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The large-s fixed-angle asymptotic behavior of scattering amplitudes of the form T{s,t, u)
=A{s,t)+A{a,(()+A{a,t), withA{s, t) =p& &C„l)()(—a{s)~ )) —n{t)}, is studied. We find that
the asymptotic behavior is dsterm)))ed by the function E{z)=p)", 0 C„z". If E{z) is entire
the Veneziano fixed-angle behavior is preserved. If E{z) is singular atz = A,, A, real and larger
than one, a different, but still exponentially damped, fixed-angle behavior is produced around

the forward and baclovard regions. If A = 1, we find a behavior which depends critically on

the growth of Im{8) as Re{S) fS-=e(s)j. %e find, in particular, that the models of Mandel-

stam and Frampton have this last type of fixed-. angle behavior. The same is true of the model

of Gervais and Neveu, unless their choice a& = -1 is made. The model of Neveu and Schwarz,
however, does have the usual Veneziano fixed-angle behavior. %e finally relate our work to
that of Ellis, and Freund, and find some discrepancy, which we comment on.

I. INTRODUCTION

The explicit dual models, introduced by Vene-
ziano, ' have been generalized in many ways' so
as to satisfy various physical requirements.
NotaMe constraints on such models have been the
freedom from ghosts, the ability to be factorized
when generalized to N-point functions, and the
preservation of those desirable aspects of duality
and Hegge behavior which first motivated the in-
vention of such models. Frampton, together with
the author' derived conditions on the coefficients
of absolutely convergent symmetric Veneziano
series of the form

I'(l+ )'t —a(s) )I'((l+ l't —a(f) )
1!I'(l+2h —n(s) —n(t))

(1.1)

in order that the duality and Hegge behavior be
preserved. However, we did not at the same time
consider the conditions on the C» &hich would en-
sure the preservation of the good fixed-angle be-
havior as s-~, which was stated in Veneziano's
original paper. In a series of two papers, I pro-
pose to treat this problem completely.

The fixed-angle behavior discovered by Venezi-
ano,

(1.2)

where x=cos8„ is a very desirable property of
these models. Ellis and Freund4 have stated evi-

dence, both theoretical and experimental, that an
asymptotic behavior of the precise form (1.2) is
in fact true. However, the data on fixed-angle be-
havior are not yet very extensive, and their theo-
retical derivation does depend on a number of as-
sumptions. Nevertheless, the qualitative behavior
exhibited by (1.2}, of strong damping in transverse
momentum, is well verified. Furthermore,
DeTar' and Segr4 and Huang' have related this
fixed-angle behavior to the strong transverse-
momentum damping in inelastic processes.

In these two papers, our aim will be to deter-
mine under what conditions a Veneziano series of
the form (1.1) satisfies one of the following as
s -~ at fixed angle:

(a) asymptotic behavior like (1.2);
(b} asymptotic behavior stt ongly damped in

transverse momentum, but quantitatively differ-
ent from (1.2); and

(c) asymptotic behavior which depends on the
growth of Im(S) as Ite(S)-~ [S=- a(s)J. Such a de-
pendence on the growth of Im(S) is probably unde-
sirable, but may provide some link between reso-
nance widths and fixed-angle behavior.

This first paper treats only series of beta functions
in the form given in E(I. (2.5). Most of the models
currently in favor with dual theorists are of this
form; notably those of Mandelstam, Gervais and
Neveu, Frampton, and Neveu and Schwarz. ' We
can show that the model of Neveu and Schwarz
falls into category (a), and that of Gervais and
Neveu falls into category (a) if e =1, -1, -2, . . . ,
but otherwise into category (c). Both of the others
are in the category (c).

An outline of this paper is as follows: Section II
develops an integral representation, and Sec. III
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transforms this representation to a suitable form
for our purposes. The analytic properties of the
transformation are studied in Secs. IV and V, and

in Sec. VI it is shown how the singularities of the
transformation function are the cause of the as-
ymptotic behavior (1.2). We show, in fact, that if

E(z) = Csz"

(where the C, are the coefficients of the beta func-
tion series) is an entire function, then the behavior
(1.2) is preserved. In Sec. VII, we show that if
E(z) possesses singularities only for real z greater
than 1, an acceptable asymptotic behavior still ob-
tains. Section VIH shows that the various crossed-
channel terms do not alter the conclusions above.
Section IX summarizes the results. Section X is
devoted to a study of borderline cases, when E(z)
is singular at z =1. The models of Mandelstam,
Frampton, and Gervais and Neveu' are in this cat-
egory, and these models give in general a fixed-
angle behavior which depends on the rate at which
Im(S)-~ as Re(S)-~. In particular, if the choice
Im(S) =constant is made, we get a power-law be-
havior, while if the choice Im(S) = pRe(S) is made,
an exponentially damped fixed-angle behavior is
found. It is found that for small forward and back-
ward angles, the usual Veneziano behavior is
found while for larger angles, a slower exponential
falloff obtains. The position of the changeover de-
pends on the value of p, . It should be noted that a
singularity of E(z) at z =1 is an essential charac-
teristic of these models, and it is just this singu-
larity which alters the fixed-angle behavior.

ce ~1

C„d«[x(I —«) ]-s-i(1 «)s-g
A=0 ~0

x [x(1-x)]' . (2. '1)

%'e then interchange the order of integration and
summation to get

X{S T) = dx[x(1 x)']-'-'(1 —x)'-'-'

with

x E{x(1-«)), (2.8)

E(z) = g Cp' . (2.9)

III. TRANSFORMATION OF THE INTEGRAL
REPRESENTATION

We note that the S dependence of (2.5) occurs
only in the exponent of the function co(x) defined by

In Ref. 3, Sec. II, essentially the same represen-
tation as (2.S}was derived, and the interchange of
integration and summation shown to be possible if,
as assumed here, the series (2.5}converges abso-
lutely.

It was also shown in Ref. 3, Sec. VA, that Regge
behavior as 8-~ at fixed 7, and exponential de-
crease off the real axis as 8-~ at fixed U, nec-
essarily required that E(z) be analytic everywhere,
except when z is real and

1~&z « .
We shall therefore impose this condition on E(z)
from now on.

II. AN INTEGRAL REPRESENTATION

Fixed-angle behavior is described by the con-
straint {for equal masses of scattered particles)

gv(x)=x(1- x)' .
Notice also that, provided 5 x0,

(3.1)

T= a+ bS [S= n(s), T= o.(t)], (2.1) w(0) =1,
w(I) =~,

(3.2)

b = -—,'(1 —cos 8)

so that

0& b» -1

(2.2)

(2 3)

and w(x) is a monotonically increasing function of
x in the interval (0, 1}. When b =0, the whole der-
ivation we use fails. However, this corresponds
to fixed T, which was treated in Ref. 3. %e de-
fine also the inverse function v(y), which satisfies

a= (lao-b)-4a'm b, (2.4)

F(b -S)F(b - T}
F(2b —S —T)

(2.5)

oo ~l
dx«-& s-""&(I x)-&'-""&

h "0
(2.6}

An absolutely convergent symmetric four-point
function with only beta-function terms can be writ-
ten as, '

v(ur(«)) = x,
sv(v(y)) =y .

Finally note that

dv(y) de(x)
dx ~ gy)

=(I x)'-'[I-(b+ I)x]-'~, „„,
= v(y)[1 —v(y)][y[1- (b+ I}v(y}])'

(3.3)

(3 4)

(3 5)
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We thus make the substitution y = w(x) in Eq. (2.8)
to obtain

A(S, T}= I dyy ' 'v(y)[1 —v(y)]' '
0

x [1-(b+1)v(y)] 'F (v(y)[1- v(y)] ).
(3.6)

IV. SINGULARITIES OF v(y)

In order to study the asymptotic behavior as
S-~, with b fixed, it will be necessary to know
where the singularities of v(y} are. There is a
well-known theorem which states that if

w(x ) = b (b+I)

C

Argw(x}=- Gb

rg w(x }=Gb

(i) w(x) is analytic at x= P and

(ii) w'(P) Xo,

there is a unique function v(y), analytic at a
= w(P), which satisfies the conditions

w(v(y}}=y

v(o) =P

Furthermore

v'(u) =1/w'(p) .

(4.1)

(4.2)

C

FIG. 1. Schematic graph of the various regions of
w(x) =x(1-x) . A: Region 0 —lw(x)l«lb'(0+1) ' 'I
and 0» argw(x)l»x B: Region lw(x)l &lb~{b+1) ~ ~l

and 0» argw(x)I »xlbl. C: Region Iu(x)I &Ib'
x (0 + 1) ~

I
and xl 0 I

»
I arg w(x) I

—&

V. INTERPRETATION OF THE SINGULARITY
AT y=[1l(b+1)][b/(b+1) ]f'

v(y) = 1/(b+ 1)

and thus, by (3.3) and (3.1), when

(4.3)

b+1 b+1' (4.4)

Condition (b} occurs when

Thus, the singularities of v(y) can occur only
when either (a) w'(v(y) )=0 or (b) v(y) is the value
of a singularity of w(x}. Condition (a) occurs
when

Since b is nonintegral, there are many possible
values of [b/(b+1))~, and the function v(y) has
several sheets. Furthermore, the function w(x)
also has several sheets. In Fig. 1 we show the
curves of constant phase and modulus of the func-
tion w(x), for b=- —,'.

There are three regions, A, B, C.
Region A. In this region

lw(x}I&lb'(b+» ' 'I =lbl '(1-Ibl) ")'~».
(5.1)

or
v(y) =1

v(y) =

(4.5)
Also, arg(w(x)) has the range

-w to+m. (5 2)

both of which correspond to

(4.6)

Region B. In this region

lw(x)l & lb'(1+b)-'-'I (5 3)

and x is finite. Further, Arg[w(x}] has the range
Thus, we conclude that the only singularities of
v(y) occur at the points

-wb to +nb . (5.4)

(4 ))

The value of arg[w(x)] is vb on the uppe-r lip of
the cut, and + ~b on the lower lip of the cut.

Region C. In this region

lw(x)l&lb'(1+b) ' 'I (5.5)

b+1 b+1 and x may become infinite. Here arg[ w(x)] has
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the range

Ib to I,
-wb to -m.

(5.6)

(5. f)

cuts, from the positions (5.11) to ~, with argy
=+ nb.

The region Q is similarly shown to map to C',
which satisfies

Thus, the function w(x) takes on all complex val-
ues in the x plane. We now consider the inverse
function v(y). The reader is asked to refer to
Figs. 1 and 2. In the region

lyl & Ib'(1+b} ' 'I (5.8)

there are no singularities. Thus the mapping y
= w(x) maps the region A into the region A', de-
fined by y = w(x) with w(x) satisfying (5.1}and (5.2).
This is a circle with radius ~b~(1 b+)

'
~~

The region B is defined by y = w(x) satisfying
(5.3}and (5.4). Thus the mapping y = w(x} maps B
into B', defined by

lyl& lb'(b+1} ' 'I,
s& l»g(y}l &slbl .

(5.12)

Thus, the first sheet of v(y) possesses only two

singularities, both branch points at

argy =+ nb .
(5.13)

An approximate expression for v(y}, va, lid when

y is close to the branch points, can be simply de-
rived by approximating w(x) by a quadratic function
of [x-1/(b+1}]. We can then solve for x in terms
of w(x), to give

fy/ & fb'(1+b)-'-'i,

«l»g(y}l «Ibl .
(5.9)

(5.10)

b - 1/2

(b 1)' b+1 b+ 1

In Bthere is only a singularity at x=~, but the
mapping becomes double-valued along the cut from
1 to ~. Thus a singularity in v(y) arises when
x= 1/(5+1), as was shown previously. This gives
two singularities in v(y), occurring at

ly I
= lb'(b+1)-'-')

(5.11)

argy =+ wb .
The cut from ~ to x=(b+1) ' then maps to two

VI. ASYMPTOTIC BEHAVIOR WHEN F(x)
POSSESSES NO SINGULARITIES

This section will show that if E(x) has no singu-
larities, the asymptotic behavior at fixed angle is
that of the usual beta-function model.

We make the substitution

(6.1)

so that

A(S, 1)= dz e "i'v(e ')[1 —v(e ')]

x [1 —(b+l)v(e ')] '

x p, (v(e ')[1—v(e ')]) (6.2)

es'C (z)dz . (6.3}

The singularities of C(z) are at points where v(e '}
is singular, i.e., at

y = b (b+I)

z = 1n ~b (1+b) ' ~~ aisb+ 2nvi,

and when

v(e ')=1,
l.e.y

(6.4)

(6.5}

FIG. 2. Schematic graph of various regions of v(y).
The regions A, B, C correspond to the regions A, B, C
in Fig. 1. The function v(y) is ~~~lytic throughout the

y plane, apart from the cuts shown along arg(y) = + mb,

with branch points at )y (
=

[
b~ (b+ 1} ~

l.e.y

2= ~ ~

However, singularities at infinity are irrelevant
to this work.

We distort the integration contour, (-~, ~}to C',
as in Fig. 3 when Im(S) &0. The asymptotic be-
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havior as Re(8) -~ is dominat'ed by the behavior
of the least rapidly decreasing exponential, which
occurs along the vertically distorted contour.
Thus, the asymptotic behavior will be approxi-
mately of the form

IA(8, T)l-exp(-8[inlb'(I+5) ' 'I+i&b]} (6.6)

FIG. 3. Singularity structure of the integrand of Eq.
{6.2). All singularities occur at Re{s)= -1 jbn~{l+b) t ~l.
The crosses represent singularities at arg~ = -i mb

+ 2m~i; the circles represent singularities at argz = inb
+ 2g %zan

Sec. V are branch points, of a structure given ap-
proximately by Eq. (5.14).

(ii) The integrals round the various contours C"
differ only by phases, which can be extracted, and
summed over the various positions of the singu-
larity. Doing this gives an integral around C,",
multiplied by a factor

sins[a+ (b+ l)8]
sinmS

(6.8)

This representation is, by analytic continuation,
now valid for all values of Im(8).

(iii) We rewrite the integral around the contour
C,"defined by Im(z) =-sb as an integral of the dis-
continuity of the cut, which turns out to be a Lap-
lace transform.

(iv) Since the asymptotic behavior is determined
to first order only by the behavior of the discon-
tinuity of the integrand across the cut near the
beginning of the cut, we approximate v(y) by (5.14)
in the integral, and carry out the integrations to
get (6.8).

VII. ASYMPTOTIC BEHAVIOR %/HEN F(x) IS SINGULAR

In Sec. II we imposed the condition that E(z)
should be singular only for z real and

1~~z &~ .
Suppose then z has a singularity satisfying ('l. l) at
z =X. Then E(v(y)[I - v(y)]) will be singular when

y =y„defined by

v(y, )[1—v(y, )]=)). ,

5+1 5+1 (6.7) 3..e.,

This form is the same as that in Veneziano's orig-
ina1. paper. '

More careful calculation can give the more pre-
cise determination

( ~ SU)W[ 8 (5+ 1)S]
I(b I)/bl(v2)+~

sinn 8

v(So) = k+(k —&)"'

=~+@,

I(I- a~
Solving (7.3) for y„we find

(V.4)

x 8-'/'Ib'(5+1) ' 'I E(b/(5+1)')

(6.8)
The only change between this and a careful evalua-
tion of the asymptotic value of A(8, T) (as given by
Veneziano), using Stirling's approximation, is the
factor E(b/(5+1)'). Clearly, when E(z) =1, we
get the correct Stirling's approximation value for
the beta function.

Equation (6.8) is derived as follows:
(i) Let Im(8) &0. Then we distort the contour

(-~, + ~) to the contour C' as shown in Fig. 3, and
then to the contour C"', which is composed of the
sum of all the contours C" round individual posi-
tions of the singularities, which we have shown in

Idol »,
which would mean

P+g2)(x+s)/2 &0+)))/2 & 1

(7.6)

Noting that —,'(1+5)&0, we see that (V.V) requires

i(I &2~, (1.8)

which is not the same as (7.4), which includes the

y, =t()(,'+i])-
= (-,'+ i&)(-,

' —i5)' .
From the reasoning of Sec. VI, we can see that an
exponential decrease of A(8, T) as 8-~ at fixed
angle can come about only if
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Notice also that the symmetry of the fixed-angle
behavior of an individual term under the transfor-
mation b - -b —1 will now be destroyed.

VIII. ASYMPTOTIC BEHAVIOR OF THE TERMS
A(S, Q AND A(U, T}

The usual expression for the scattering amplitude
will involve A(8, U) and A(U, T). Using

(8.1)

we see that

U= x —a —(b+ l)8;
thus the term A(8, U) can in fact be written

A(S, U) =A(8, -a-a(b l+)8) .
Thus the substitutions

(8 2)

(8.8)

FIG. 4. Plots of y = A,
&~+ ~&/2 for A, = 5, as a function

cf b (dashed curve, andy= j (b+ 1) ~ tb~
( as a function

of 5 (solid curve). The smaller function at any given
value of 5 dominates the asymptotic behavior of A(S, T)
as S—~ at fixed angle.

posslbill. ty of equality.
Translated into a statement about E(z}, we find

that the requirement for asymptotic behavior at
fixed angle, of the form e rs, as Re(S)-~ is that
E(z) possess singularities only for z real, and
1&x &~.

It should be noted, however, that whenever F(z)
does possess singularities at z =X &1, although the
requirement for exponential behavior at fixed angle
is satisfied, the qualitative behavior is now differ-
ent from that of a single beta function. It is clear
that for any given angle, whichever is the smaller
of ~(b+I) &'"&b'~ and 1,""' will dominate the
asymptotic behavior at fixed angle. Figure 4 shows
the different behavior of the two functions as b
varies. Notice that the tangents to ~(b+1) t"'~b'~
at b =0 and 5 = -1 are vertical. Thus, the two
curves will always intersect once in 0 &5 &1. At
b greater than the value where this intersection
occurs, the fixed-angle behaviox will be that of
Eti. (6.8); at more negative b, the behavior will be

( I.9)

(8 4)

x y'((x —1)/x'), (8. I)

where we choose arg(1 —x) = -w in the integral, so
that the integral is along the top of the cut from 1
to ~. By now writing y = n(x), we find

(8.5)

in (6.8) and ('I.9) give the asymptotic expansion of
A(8, U). The usual behavior (6.8) is, up to con-
stant factors, unaltered. Thus, in the case of non-
singular E(z), A(8, T) and A(8, U) give the same
fixed-angle behavior.

However, if F(z) is singular, referring to Fig. 4,
we can see that the dominant term near 5 =0 is
now a term that behaves like {b.~') s. There may
be a region of 5 around b = --,' where the behavior
(6.8) dominates, but this happens only if

(8.6)

The term A(U, T) does not have such an obvious
treatment. A representation like (2.8) can be de-
rived, and after substituting x-1/x, it becomes

A(U, T) =exp(itt[b(S -1}+b-a- l]j

A(U, }=Te(xip[ v( b-8) I+-bal]f;~ dy y s ag(y)[I n{y)]~ '[I {b+1)n(y)]-'
~c

(8.8)

where the contour C runs around the cut along
argy =-sb (see Fig. 2). We see from this that
when the substitution y =e ' is made, no distortion
of contour will be necessary to obtain a repre-

sentation suitable for an asymptotic expansion.
Thus, the singularities of F are irrelevant to this
case. The asymptotic expansion is then calculated
to be
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/(I/ r} (2)»}i/3(5+1)4-~-i/2( $)~-i/&S-i/2

x I(5+1) ' '5'I 'E(-5(5+ 1)) (8.9)

and will hold for all absolutely convergent beta-
function series.

In the models of Mandelstam and Qervais and
Neveu,

y(S, r, I/, x) = I .
In Mandelstam's model,

IX. SUMMARY OF ASYMPTOTIC EXPANSIONS
AT FIXED ANGLE

When E(z) has a singularity at z =)(, we find that

y =8+ T+ 0+1=4''m'+3&0+1 „

in that of Gervais and Neveu,

(10.2)

(10.3)

r(s, r, g=a(s, r)+x(I/, r)+a(s, U) (9.1)
and it is preferred that

0.0=-1 . (10.4)
has the following asymptotic expansion at fixed
angles:

(a} If )(&16, then for all angles
y =8+ 7+ U-1=4+'m'+3+0 —1, (10.5)

In Frampton's ghost-free version of his model,

r gI )(I(i/I)-t(i/+ -4'I) z (9.2)

Near the forward direction, this can be written (t(s, r, I/, x)=[Sx+r(1-x)- Vx(1-x)]

I r(s, r, gI -exp[s(M. )sin'(-,'8)],

which for small angles is approximately

-exp[--,' In)((o'E~} ] .

(9.3) x [1- x(1 —x)] ' . (10.6)

The crucial point in all of these models is that

E{x{l—x))= [1- x(1 —x)]" ' (polynomial in x) .
(10.I}

(b) If A, & 16, the asymptotic expansion (9.2) holds
in the region where

)( -Ri/I)-((i/I)-il) & I(5+ I)-i -i5~I (9.5)

This is a region which includes the points b = -1
and 5 =0, but excludes a central region of the form

iz 5I &n, - (9.6)

X. APPLICATIONS

A. Applications to the models of Mandelstam, Gervais
and Neveu, and Framptona

There are several interesting models which can
be written as sums of beta functions, and it is
therefore relevant to investigate the fixed-angle
behavior of these. The models under consideration
all involve expressions of the form

where») is so defined that when I-,
' —5I =»), (9.5)

becomes an equality.
Thus (Iuaiitatively a singularity ln E(z) will

change the fixed-angle asymptotic behavior near
the forward and backward regions, but, provided
)(. &16, the original behavior (6.8) will be preserved
in a region round 8 = 90'.

The polynomial is unimportant; the crucial fact-is
that for all these models E(z) is singular at z =1.
[There is an exception if we make the preferred
choice of Gervais and Neveu, given by (10.4),
when y = 2, an/the singularity disappes'rs. ] Thus,
it is clear that in general, the fixed-angle be-
havior of the Veneziano model will be completely
destroyed.

Consider a model in which g{s, r, I/, x) =1; and
y is arbitrary. The representation (3.6) becomes

Z(S, r) = ~, dyy-'-'[1 —v(y)]'-~[1 -(5+1)v(y)]-'
«0

& Cv(y) -e "'1[v(y}-e'""])"".
(10.8)

The final factor has branch points at

(10.9)

and near these branch points, using the expression
(3.5) for v'(y), we can derive that

( ) e&iw/s + s(i~/s)(s-x)[I (5+1)esiw/s]

x [y-s("'/')(' ')] . (10.10)

«0

x(c(s, r, U, «). {10.1)
We may then follow the same methods as in Sec.
VI to derive the asymptotic expansion
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y /2
2z s ( 1 ) 21Ff(b 1)/s ef 1f(1 b +a)/3 3'}f(b-1)($+1)/3

z sin~-, .g~e

1 —(b + 1) "/'

—zs1n —,m esin( &

) e2 w i(5-1)/3 e-ir(1-b +a)/s -is(b-i) ( s+I)/3e
(b+ I )e-iw/s

y/2

1-(b+1)e '"' (y/2) i csc(wS)
r(-2)} ' (10.11)

The interpretation of Eq. (10.11) depends very
much on the behavior of Im(S) as Re(S) -~. If we
assume that Im(S) is a large positive constant,
(10.11) gives a power-law fixed-angle behavior,
multiplied by some phases. If, however, more
conventionally we take S-~ along a ray, so that

However, it should be remembered that y =2
corresponds to the Gervais-Neveu model, which
leads to the vanishing of (10.11)because of the
factor [r(--,') )]-'.

B. Application to the model of Neveu and Schwarz

Im(s) = gRe(s),

and define b, by

Ib,"(b,+1) " 'I =e'-" .

(10.12)

(10.13)

This model is merely a sum of beta functions,
multiplied by polynomials in S, T, and U. Thus,
the fixed-angle behavior will be essentially that of
a beta function.

Then,
(a) for 0&b&b„ i.e., angles in the forward di-

rection, we have

IA(S, T) I-
I exp[u wbRe(s}]l

x Ib'(b+1)-'-'I -"'(') IsI-"' (10.14)

which, apart from the first slowly decreasing fac-
tor, is the same as the usual Veneziano form.

(b) for ——,'&b&b„ i.e., angles from 90' up to
that angle defined by b =ho,

IA(s, T}I-exp[—'w(b+2)y, Re(s)]IsI (" ')-',
(10.15)

which is of the form of a slowly decreasing ex-
ponential multiplied by a power law.

It should be noted that the nature of the fixed-
angle behavior, in particular the "break" between
one behavior and the next, will depend strongly on

p. , unlike nearly all other dual-model properties.

XI. CONNECTION WITH THE RESULTS OF
ELLIS AND FREUND4

These authors have recently derived the result
that, under certain analyticity and consistency
requirements, dual models give a logarithmic
scaling law, of the form

-(n'S) 'lnA(S, T)-f(cos8)

as Is I
-~ at fixed angle, and that f(x}is given by

f(*)= ln ( )
+ ln( ), ill. 1)

so that (11.1) corresponds exactly to the behavior
expected from a single beta function. It is clear
that all their assumptions cannot be correct in
dual models expressible as series of beta func-
tions. For example, taking F(z) to be given by

1
F(z)=, )( real, and A &1z-X' (11.3)

—'1 Sl'f(s, T, U)-
2(

'
},/, . ((—,

' —i$) * ' '(2+i))exp{i[ ( 23@+)t-an2& —w]S}

—(-,'+ i$) * '-'(-,' - it')exp{ -i[--,'(3+ z)tan '2t —w]S}) + (z- -x), (11.4)

where x=cos8, and $ = I(X —~}'/ I. This expansion
will be valid in a pair of regions; one including
w=-1, and one including x=0. (These regions
overlap if X & 16.) In a central region the asymp-
totic behavior is the usual Veneziano type.

Imagining firstly for simplicity that the limit
S-~ is taken with a constant imaginary part of
S, namely, Im(S) &0, then the only significant that is,

1+x 2 1+x
+ ln

2 1+x' 2
(11.5)

term is exp[ —,'(1- x}sin)(]. Writing all this we see
that (11.1) is valid if

1-x 1 —x 2
f(x) = min In)(. , ln
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f(x)=-,'(1 —x)~ (aux~1)
1 —x 2 i+x 2

ln + ln ( a~+x~+ a)
2 1-g 2 1+x

= (1+x)lru (-1&x&-a) . (11.6)

Here a and -a give the values of x where f(x)
changes from one functional form to another.
When x approaches 1, the first two forms for f(x)
both approach zero. The second one gives rise to
the Regge behavior, and of course satisfies the
consistency condition of Ellis and Freund. How-

ever, the first form arises from A(S, U), and gives
not Regge behavior, but, instead, the type of term
that decreases exponentially as ~S~ -~, with

~argS~&0. A similar result occurs if we let Im(S)
= p, Re(S) as S-~. The condition of Ellis and

Freund has not taken into account that, with an

f(x) like (11.5), the scaling behavior (11.1) can be
obtained by a sum of exponentials, only one of
which dominates at any angle.

XII. CONCLUSION

Proponents of dual models have taken great pains
to construct factorizable ghost-free models with

Regge behavior, with physically acceptable trajec-
tories.' The aspect of fixed-angle behavior is, we

believe, also very important and we feel that it is
desirable that any proposed model satisfy the con-
straint of strong damping in transverse momen-
tum, as does the original Veneziano model.

This paper has shown that the transverse-mo-
mentum behavior is by no means as simple in gen-
era1. dual models as in the original Veneziano
form. In particular, there are many models, as
mentioned in Sec. X, that have rather intricate
fixed-angle behavior, which may possibly have
physical consequences.
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