the currents also
differ in the corresponding replacement of fields.
Thus, in the axial-vector commutator, the even-
and odd-parity fields and momenta are removed in

pairs, leaving exactly the same expression as in the
vector commutator. For the case of the terms in-
volving b,S and 4,S, this is slightly involved in
practice, as they have to be expressed in terms
of all the other fields and momenta, but the prin-
ciple still holds good. Thus, Eq. (22) is correct,
and the second sum rule follows.

V. CONCLUDING REMARKS

One interesting feature of the above proofs is
that there is no reason for the spectral-function
integrals to be equal for different values of I spin,
as happens in the proof by Lee et al. ; the loss of
this particular constraint is welcome, since it
leads to some predictions involving the weak de-
cay constants fr and f„, and the X» constant

f+ (0), which are not in too good agreement with
experiment. ' Thus, one of the main reasons for
suspecting the accuracy of the sum rules has been
removed, while the grounds for believing the
validity of the formulas have been strengthened,
since the model used here is renormalizable.

Another point requiring comment is that the
above proof makes no reference to the potential
part of 8, whereas one may expect symmetry-
breaking terms to have an effect, e.g., a general
condition for the validity of the second sum rule
requir'es the equality of double ETCs of the space
components of the currents with the total Hamil-
tonian. ' In this case, we must find a reason for
parts of these ETCs to vanish, i.e.,

where H& is the potential part of H, otherwise the
result could not be independent of the potential.
At first sight, this may seem obvious, since Y„
A&, and H& are constructed out of canonical fields
and their space derivatives, but no conjugate mo-
menta appeax' anywhere ~

However, when dealing with multilinear combin-

ations of fields at the same space-time point,
great care must be exercised with respect to the
field canonical commutation r'latiOns. .'~ Okubo '
has shown that inconsistencies arise in the current
commutation relations when fermion fields are
involved, for example (l) in the quark model, (2)
when there is derivative coupling of spin-0 fields
to fermions, (3) in o-type models, with a possible
exception when the fermions have no bare mass.
In the present model, V& and A, do not involve
fermions at all, there is no derivative coupling,
and the fermions do have zero bare mass. Thus,
the known inconsistent cases do not apply hex'e,
and it may well be true that the above ETCs van-
ish (and also that, in the direct proofs, there are
no Schwinger terms apart from those explicitly
indicated).

Actually, our direct proof of the sum rules ties
in well with confirmation of their validity from a
rather different approach. One of the uses to
which both sum rules have been put in the past is
in the calculation of the pion electromagnetic
mass difference, ~ and recently, interest in sim-
ilar mass-type calculations has been revived by
various groups" in the context of gauge theories.
In fact, after completing the present work, we
received a paper by Bars, Halpern, and Lane'
in which they show that both sum rules must be
true if the pion, treated as a pseudo-Goldstone
boson in a renormalizable model, is to have a
finite mass. Their result, which applies to a
large class of renormalizabie models (including
the one considered here), states that (1) renormal-
izability always implies the first sum rule and
(2) if the currents under consideration describe a
spontaneouslybroken (or conserved) symmetry,

I
then the second sum rule is also satisfied for all
components of the symmetry-and is independent
of the constituents of the currents, bosons, or
fermions. I should like to thank Professor I. Bars
for bringing this to my attention.
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We show that the necessary and sufficient condition to derive Weinberg's second spectral-
function sum rule within the framework of a Lagrangian theory invariant under a local non-
Abelian gauge group G and the global chiral SU(2) (3)SU(2) group is that G should commute
with SU(2) 8SU(2). The SU(3) SU(3) spectral-function sum rules fox currents and sum
rules involving spectral functions of scalar and pseudoscalar densities are also discussed.

I. INTRODUCTION

The discovery of asymptotic freedom in non-
Abelian gauge theories by Gross and Vfilczek'
and by Politzer' has already led to important re-
sults in understanding Bjorken sealing in electro-
production. The success of current algebra, on
the other hand, suggests the relevance of chiral
symmetries to strong interactions. The simplest
synthesis of these considerations is to assume
that the strong-interaction Lagrangian is locally
invariant under some non-Abelian gauge group G,
and also globally invariant (or approximately in-
variant) under the chiral SU(2) 8SU(2) group. It
has been suggested in the literature that the gauge
group should commute with the chiral group. The
motivation for this suggestion comes from the fact
that if one attempts to break the gauge symmetry
by the Higgs mechanism (to avoid massless gluons),
one also seems to lose" asymptotic freedom. It
has been conjectured by %einberg' and by Gross
and %Vilezek4 that the gauge group G may not be
broken at all, but a certain "shielding mechanism"
may be at work due to the rather serious nature
of the infrared-divergence problem associated
with the non-Abelian symmetry, whereby only
those particle states that transfox m as singlets
under G can be observed (which would include all
the observed hadrons, if G commutes with isospin

and charge), but the massless gluons (and also
quarks) which are not singlets under 6 are unob-
servable. This is an attractive idea, but whether
it works or not has yet to be demonstrated. It has
also been shown by %einberg' that strong inter-
actions generated by a non-Abelian gauge sym-
metry can be incorporated into the unified theory
of weak and electromagnetic interactions in a
manner which naturally conserves parity, strange-
ness, etc. Among other conditions, this synthesis
requires that G should commute with G~, the weak
and electromagnetic gauge symmetry group, which
contains charge as a generator.

In the present paper, we wish to study more
directly the relationship (or lack of it) of the
gauge group G and the chiral symmetry. The ex-
tra information comes from considerations of the
Weinberg sum rules. ' The first sum rule is a
statement about Sehwinger terms and follows from
current algebra' without any constraints on G.
However, it is well known that the second steinberg
sum rule is model-dependent. The main result
of our paper is to show that the necessary and
sufficient condition under which the second sum
rule can be derived is that G should commute with

SU(2) II SU(2). It should be pointed out that the
second sum rule plays a crucial role in the cal-
culations of Das ef; al. ' in proving that the mass
difference behveen m' and w is finite in the


