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Using the explicit form of the strong-interaction Hamiltonian provided by a certain
class of gauge theories, and the technique of the Bjorken-Johnson-Low expansion, we derive
sum rules relating the vectors axial-vector, scalar, and pseudoscalar spectral functions
and the chiral-symmetry-breaking parameters. Consistency of the sum rules in the
pseudoscalar- (PS) meson sector demands that there should be a heavy nonet of PS mesons.
It is shown that the nature of chiral-symmetry breakfast depends on the character of these
heavy mesons. The two modes of symmetry breaking resulting from this are studied. Using
the assumption of pole domin~nce for the spectral functions, we evaluate the chiral-sy~~etry-
breaking parameters in one case. We also evaluate decay widths of p, ~, and fIt mesons to
lepton pairs.

I. INTRODUCTION

An interesting outcome of the recent investiga-
tions' into spontaneously broken gauge theories
has been the suggestion that strong interactions
may be mediated by a "color" octet of gluons,
coupled to three quartets of quarks. ' In such mod-
els, violations of parity and strangeness selection
rules are computable and have been shown to be
small' (of order Gr for h S = 1 and P-violating
processes and of order G~' for 48=2 processes,
in agreement with experiment}. Further impetus
to the study of such models has been provided by
the recent observation that a subclass of such the-
ories are asymptotically free~ and may, therefore,
provide an explanation of observed Bjorken scaling
in deep-inelastic electroproduction. In this note,
me investigate the structure of hadron symmetry
breaking and the spectrum of low-lying hadron

states in such models.
It has been pointed out' that the basic symmetry

of strong interactions in gauge models of the type
described in Ref. 3 is U(3)~SU(3)s (in the space of
observed particles} broken by quark mass terms,
which transform as (8, 8*)$(8*,3}under this group.
An analysis of the nature of symmetry breaking in
theories with U(8)~SU(3)„symmetry structure has
been done by Mathur and Okubo, ' using spectral-
function sum rules and the assumption of pole
dominance. In view of the great relevance of such
models in the context of gauge theories, me mould
like to reexamine their work using the spectral-
function sum rules that can be de&red in gauge
models of the type mentioned above. For this
purpose me study the general question of spectral-
function sum rules in gauge theories. Such sum
rules had been studied earlier by %'einberg' and
by Das, Mathur, and Okubo, ' but in both these
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papers they were postulated on the basis of plausi-
ble assumptions such as asymptotic symmetry,
and their validity was tested by the kind of results
they yielded in the pole approximation. However,
within the framework of gauge theories of strong
interactions, our knowledge of the explicit struc-
ture of the strong-interaction Hamiltonian enables
us to derive such sum rules, provided we assume
that the behavior of two-point functions in the as-
ymptotic domain in momentum space is correctly
described by the Bjorken- Johnson-Low (BJL) ex-
pansion. We find that there are modifications to
the sum rules usually assumed (the so-called sec-
ond sum rules}. We then attempt to saturate them
with low-lying states, in order to get information
about their spectrum and decay widths. We find
that consistency of the sum rules in the pseudo-
scalar- (PS) meson sector leads us to a degener
ate mass spectrum for the observed PS mesons in
the pole approximation, unless there exists a
heavy nonet of PS mesons' (above 1 GeV). This
extra nonet could be thought of either as a con-
venient parameterization of the continuum contri-
bution to the spectral functions or as a genuine
particle nonet. We adopt the latter viewpoint and
make some comments about the nature of such
particles and their couplings. We point out that
the nature of the chiral-symmetry breaking is
intimately related to the nature of these heavy
mesons. In particular, the magnitude of the cou-
pling of the heavy pion to the axial-vector current
determines whether SU(3) is a better symmetry
than (U)~2SU( )2„rovice versa. It turns out that,
when the above coupling is such that U(2)~SU(2)„

is a better symmetry than SU(3), one can follow
the Mathur-Okubo method to determine the value
of the chiral-symmetry-breaking parameters. To
estimate this breaking as well as the vector-me-
son spectrum and decay properties, we find the
need to assume the so-called first spectral-func-
tion sum rules. Incidentally, our techniques do
not shed any light on these sum rules, which are
statements about the nature of Schwinger terms,
and we assume their validity in our work.

The paper is organized as follows: In Sec. II,
we derive the spectral-function sum rules; in Sec.
III, we study the pseudoscalar-meson sector and
point out the necessity for the heavy PS mesons.
In Sec. IV, we study the relation between the na-
ture of chiral-symmetry breaking and the prop-
erties of the heavy pion. In Sec. V, we study the
numerical solution of the equations to estimate
the chiral-symmetry-breaking parameters and
discuss the lepton-pair decay widths of vector me-
sons. In Sec. VI, we speculate on the nature of the
heavy PS mesons. In Sec. VII, we conclude with a
discussion of the nature of symmetry breaking and
the question of q -3w decay puzzle in such
schemes. Finally, in an appendix, we derive anal-
ogous sum rules, using a short-distance expansion
and Weinberg's bridge theorem (instead of the
BJL technique).

II. DERIVATION OF THE SUM RULES

Consider the spectral representation for the
commutator of vector currents, i.e.,

(O~[ V„'(&), V„'(y)] ~O) = dm' V„,pf'(m', V) — ', ' „S„S~(x- ym'),
0

K, &
= dm'f p,'~(m', V) —pf'(m', V)],

0
(2)

and corresponding to the axial-vector currents we
get

I,.~= dm' p,"m', A —p,"m', A
0

(3)

The chiral-symmetry structure of the strong-
interaction Hamiltonian is enough to enable us to

and also a similar representation for the axial-
vector currents in terms of the spectral functions

p,'~(m', A) and p,"(m', A). Denoting

&ol[ v,'( ), s„v~(y)] lo&„, „

by K,.&5'(x-y), we obtaine 9
K=X,(q, B")+BC,(B",o)+X

where

Ra= ay„(s~ —if' Bq)v,

+mass = 60Up+ 68 U8 + 63 U3P

(4)

(4')

(4 ct)

and X, contains" the contribution of the gauge
gluons, Higgs mesons, etc. An important thing
to note is that the sum Xp+X, is invariant under
the chiral U(3}~U(3}„group and X „ transforms
like the (3, 3*)3", 3) representation under this

evaluate I,~ and K,~ . In gauge theories with quarks
and a "color" octet of gluons' we know the detailed
structure of the Hamiltonian, and it can be written
as follows [in the SU(3) subspace]:
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group. As in Ref. 6, using Eq. (4), we obtain

If:(g =3rsbfai) fsg)

& 0 I U„ l 0&Iii 2r[(~) 6(A 2odBH]di)r)&o
[ II [o&

where

I~'~ =.vsb )

I„=r(1+o)(1+b),

I„=r(1 ——,'a)(1 ——,'b),

I, , =r(1- 2a)(1- 2b),

I, ,=r(1+a){1+b}=I„,

(6)

For future reference, we write the I's and K's ex-
plicitly'.

where I, , and I, , correspond to the currents
(&At+A)))/W and (-WA)) +At))/W) respective-
ly ll

Now, let us look at the spectral representation
for the vector-current propagator in terms of the
functions p, (m', V) and p, (m', V) defined earlier in
Eq. (1):

&'!'(e) = i Je" &'*(o(*T'()')(~)i"„(o))Io)

2 a 6) upi'(m') V}+ 2" p2'(m') V} —6)46.4 dm' ' ' 2'
0

and also in a similar manner for the axial-vector
currents. Assuming that Bjorken expansion cor-
rectly describes the behavior of a~„ii(q) for large
spacelike q', we find [using H= fd'yX(y}]:

Weinberg's second sum rule, ' i.e.,

dm'[p,"{m',A)- ,'p(im ,2V)]=O. (13)

Next, let us consider the spectral representation
for the pseudoscalar densities;

where K is defined in Eq. (4) and the subscript ET
denotes an equal-time commutator. Using the ex-
plicit form for X [see Eqs. (4), (4'), (4")], we get
the following sum rule for the spectral functions

i "(ai') ~J~" &'x=(OI7'(ii'*(~)(i'(()))Io)

dm'p" m', y' q'+ m' . (14)

Employing the same technique as before, we get

p' (m, P)dm =Dibi~+Dgsi~+ I;i .

where C„C„and C, are unknown constants.
SimilarLy, for the axial-vector currents we get

For the corresponding scalar densities, we get

(16)

dm'[4p,"(m', A) p,"(m', A)—] = C,b„+C,d„,

Using Eqs. (2), (3), (11), and (12), we finally ob-
tain the following sum rules:

ln Eqs. {16)and (16), D, and D, are unknown pa-
rameters representing the vacuum expectation val-
ues of complicated bilinear local operators in
quark fields. Subtracting Eq. (16) from Eq. (16),
we get

dm p,'~(m ) V}= sc,5(;+ sc2d8;i+I, i, (11')
0

Subtracting Eq. (11') from Eq. (12'), and again
using Eq. (2) and Eq. (3), we get the analog of

Here, we would like to point out that Mathur et cl."
assume a similar sum rule in their work on chiral
symmetries, but with the right-hand side equal to
zero. Ne therefore see that in the quark model
their sum rule does not hold, and their analysis
will have to be modified, as we wiB see in Sec. V.
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III. POLE DOMINANCE OF SPECTRAL FUNCTIONS
AND PSEUDOSCALAR-MESON SPECTRUM

(2~,1')' '& oIA„'ln& = fg&p, (18)

(2&0I')'"& o
I A p' I n&

= ~ gg~p.

We similarly define fz for the K meson, f„ for the
g meson, and fx, gx and fs, gs for the X and E me-
sons, respectively. Now, saturating the last line
of Eg. (8) by q, X, E, and v we find

(19)2tpg2- 2m 2

j =yj,x,E

We next observe that, using Eg. (15), we can de-
rive the following equation:

In order to use the sum rules derived in Sec. II
to get information about the nature of chiral-sym-
metry breaking and the hadron spectrum, me mill
make the assumption that the spectral functions
are dominated by the lowest-lying particles and
one can neglect the continuum contribution. In this
section, we mill examine the sum rules that in-
volve only the spin-zero part of the spectral func-
tions, i.e., the ones in Eqs. (2), (3), (8), (15), and

(16), and show that the assumption of saturation by
known low-lying states is not consistent mith these
sum rules. %'e further see that to restore con-
sistency it is sufficient to assume that there exists
a heavy nonet of pseudoscalar mesons with non-
zero coupling to the axial-vector currents and the
pseudoscalar densities. Let us define the follow-
ing:

(2k V)'~2& 0~A~~ v &
= f» kp,

p-'-'(m', 1), = p"(m', Z), . (24)
0 0

Therefore, in Eg. (24) [which gives rise to Eq.
(19) after pole dominance] the pole terms are of
order (I/e) as compared to the continuum contri-
bution, which is of order 1 and is therefore small
compared to the pole term. On the other hand, in
Eq. (20) both the pole and continuum contributions
are of the same order (i.e., of order 1). There-
fore, g ptiof'i, it is probable that in such a case
the continuum contribution could be relevant in
Eg. (20). Below, we will see how we can get
around this difficulty by postulating an extra heavy
nonet of pseudoscalar mesons.

Nom, suppose that there exists a heavy octet or
nonet of pseudosealar mesons. Denoting the cor-
responding parameters by a prime Eq (19) b.e-
comes

f; m( =f m +f m„ (19')

mhere the dots on the left-hand side stand for any
contribution coming from the eighth and ninth
members of the heavy nonet. Similarly Eq. (22)
becomes

mass mith the pion. The reason why this is hap-
pening is clearly that the sum rule (20) presumably
converges rather slomly. This ean be understood
if, for example, one assumes that the co and c8
are small and the pseudosealar mesons become
Goldstone bosons in the limit e-0 (i.e., their
masses go to zero in that limit), because the last
line of Eq. (8) can be written as

f,'m, =f, m~. (22)

It is easy to see from Eq. (19) and Eq. (22) that
either one has

f, gO for all i andmx=ms=m„=m„ (23)

or if any of the f, 's is zero the corresponding par-
ticle has a mass not degenerate with the pion.
Since we know that both f, and m „are nonzero,
Egs. (19) and (22) imply that there must be at least
one pseudoscalar meson which is degenerate in

4fm' p-' -'(m', Z) = p"(m', J )dm' (20).
0 0

Now, observing that V '=s„A„'/e,'(I+a) and'U'
= B„AB&/e,'(1+a), where

(21)

saturation of Eq. (20) leads to the following sum
rule:

and clearly the mass degeneracy mentioned earlier
no longer exists. The question of the relative
magnitude of f„and f, . and its relevance to the
manner of ehiral-symmetry breaking will be dis-
cussed in Sec. IV. Here, me would only like to
stress that whatever their relative magnitude is,
it is possible by adjusting the value of the heavy-
meson masses to resolve the difficulty of mass
degeneracy observed earlier.

%'e would like to point out here another amusing
point that comes out of the assumption of pole
dominance of the above sum rules. Suppose all
the equations involving A„' and g ' were saturated
only by g and X (i.e., no other isosinglet pseudo-
scalar object coupled to them). This would then
imply that m „=m~, regardless of whether there
is a heavy pion or not. To see this, observe that
one gets from Eqs. (8) and (15)
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Saturating them with poles, me get

gsfn'mn +Zxfxmx =0

=g qf qm n'+ gxfxmx'

(26)

It is clear from this that if g„, gx, f„, and f» are
nonzero, one has m „=m~. This degeneracy is,
however, removed when one includes another iso-
singlet PS meson, which incidentally could belong
to (and probably ought to belong to) the heavy-me-
son nonet. There are other sum rules which also
follow from the work of Sec. II, but me do not write
them down since they involve many unknown pa-
rameters and hence are not very useful at the mo-
ment.

IV. THE NATURE OF CHIRAL-SYMMETRY BREAKING

Depending on the relative magnitudes of

f, 'm, .', f». 'm» ' and f„'m, ', f»'m»' we will
have two situations.

Case (i) f„.'m. „i'sf„'m 'and f» 'm» '
cf»'m»'. Inthis case, Eq. (27) becomes

Pf „'m„'= 2y(1+ a)(1+ 5)

Pf» m» =2y(1 —~a)(1 —2b) with p=p' (say).

Taking their ratio and noting the experimental fact
that f„=f», we obtain

m„' (1+a)(1+5)
m (I--, )(I--,f) (29)

On examining this equation, it becomes clear
that either a=- 1 or b ~-I since m, '/m»'=0. 08.
However, b =-1 is unacceptable on physical
grounds because this would imply that the vacuum
is not at all invariant under SU(3), and it will be
difficult to understand the successes of SU(3).

In this section, we will point out that the nature
of chiral-symmetry breaking will depend on f,
and m, . To see this, let us write down the first
three lines of Eq. (8) in the pole-dominance ap-
proximation:

f, .'m, i'+f,'m, ' =2y(1+a)(1+ 5},

f»™»'+f»'m»'=2y(1- 2a)(I- 4&),

f„'m„' (1+a)(1+b)

f» 'm» ' (I —ka)(1-2&)
' (29')

There is no reason why in this case a or b must
be close to -1; in fact both of them can be small
(e.g. , a =-0.1, 5 =+0.1}and consistent with Eq.
(29'}. This corresponds to symmetry breaking as
follows:

U(3)I,SU(3)„-SU(3)SU(1)- SU(2)8U (1).

There is no conflict with the observed spectrum,
and also, as has been pointed out by Drell, ' this is
a realization of the weak-PCAC (partial conserva-
tion of axial-vector current) idea of Brandt and

Preparata. " In this case also, one ean argue that
corrections to PCAC results are small. Homever,
as pointed out recently, ' it is difficult to under-
stand the g 3m decay in this case.

V. CHIRAL-SYMMETRY BREAKING
AND LEPTON-PAIR DECAY MODES

OF VECTOR MESONS

In this section, we mill restrict ourselves to
case (i) of Sec. IV and evaluate the symmetry-

Therefore, we ought to have a = -1. As we will
see in Sec. V, if a=-l, b canbe small, consistent
with SU(3) being a good symmetry of the vacuum.
In summary, if f„'m„'sf„'m „' and f» 'm» '
cf«'m»', we must have the chiral-symmetry
breaking as follows:

U(3)iSU(3)„U(2)iSU(2)„SU(2)SU(I).

As is well known, ' "in this ease one must have
a fourth light PS meson (with mass of order m, )
corresponding to the spontaneous breaking of the
nonobserved approximate symmetry associated
mith the current A&'. It can also be seen by look-
ing at Eq. (19'}. The right-hand side of this equa-
tion is small by our assumption. Therefore, at
least one of the particles i contributing to the left-
hand side must have f,.=f, and m, = m, and the
rest must have f~ =0 and m, arbitrary. Incidental-
ly, if the original symmetry was SU(3)~@SU(3)s,
such a situation mill not arise, as is clear by look-
ing at Itef. 11, because (0 ~

8
~ 0) could be quite

large. Therefore, even when f,'m, 2+f, i'm, .'
=0, the left-hand side of the modified Eq. (19')
need not be small.

Another interesting point in this case is that we

may restrict g to be exactly equal to -1. This
does not mean thatrg, =0, but that m, arises pure-
ly out of electromagnetism and ~, U, terms. The
advantage of this point is that one ean understand
the q -3n decay'4 in this case.

Case (ii) f, 'm. , '»f„'m„'; f„'m». '
~f, 'm, 'af 'm '. In this case, Eq. (29) be-
comes
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breaking parameters y, a, and 5, using the as-
sumption of pole dominance. Our evaluation of the
above parameters will differ from that given in
Ref. 22 because, as remarked earlier, the sum
rule used in Ref. 22 for such an evaluation, i.e.,
fp'~(m', S)dm'= fp'~(m', P)dm', is not valid with-
in our framework and the modified version of this
sum rule given in Eq. (17) is not helpful anymore,
since it involves a new unknown parameter ~o'.

However, we have new constraints coming from
the vector-meson sector [i.e., Eq. (13)], and using
these we can evaluate the five parameters y, a, 5,
(f«/f, ), and f„, assuming m „=1050 MeV and the
Kawarabayashi-Suzuki-Riazuddin- Fayyazuddin
(KSRF) relation" G~'=f„'m~'. We will elaborate
on this point now. Dominating the sum rules in
Eq. (8) by lowest-lying poles and neglecting the
contribution of heavy mesons to this equation [note
that this is the case (i) of Sec. IV], we get

f„2m „'= 2y(I+ a)(I+ k),

f«'~«'= 281- as)(I- »&),

f„'m „'= Qak.

(30)

We supplement the above information by the fol-
lowing relation obtained by Mathur and Okubo' and

by Gell-Mann, Oakes, and Renner" from general
variational arguments, i.e.,

m 2+@
1m~ 2- pa'

This equation immediately provides us with an
evaluation of the parameter a'.

(31)

(32)

Furthermore, Eq. (13) yields in the pole-domi-
nance approximation the relation

G 2 G +2
2 m 2 2JKm

p g
2

(34')
m g

Using Eqs. (30), (32), (33), and (34) and the KSRF
relation G~'= f,'m~', we get (for m„~1000-1050
MeV) a=-0.88, k =-0.1, (f«/f„)'=1.16; f„'m„'
=1.83f,'m, ', y=4.6f„'m„'.

The value of f«/f, obtained above is in reason-
able agreement with experiment. From Eq. (34},
one obtains f„2= 0.036f„', which is quite reason-
able since it implies that SU(3) is a good symme-
try of hadrons and that the vacuum is nearly SU(3)-
invariant. Furthermore, the values of a and k (as
in Ref. 12) are also consistent with the general
belief that chiral U(2)SU(2) is an approximate
Goldstone symmetry, pions being the correspond-
ing Goldstone bosons.

Before passing on to the considerations of lep-
tonic decay modes of the p, &o, and g mesons, we
would like to remark that Eqs. (13) and (32) imply
the following mass relation between the A„p, and
«mesons [note that we assume f, m „«f„m „
as in case (i) of Sec. IV; for an analysis of the
mass relationm„, ™Wm~ in case (ii), see Sec.
VI]:

m„=2m p'+m, '. (35)

Thus the correction to the famous %einberg mass
relation is very small in case (i). To obtain the
leptonic decay modes of p, &o, and p mesons we
again stay within case (i) of Sec. IV so that we can
neglect the contribution of the heavy mesons to the
sum rules considered below. %'e get the first rela-
tion among the coupling constants and masses by
looking at Eq. (11) in the pole approximation:

G«*'- G««'= a(f«'~«'-f. '~.')

where we define

(33) Gp +3(G~ +G@ )-4G«g =2f» PS» +3I»»

(36)

(2k,V)'"{0(V„'
~
V'(k)) = G„,6„e„(k),

and similarly for the axial-vector particles.
We will at this point assume %einberg's first

sum rules for chiral SU(3}I3SU(3}.These sum rules
depend on the nature of Schwinger terms, and the
quark model does not shed any light on this. How-
ever, it is presumably not in conflict with it. In
any ease, this is an extra assumption, one which
is believed to be valid more generally. These sum
rules are

I« = (1 —a —5 + 3ab)

=9.84f„'m„',
and we define

(2koV) ~'{0IV' I&) =& (k)G,
(2koV)'~'{ 0 ( V '„) p) = e„(k)G ~.

Moreover, Eq. (34) yields

Gp G~ Gy
2+ 2'

m p m QJ m

(37)

(31')

(38)

"p,"(m', V or A)„
0 m 2 fo jo.

From this we get

(34) From Eqs. (36), (37), and (38), we get

Q 2

2 =0.37 and 2
= 2.22.

p p

(39)
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If we assume that the electromagnetic current
does not have an isosinglet piece in it, then from
the above equations we predict that

r(~-8'e) 012 r(e-e'e-) 017I"(p-e'e )
' ' I'(p e'e )

(40)

+ ~ss+ (42)

1
G)) =0~ +op + ~ (0~GO+0'yGy)

1
+ 133-l~- ~Ios (43)

Even though the system appears overdetermined,
there is one set of solutions for 0 /G~ and 0/G~
which, together with Eq. (39), is consistent with
all the constraints obtained. Those solutions are

—=-0.79 and —= 0.77.
O'@ 0'fd

If the electromagnetic current can be written as

gem y3 +~ys +yyotI 0 II (46)

These appear to be in reasonable agreement with

experiment. " If we examine Eq. (11') as well as
Eq. (34}a little carefully, we find that there are
in all six independent constraints among coupling
constants after the unknown parameters C„C„
C, and C' are eliminated. However, there are
only five unknowns, i.e., G~g, G, G&, o&, and

cr„, where we define

(2koV) (Oi Vq j(0(k)) = ep(k)0~, ,

and similarly for o @. The equations are, apart
from Eqs. (34'), (36), and (38),

Gfdo'~ G yQ @
~ + aPg @

which follows from Eq. (34) on taking i = 8 and

j=0, and

1
G~ + Gg =0~ +op —~ (0~GO+0((Gy)

ZEN)( f )) '
0

&~~w f ((
(48}

It is easy to see from here that if g„~,=~g»„.,
then f,.=0.05f„and the situation corresponding
to case (i) arises. However, as pointed out in
Ref. 8, if for some reason g», /g»„=0. 1, we

can have a situation where f,=f... and sinceI, » m „we arrive at case (ii) of Sec. IV. Hand-

waving arguments can be provided to the effect
that corrections to PCAC results ax'e small in both
the cases. ' One may now ask how big the corx ec-
tions are to m' 2y decay due to the off-sheD ef-
fects in case (ii). It was argued in Ref. 8 that they
can be quite large (roughly a factor of 3). Since
we are working within the framework of the three-
triplet model, 'o we cannot tolerate a large off-
shell correction. In fact we observe that if we
take over the analysis of Ref. 8 in estimating the
off-shell effect, the extrapolation factor is indeed
very sensitive to the mass of the heavy pion, and

if we choose it to around 1.2 GeV, the correction
remains small. Below, we will provide further
arguments in support of this value for the mass
from considerations of Weinberg sum rules and
the A, mass. As far as case (i) is concerned, the
off-shell effects clearly remain small since f„ /
, =0.1.
We would also like to point out here that there

exists a lower bound for the m, » if we look at Eqs.
(19') and (22'). If (7 is the lowest-mass particle
contributing to the left-hand sides of Eqs. (19') and

{22'), we find

modifies the PCAC equation to the following form:

1 1 2@49 ()A)) =
~~ f~ 1'~ 4 ~ + ~ f~ t PE )( &

To see how the two cases described in Sec. IV
arise, let us look at the experimental deviation"
from the Goldberger-Treiman relation, 6, in
terms of f„,f„,etc. If we assume that the en-
tire deviation arises because of the heavy pion n',
then we have

)'(0- 'e )
'

(&s) (~o)
'~o'

(46)

2 4 2 4f )( PB )) + f ))I 5g l)(
f~ I„+f~i m~~

Therefore, in case (i) Eq. {49)gives

m~i I„f~

(49)

These reduce to Eq. (40) for x = I/W and y =0.

VI. HEAVY PION

In this section, we will discuss the implications
of a heavy pioQ lQ both the situations desex'ibed 1Q

Sec. IV. Clearly, thy presence of the heavy pion

which implies

m, .&6.3m, .
In case (ii), Eq. (49) implies m„.&m„, consis-

tent with m, =1.2 GeV mentioned earlier. It also
turns out that in case (ii) Weinberg's first and
second sum rules for U(2)~U(2)„[the latter suit-
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ably modified as in Eg. (13)], along with the ob-
served mass relation m „,= vYm ~, imposes further
constraints on f, and m„and gives us an idea as
to how big f, /f, is. This can be seen if we ob-
serve that Eq. (13) and the Weinberg first sum
rule QIlplp'q respeetlvelyy

G '-G '+ ' f — + 'f ' -'=0 (51)

(52
Sgg PPg

p

If we write the modified KSRF relation" as Gp'
=f,'m ~'(I + e) (where e is the effect of the heavy
v'), to have m„, = @am ~, we must have

Within experimental uncertainty a = -0.03, and
this implies that, form„i=1.2 GeV, (f,~/f„)
=0.5. From Ref. 16, me observe that this value
of e implies that G„.~,/G~, „=0.06. These esti-
mates, however, must be taken with caution in
view of the uncertainties surrounding A, ." [Note
that Eq. (53) imposes strong constraints

ourn,

as well as f,. For example, if m, .= 1.6 GeV as
in Drell's case, (f„./f ) =0.1, in apparent con-
tradiction with the requirements that f, i f,.]

VII. DISCUSSION

In conclusion, me wish to mention that in gauge
theories one has two alternative ways in mhich one
can break chiral U(3)~SU(3)„symmetry (Fig. 1).

(i) e,/&2&0«1. This situation occurs when

fr'~w' fr'~r'~Xfttnx++fw~e

(X is between 2 and 3). Then SU(3) is a good sym-
metry, better than U(2)z 8 U(2)s, and there is no
conQiet with particle spectrum. However, q-3n
decay remains a mystery" (see below}. This case
is a realization of the meak-PCAC idea of Brandt

and Preparata. " Qf course, the smallness of
pion mass here is an accident and m, .= 1.2 GeV
(lower path in Fig. 1).

(ii) e,/&2eo=-l. This corresponds to the situa-
tion when f im„i«f~ . With this alternative,
one understands the g-3n decay, but as mentioned
in Befs. 5, 13, and 14 there must be an extra PS
boson apart from the pion around the pion mass
region, or if g is the corresponding particle one
must understand what makes it so much heavier
than the pion. In this case, the success of SU(3)
symmetry can be understood since (Ol U, l0)/
&2(0 I V, 10)~-0.1, i.e., vacuum is approximately
SU(3)-invariant. However, the baryon masses
must arise from some other source (other than
the eoUO term).

We would like to remark that there may be sig-
nificant off-shell corrections to q -Sw decay re-
sults in case (i}, and in particular the current-
algebra constraints on M (g-3w) now appear as
constraints on the

amplitude. In absence of any knowledge about the
magnitude of M(v'-qvv), it will not be possible to
say whether the q-Sn difficulty encountered'4 in
this case is avoided or not. If, homever, it turns
out that M(w'-qwv) is large, q-3v difficulty can be
avoided as in the ease of weak PCAC. "

We mould like to conclude with a fem remarks
about the r' meson. Our investigation shows that
if f i~f [case (ii) of Sec. IV], then we conclude
from an investigation of the deviations to the
Cxldberger-Treiman relation and the KSRF re-
lation that it must be weakly coupled to the had-
rons (i.e., for f„./f, =0.5, g» /g», -0.16, —
g p /gp ~

—0.06, etc.). Also, we find that its
mass ought to be around 1.2 GeV. On can under-
stand n' in the language of quark model as a radial
excitation of the qq bound state mith I.=0. Further
experimental implications of the heavy pion are
presently under investigation.

U(2) U(2)
L 8

u(~) e u(~) su(2)eu(~) Or u{~)

FIG. 1. Two mays of breaking chiral symmetry.
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APPENDIX

In this section, we will argue that the more
fashionable short-distance expansion" methods

may also lead to sum rules similar to the ones
derived in Sec. II. We will follow Weinberg's
method" of using bridge theorems to get the struc-
ture of operators appearing in the short-distance
expansion of currents. We will work only with the
vector currents, and in that case we find, using
the method of Ref. 22, that

(A1)

It becomes clear on inspection that the last two
terms can be written as

s(q') 6, b(q')
&

q2 fj q2 Sff

where a and b are infinite series in powers of
strong gauge coupling f and lnq'. Similarly, the
first term can be written

where

d(q') 8, +0 ( )
and

e(q'} e, + o( ).

(AS)

d(q')
& e(q'} s'(q')

&
b'(q')

d2

where d, e, s', and b' are also power series in f
and lnq'. Now, to get the spectral sum rules, we
need the asymptotic behavior c, b, a', b', d, and
e in q', and, in particular, our sum rules will
hold if they go to constants for large lnq'. It is
quite possible that in asymptotically free non-
Abelian gauge models (e.g. , non-Abelian gauge
models with massless "color" octet of gluons,
etc.), this situation occurs (This . may, of course,
happen even in models which are not asymptot-
ically free )Then . we will get an analog of Eq.
(11), i.e.,

d m'[4p', ~(m', V)-pf~(m', V)j = C,b&& +C,d,&&
0

+ doK]~ +eoI]~,

(A2)

Similar arguments hold for the other sum rules.
Note that (A2) and analogs of Eqs. (15) and (16)
are weaker than Eq. (11). Nevertheless, the in-
consistency mentioned in Sec. III still holds. How-
ever, we may lose the predictive power in the
vector-meson sector. We may of course demand
that this asymptotic behavior match the BJL-limit
predictions. Then, obviously, we would get the
sum rules described in the text.

Note added in proof It has bee. n stressed to the
author by S. Borchardt, V. S. Mathur, and
H. Pagels that a'~ (q, p) and 6'~ (q, s) may or may
not satisfy the unsubtracted spectral representa-
tion. We, of course, assume that they do. Also,
for an alternative derivation of the second Wein-
berg sum rule in the framework of gauge theories,
see S. Borchardt and V. S. Mathur, this issue,
Phys. Rev. D 9, 2271 (1974). We would like to
thank the above authors and S. C. Prasad for com-
ments on the present work.
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Both sets of Weinberg spectral-function sum rules are proved in the context of the Bars-
Halpern-Yoshimura model. We f'irst discuss how to obtain the appropriate weak currents of
the hadrons in such a gauge model, and then obtain the results by proving the equal-time
commutation relations [Vp, Vq ] = [A,",~,'], a d [e,V,"-a,. V,",V~] = [a~,". -e,.a,",X,']; the
proof allows the spectral-function integrals involved to be different for the separate I-spin
multiplets.

I. INTRODUCTION

Recently, models have been proposed for a uni-
fied theory of strong, weak, and electromagnetic
interactions, "based on the ideas of local gauge
invariance and the Higgs-Kibble mechanism. ' In
one of these, ' the strong spin-1 gauge bosons are
identified as the usual low-lying nonets of spin-1
mesons, ' i.e., the p, &„etc., and (some of) the
spin-0 mesons as the corresponding pseudosealar
and scalar particles, i.e., ~, 7f~, etc.

In such a model, it seems natural to check

whether the Weinberg spectral-function sum rules'
for the weak currents of the hadrons can be proved,
since there is no convincing proof to date. ' The
very interesting algebra-of-fields approach em-
ployed by Lee, Weinberg, and Zumino' has the
basic drawback of being based on a nonrenormal-
izable model. Accordingly, in the present paper,
we use the renormabzable gauge model of Bars,
Halpern, and Yoshimura as a convenient vehicle
in which to prove the equality of the two sets of
time-space equal-time commutators for the vector
and axial-vector currents from which Lee et al.


