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%'e study the causality restrictions on the structure of the nonforward matrix element of

the commutator of two conserved isovector currents. %'e give a fixed-pole interpretation
of the noncausal contribution, derive a set of causality and current-algebra sum rules, and

determine the structure of the equal-time commutator.

I. INTRODUCTION

Meyer and Suura' have studied the structure of
the equal-time commutator of two conserved iso-
vector currents with particular reference to
causality. They were able to determine the form
of the equal-time commutator between two single-
particle states of equal momenta. Their work
shows that although the commutator is causal, the
invariant amplitudes occurring in its covariant de-
composition need not, in general, be causal. In

particular they were able to identify the noncausal

part and deduce a number of causality sum rules.
Their main tool is the causal Jost-Lehmann-
Dyson (JLD) representation. '

It is our purpose in this paper to extend the work
of Meyer and Suura to nonforward matrix ele-
ments, restricting ourselves to conserved cur-
rents and single-particle states of equal mass.
We demonstrate (see Appendix A) that all the in-
variant amplitudes, except one (denoted by A,"),
are causal. The noncausal part A,"*"' in A,'~ is
explicitly identified. %e verify that A,"""is
annihilated by the operator acting on it so that the
commutator remains causal. This work is ac-
complished in Sec. II. In Sec. III we interpret this
noncausal part as a fixed pole in the angular mo-

mentum plane at J = 1. The residue of this fixed

pole is completely determined by current algebra.
In the same section we discuss the connection of
this work to that of Bronzan et aE. ' and Singh who

based their work on the Fubini-Dashen-Gell-
Mann (FDG) sum rule." Our work shows that

current algebra does not necessarily require that
the amplitude A,' possesses a fixed pole at J =1.

In Sec. IV we discuss the sum rules that are im-
plied by causality and a certain assumption on the

asymptotic behavior of the JLD spectral functions.
In particular we find two sum rules involving the
antisymmetrie amplitude A2~" ~ that are completely
determined by current algebra. The structure of
the equal-time commutator is then determined
using these sum rules. %e find that in the time-
spaee equal-time commutator, the only Schwinger

II. CAUSALITY AND CURRENT ALGEBRA

Consider the matrix element C„", of the com-
mutator of two conserved vector currents between
spinless single-particle states of momentaP, and

P. (P,'=P.'=l),
c'„','(x) = (p, ~

[8„(-,'x), P„(--,'x)]
~ p, ) .

The Fourier transform W'„'„(Q) of C'„'„, defined by

(2.l)

w'(q) =—e' *c"(x)d'x1
pv 2& pv (2.2)

may be written in the form
5

~ig ~ I (a) Aiy
pv ~ pv (2.3)

where A,'~ are invariant functions of

v=@.P E=LP Q p=L Q

with

2(P1+PR) P
A ~P j P2 I

and the covariants L, ~~~ are given by

L„".' =(0„--.'t „)(Q,+-.'~, ) - (Q'--.'t )g„.,

L~~„i = (Q —~t )P„P,+ v~g„„

—v[P„(Q.+ 2&.)+(0„-2&„)P„],

L„"„'= (Q' —,'t }P„n.„+v(p —,'t )g„„——
—( p —,'t )PI, (Q „+-,'a „)——v(q„——,'a„)a„,

terms that arise are symmetric in the internal
indices. This is not true of the space-space equal-
time commutator, the expression for which is given
in Appendix B. The existence of the equal-time
commutator is seen to imply a certain scaling be-
havior [see Eq. (4.22}] for the absorptive functions
which in turn determines the equal-time commuta-
tor in terms of the scaling limits. A particular
assumption on sealing behavior' leads to a simple
form for the time-space equal-time commutator
that involves a single gradient Schwinger term.
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Lil(, = (Q —4 t }b ilP„+ v( p + 2t )gil„

—( p + ,'t )(Q„———', h„}P„—vA„(Q „+—2'a „),

—( p+ ~Zt )(Q„—2a„)a,

(2 4)

—(p —,'t)d, „—(Q„+2m„).

Although the commutator (2.1) is causal, i.e.,
vanishes for x'& 0, the invariants A~~ need not, in
general, be causal. However, any noncausal parts
must be annihilated by the operators acting on
them to give C'„~ . Denoting the Fourier transform
of A,'~ by 2,", we show in Appendix A that if the
noncausal parts in A~~~, k=1, 2, 3, 5 are to vanish
for

~

x ~- ~,"then these noncausal parts must
vanish identically. The invariant amplitudes
A,'~, k=1, 3, 4, 5 are therefore causal.

The invariant A,' may, however, possess a non-
causal part, that vanishes as

~
x

~
-~, which is

annihilated by the operator acting on it. It is, in
fact, not difficult to show that such a noncausal
part is necessary if the commutator

Using (2.3), (2.4), and (2.6), taking into account
that A,'/, k w2, are causal, we obtain from (2.7)

(2.8}

where A,' "" denotes the noncausal part of A2'~.
Thus E~ cO implies that A,"""cO.

Assuming current algebra

(2.9)

we have

J if'/2F (t }P0
[(P Q)' —(-'t+Q')P '] '

We note that Eq. (2.10) determines A2'/ ""
up to an

additive arbitrary causal function, since such a
function must satisfy (2.6). Thus the noncausal
part A,'/ " is given by

if' 'F, (t)

(P.~[&,'(l ), ~,'(--' )]lP,)5( o) (2.5)
x [a(P0+Q,)5(Q' —,'t+2v)—

A Q dQO=O. (2.6)

The Fourier transform E~ of (2.5) is

E~~= 8'020~ Q d (2 7)

is nonzero. To do this, we use the fact that a
causal function A(Q) satisfies the sum rule'2 2

+ e(P0 —Q,)5(Q' ——,t —2v)), (2.11)

since this expression satisfies Eq. (2.10), One ob-
serves that (2.11) is a straightforward generaliza-
tion of the noncausal function obtained in the for-
ward case. '

The Fourier transform A,"" may explicitly be
shown to be nonzero for x' & 0 and to tend to zero
as

~
x

~

-~, for in the frame P =t},

A gJ, nx.
2

4nif"'F', (t ) cosP, x0 r sin(r~ x [)cos[x0(r'+P0'+ ,'t)'"]-
fxf , P, (r'+-,'t )

"r sin(r~ x ~) sin[x, (r'+P, '+ ,'t)"']d-
0 0

( 2 lt)( 2+P2 lt)1/2 (2.12)

For x'&0 this gives"
~ —2tf i/2F (t)[(P.&)2 & P ]- /2

xlexp{ i(=,'t )'"[(P') '-(P x}'—x'] '"),

In the frame P=O, this becomes

—i a,[g„0(ia„+-,'a„)+i(a„——,'a„)g„0)),

(2.13)

which is not identically vanishing and tends to zero
as (x(- like /x/

Next we verify that A2'~'", for x'& 0, as given
by Eq. (2.13) is annihilated by the operator L'„'„'so
that the commutator C'„~ remains causal. The
operator L „„is given by

whereas (2.13) gives
(2.15)

L~~„=-(CI+—,'t)P„P„—(P a)'g„„

—iP a[p„(ta„'n.„+)+(ia„—,'n„}P„]. (2.14)— =0. (2.17}

A,'/ "'.=2iP, f'"F,'(t)[ x
)

'exp[ i(=,'t)"'( x )]. -
(2.16)

Since (2.16) is independent of 2;0, we have

L~ iA2/ 0' 2iP0f F2(t)gv0g 0(V t)
x{) x [

' exp[-2 (-—,'t }'"
)
x )])
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Thus we have established the existence of the non-
causal part A2'~ ""'related to the right-hand side
of the time-time current algebra (2.9) by Eq.
(2.10). The interpretation of this noncausal part
as a fixed pole in the angular momentum plane at
J=1 will be given in Sec. III.

ef(z) = [(2J -1)(2J+1)(2J+3)] '

x [(2J+3)Q~ 2(z) —2(2J+ 1)Q~(z)

+ (2J- 1)Q„,(z)] . (3 'I)

, [e(P2+ v')[](Q2 —,'t+2v' }-
p v

+ (v' —-v' }]dv',

vf' 'F,(t)
(Q' —-'t)[-'(Q' —ct )' —v'] ' (3.2)

III. FIXED-POLE INTERPRETATION

Denoting by T,'~ the invariant amplitudes, the
absorptive parts of which are given by A~~, write

T f Tfif} +tT[if] (3.1)
where T2('f} and TJf'f] are, respectively, the sym-
metric and antisymmetric parts of T2'~. We calcu-
late the contribution of the noncausal part A2'~ "'
to r~'».

Inserting the expression (2.11) into (3.4), one ob-
tains near J=1

2 ~ g (t)
Q ——l J-1 ' (3.8)

exhibiting the presence of the fixed pole at J = 1 in
the partial-wave amplitude.

We observe that the expression (3.3), which we
find for the contribution of the noncausal part to
the fixed pole, coincides with the fixed pole term
obtained by Bronzan et al. ' for the whole amplitude
T2i'». These authors derive their result by using
the FDG sum rule whereas we only use the causal-
ity condition (2.6) together with the current-alge-
bra relation (2.9). These relations by themselves
are not sufficient to guarantee the validity of the
FDG sum rule. In fact, if one assumes that (3.3)
gives the complete contribution of the fixed pole to
the amplitude T,", then one immediately obtains
the FDG sum rule from (2.6) and (2,9), for such
an assumption implies that the causal part is free
of a fixed pole at J=1 and must therefore satisfy

where we have set e(P' —-', Q'+-', t ) -=1, since we
are restricting our considerations to the case of
currents with spacelike momenta. The asymptotic
form of (3.2) as v-~ at fixed Q' and t is Since the noncausal part already gives

(3.9)

T (if]. '.
(Q' —-'t )v' (3.3) r f if2F (t )A[if],nc. (v t Q p)dv =' (3.10)

We recognize this as the asymptotic behavior of a
fixed pole in the J plane at J= 1. The residue of
this contribution to the fixed pole is completely
determined by the current-algebra term and is in
fact equal to the residue of the fixed pole found by
Bronzan et al.' and by Singh.

Since the expression (2.11) gives A,""' for all
values of v, one may, in fact, explicitly calculate
its partial-wave projection &~~ "" in order to
check the presence of the fixed pole at J=1:

P' ' (t Q' tz Q) J"z'*''(z. )Al'""=(z, tc', p)d*, ,

one has the FDG sum rule on addition. However,
one is in general only entitled to the sum rule

f if))F (t ) P()
2 ( p t Q )ppQO [(p (2}}2 ()t Q2)P 2]

(3.11)

as a consequence of causality and current algebra.
We remark that A2~'~i' must possess a pole at

I, =mp', since A2~'~~ "' has such a pole, whereas
A2'~ is free from it. According to the FDG sum
rule A2i

"i' has pure Regge behavior,

where'
(3.4} A [zf],c ft[zf] (t )v ~(f)-2

2 (3.12)

T,""'=Q(2J+1)P~"(z)F~" "' (t, . . . ), (3.5)
J-2

—1/2
z=-2 1 —— p —Q t "'v=—g t, p Q v,

(3.6)

and satisfies the superconvergence relation (3.9).
One then muSt require 1t[ "](2f2 ') 2) 0 SO that the
divergence in the integral (3.9) as a(t )- 1 is can-
celed by the divergence due to the pole at I; mp'
in the integrand. This fixed-pole-moving-pole
collaboration at t = m p' has previously been noted
by Bronzan et al.
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One observes that since the integrand in

fA ((Jl Qdq —0 (3.13)

diverges as t- mz', the amplitude A2L'~~' -=A2~'~~'

—(contribution of pole at t = mo') must possess an
asymptotic behavior as Q,—~ that allows a diver-
gence in its integral over Q, at t =m~' which can-
cels this pole.

We finally remark that our considerations show
that current algebra does not require that the am-
plitude l2~" possesses a fixed pole at J=1, since
T2~'~~' may asymptotically cancel the term (3.3).
The assumption of the existence of this fixed pole
in T2i'~' with residue as in (3.3}is thus completely
equivalent to the FDG sum rule, i.e., to the as-
sumptions (besides current algebra) that lead to
the FDG sum rule.

A" (Q)dQ =o
s

0 ~ j (4.8)

QoA~ Q dQo= b (4.9)

Q,'A,"(q)dq, =c„"(t)P,+d ~(t)~„0
2

k
~
~

0 ~«
k
~ ~

0
~i!f

0 t (4.10)

where

where b, c, and d are invariants. We also note
that b =0 when g(u, s) is odd in u, and that c =d
=0 when g(u, s) is even in u. In fact, the ampli-
tudes A~~ "& and A~&"j are, respectively, repre-
sented by even and odd (in u) spectral functions
(t(u, s).' Thus, one has the following causality
sum rules for the amplitudes A~", k = 1, 3, 4, 5:

IV. CAUSALITY SUM RULES AND STRUCTURE OF THE
EQUAL-TIME COMMUTATOR

Using the JLD representation for a causal func-
tion A,

A(Q) = Jd'udss(Q, — )S((Q — )'-s) d(u s),
(4.1)

())I &sl(t ) 0 c(ih (t ) —d (u) (t )

For k=2, one has

A(")(Q)dQ. =JQ,'A(")(Q)dQ =()

Jt Q.A(")(q)dq, =t &")(t),

(4.11)

(4.12)

(4.13)

one finds, on assuming the possibility of exchang-
ing integrals, that A d ~» ~

I
~

~
~ J~

~

~ ~
~ ~

~
0

~ I 1
f'"F,(t )Po

2 (Q) Qo t(p q)2 (lt q2)p 2] j ( ' )

AdQo =0 (4.2)

It has been shown by Meyer and Suura' that such a
causality sum rule holds provided that

QoA2" (Q)dQo
[( }2 pt 2}P2] d

lim g(u, s) =0.
S~'o

Similarly, one has

(4.3)

(4.4)

(4.i5)

J Q'A""(q)dq =
((p q)' —(,'t +q') p,']-
+c""(t)P +d,"»(t)t,

Q,'A(Q)dQ, Jd dsu, d(, s)', (4.5)

provided that lim, „gg(u, g)=0. Since the spec-
tral function g(u, s) is Lorentz-invariant, it is
clear that the right-hand sides of (4.4} and (4.5)
transform like a scalar and a time component of a
Lorentz vector, respectively. These equations
may therefore be written in the form

(AA2~")(Q)dqo =0. (4.17)

Using the above relations one may directly cal-
culate the equal-time commutator E~~ defined by

(4.ie)

It is interesting to note that one may eliminate the
current-algebra term from the sum rules (4.14)
and (4.15), obtaining the sum rule

QoA Q dQo=& ~ (4.8)
Eo„' = e' '"6 xo P2 Jo ~x, J„-—'x P~ d x.

(4.18)

One finds that this is given by the expression
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E~td = [if'i~F~(t }t(2 Podo+ P Q)b2('»(t )+(gi(20 +A Q —2t }b~('»(t )] P,

+[—,'b(2'»(t) ——,'P,'b2('»(t)+P Qb(24»(t) —,'P,—b,bd(22)(t)+(A Q —,'t)b(, '—»(t)]A„

+ [b(2'»((4) —P 'b2('»((4) —b, P (b(2»(t )+b '»(t )) —A 2b('»(t )]Q„. (4.19)

It is immediately seen that all the Schwinger terms that arise in this equal-time commutator are symmet-
ric in the internal indices. This is not true of the space-space equal-time commutator E„'~, the expression
for which is given in Appendix B.

By the change of variable Q,—x,

Qo 2 P(p+Po P Q

the integrals (4.9) defining the invariants b~&'»(t ) may be written in the form

b, ((»)=t4P'f x»'»((2.'Ptx, 4 'Px +4P()x+X, blP'* ~ y)d (4.20)

where

i» =P, '(P Q)' —Q', X=P, 'A„

y=xP Q —Z Q.
(4.21)

ative of a 6 function appears in the commutator
besides the canonical term.
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APPENDIX A: CAUSALITY OF THE INVARIANT
AMPLITUDES

I-"'A" ""=0 x'&0 vkPv Q )

Consider this equation for k =1:
(A1)

[(i()„—,'d„)(is„—+& A)+(0 '+t)g„„]A", =0,

(A2)

where we have dropped the internal-symmetry
indices We wor. k in the frame b, „=0, p. e1 (note
that A'(0). For p. =0, v=i 221, E(I. (A2) gives

8 8 A",'=0) i =2) 3.0 (A3)

Suppose that a, A2' e0, then from (A3), a, A "2'.

=f(x„x,). For i» =1, v=0, (A2) gives

(i &, —', b, ,)f(x, x, ) =0;— (A4)

In this appendix we establish the causal charac-
ter of A,", k=1, 3, 4, 5. This is done by showing
that any noncausal parts in these amplitudes which
vanish as

i
x i- ~ must vanish identically. One

observes that, since C'„~ is causal, the noncausal
parts A. „'~ "'. in 2„'~ must satisfy

It thus appears that any experimental verification
of (4.26) is also a test of the scaling hypothesis
(4.24). One further notes that only a single deriv-

therefore,

f (x„x,) = g(x, ) exp(--,'ix'A, ) . (AS)



2354 ABDE L- RAHMAN, AHMED, AND TAHA

Integrating (A5) with respect to x» one obtains

2,""= h(xo) exp(- —,'i«'b, ,) + l(x„x„x,) . (A6)

(a,'+-,'A, ')2, ' '(x'S, ) =0, (AV)

Observe that the two terms on the right-hand side
of (A6) must be independently invariant; therefore
h(x, ) is invariant. Since A,""is a function of
x', x A, 6', and x P, it is clear that k(«0) is con-
stant. Similarly, /(«„x„x,) = I(«'6, )~ Thus
&OA 1

= 0, contradicting our original supposition.
Hence A,""is a function of x„x„and x„and is
therefore a function of x 4 = x'4, only.

Taking ]], = v =0 in (A2) one obtains

gl(» «2% «3) 1 k 1(x» «2~ «3) ~ (A11)

Observing that the three terms on the right-hand
side of (All) must be independently invariant, we
conclude that A."3' is of the form

Otherwise, we have

&~ A ~'
' =f~ (x» ~, x) exp(+ i ,' n—'x) +g, (x» «2, x,) .

(A10)

Integrating with respect to x„one obtains
Fl '- n.c. ~ 1 1A,

' =—f,(x» x, x,) exp(i~b, x, )
1

the solution of which is

2","= a exp[ ,'ix -n]+ p exp[--,'ix AJ, (A8)

- n.c. C1 1 ~
4'x

A3 2 g/2 exp(+-, iL x)+c. . .)„,+c3i-& i

where a, P are arbitrary constants. The condition
A,""-0as ~x~- requires a=P=O, so that
A",' =-0.

We now consider Eq. (A1) for k =3:

[-( +-,'t)P„n„+iP s(za e ,'t)@„„--
-(i' & —'t)P„(i&„+—'n, —„)—iP &(i&q ——'nq)b „]A

(A12)

where c„c„and c3 are constant. Thus A3 van-
ishes, again by the asymptotic requirement.

The analysis leading to the vanishing of A, is
similar to the previous case. For A,

' '
the opera-

tor L„'„gives, in the same frame for p, = v =0, the
equation

(8 '+-'n ') A" =0 (A13)

(is, +-',a, )s,A,
""=0 v k. (A9)

In the same frame, b„=(0,b,„0,0), the equations
for p. =v=0, p. =l, v=0, and p, =0, v=i tl give,
after some algebra,

x.e.,

A 6"= o, (x» «2, «3) exp( i2g. x)

+o', (x» «2 x,) exp(i-,'A x). (A14)

If 8,A,
' ' =0, then A,

' is a constant and must
therefore vanish by the asymptotic requirement.

The invariant character of A,
' '

implies that (A14)
reduces to the form (A8) ~ This completes the
proof of the causality of the invariants A„, k w2.

APPENDIX B: EXPRESSION FOR E'„'i,

E„'~ =- e'~' "e x, P, J'„' —,'x, J~ --,'x P, d'x

r s+E2 r @s +E3 Pr ks+E4 r s+E5 Q Qs +Ee Qr hs +Ev r s+ 8 r@s + 9 r s + 1o&rs

where

El/ = c[&JI(g ) P + di& J](i )n

E2 = -b3

BJ](i)P +d['i](i)~ ~b(&hn

E,"=0,
E'& — (b(~ 6+ b(&J))A

Z,'~=c~'~](t)P + [d~'~](t)+ —,'b('~)Ja

E'~ = -b~'~~ P —b~'~~6,

8,'~ = [ c~"](t) + -', bp') ——', b(")]P, + d, "](t )dL„

Elj f P (i)P &I 1(i)P di J](i)z +&i ](i)P +d2( ](i)P z +&i ](&)P & +dL l(i)P

—b(")(t )[(-n Q+ ,'t )P, + P Q 4,]-
+b(")(t)[(-Z Q+ —,i)P —P Qh ]+c '~ (t)P n +d, '~ (t)n. ~ —2b('~) Z Qn
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Using the explicit form of the strong-interaction Hamiltonian provided by a certain
class of gauge theories, and the technique of the Bjorken-Johnson-Low expansion, we derive
sum rules relating the vectors axial-vector, scalar, and pseudoscalar spectral functions
and the chiral-symmetry-breaking parameters. Consistency of the sum rules in the
pseudoscalar- (PS) meson sector demands that there should be a heavy nonet of PS mesons.
It is shown that the nature of chiral-symmetry breakfast depends on the character of these
heavy mesons. The two modes of symmetry breaking resulting from this are studied. Using
the assumption of pole domin~nce for the spectral functions, we evaluate the chiral-sy~~etry-
breaking parameters in one case. We also evaluate decay widths of p, ~, and fIt mesons to
lepton pairs.

I. INTRODUCTION

An interesting outcome of the recent investiga-
tions' into spontaneously broken gauge theories
has been the suggestion that strong interactions
may be mediated by a "color" octet of gluons,
coupled to three quartets of quarks. ' In such mod-
els, violations of parity and strangeness selection
rules are computable and have been shown to be
small' (of order Gr for h S = 1 and P-violating
processes and of order G~' for 48=2 processes,
in agreement with experiment}. Further impetus
to the study of such models has been provided by
the recent observation that a subclass of such the-
ories are asymptotically free~ and may, therefore,
provide an explanation of observed Bjorken scaling
in deep-inelastic electroproduction. In this note,
me investigate the structure of hadron symmetry
breaking and the spectrum of low-lying hadron

states in such models.
It has been pointed out' that the basic symmetry

of strong interactions in gauge models of the type
described in Ref. 3 is U(3)~SU(3)s (in the space of
observed particles} broken by quark mass terms,
which transform as (8, 8*)$(8*,3}under this group.
An analysis of the nature of symmetry breaking in
theories with U(8)~SU(3)„symmetry structure has
been done by Mathur and Okubo, ' using spectral-
function sum rules and the assumption of pole
dominance. In view of the great relevance of such
models in the context of gauge theories, me mould
like to reexamine their work using the spectral-
function sum rules that can be de&red in gauge
models of the type mentioned above. For this
purpose me study the general question of spectral-
function sum rules in gauge theories. Such sum
rules had been studied earlier by %'einberg' and
by Das, Mathur, and Okubo, ' but in both these


