
PHYSI GAL RE VIE Mf 0 VOLUME 9, NUMBER 8 15 AP RIL 1974

Approximate measurement in quantum mechanics. II

Abner Shimony
I.aboratoire de Physique Theorique et Hautes Energies, Orsay,

' Ilralce
Pteceived 25 May 1973)

An approximate measurement procedure of the following type is considered: (i) An initial
eigenstate of the object observable leads to a final statistical operator of the object plus
apparatus describing a mixture of exact eigenstates of the apparatus observable; (ii) almost
all the statistical weight of the mixture is assigned to eigenstates associated with one
eigenvalue of the apparatus observable, which is uniquely determined by the initial value
of the object observable. It is proved that each of a large class of initial states of the
object leads to a final statistical operator which does not describe any mixture of exact
eigenstates of the apparatus observable. The analysis also yields a proof of a theorem
on measurement stated by Fine.

I. INTRODUCTION

In this paper the following formulation of an ap-
proximate measuring procedure is considered: If
the initial state of the object is an eigenstate of the
object observable with eigenvalue A. , then the fi-
nal statistical state of the object plus apparatus
can be described as a mixture of pure quantum

states, all of which are exact eigenstates of the
apparatus observable, and the total statistical
weight in the mixture of those eigenstates asso-
ciated with the eigenvalue p, is close to 1. (It is
understood that m cn implies both A. +A.„and

4 p, „.) Hence, the value of the apparatus ob-
servable at the end of the interaction between the
object and the apparatus is strongly correlated
with the initial value of the object observable.
This formulation of the procedure of measurement
is more strictly in accordance with common sense
than the formulation in a previous paper, ' since a
system in an exact eigenstate of the apparatus
observable unequivocally has a sharp value of the

apparatus observable, whereas it is not rigorously
correct to speak of "having a sharp value" when

the state is almost an eigenstate. '
Using the notation of Ref. 1, one can give the

present formulation of approximate measurement
in two conditions:

(a} (E j is a finite or denumerably infinite fam-

ily of mutually orthogonal subspaces spanning

X„(F j is a family of mutually orthogonal sub-

spaces of X2, and U is a unitary operator on

$C1 K2„'

(b} T is a statistical operator on X, such that
for every m and every v~ E, U(P„S T) U ' can be
expressed in the form g„„a P„, where

~ X,SI'„, and the a are non-negative real
numbers summing to I such that

The theorem of Sec. II implies that if these two
conditions are satisfied and if the number of sub-
spaces E is greater than one, then there exist
initial states of the object for which the final sta-
tistical state of the object plus apparatus is not
expressible as a mixture of eigenstates of the ap-
paratus observable.

H. A THEOREM ON MEASUREMENT

It will be convenient for proving the theorem of
this section to use the Dirac bra and ket notation,
in which (Q~ Q) =1 implies that ( P) (Q~ is the pro-
jection operator I'&.

The theorem is the following:
Hyjotheses.
(i) u„u, are normalized orthogonal vectors of

X„(Lj is a family of mutually orthogonal sub-
spaces of $C„U is a unitary operator on 3C, @BC„
and T is a statistical operator on 3C»

(ii) there exist orthonormal sets {5' j,{t' j
such that

$' FX,SE„ for j=&, 2,

and for some value of s?

opgclQssops. 8 Q is defined as gjQ 3 +g2Q2? with
both g, and 82 nonzero, then there exists no ortho-
normal set (g j with g aX,@f„and no coeffi-
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cients {b j such that

U(P. T)U '=P I
Ny F

Proof. T can be written in the form

(2)
=1

The statistical operator U(P S T ) U ' can be ex-
pressed in terms of the set, , and also in terms
of the sets {g{,j, so that

i, s

where the g„are orthonormal vectors of X„and
where a, is a positive N, -fold degenerate eigen-
value of T for each», so that P, N, a, =1.. Hence, if
U(u&S q„) is abbreviated by y~„ for j= 1, 2, then

i,s

=Q « I giX(, +g»Xg, &&g'iX(, +g»X&, I ~

i,S

one considers only the terms associated with
the eigenvalue a» and makes use of Eqs. (1) and

(2), one then obtains

Since U is unitary, {yf, j is a set of orthonormal
vectors. The same statistical operator is thus
expressed with respect to the two orthonormal
sets {y'„jand {$' j. Since the eigenvalues of a
linear operator are invariant with respect to the
choice of a basis, the coefficients {b' j must be a
permutation of the coefficients {«j with proper
multiplicities. The same is evidently also true for
the coefficients {b» j and {b j. Consequently,
the vectors $' can be relabeled $ i~, by appropri-
ate permutation, and the vectors g can be re-
labeled g,, in such a way that

U(P„e T)U-'=g « ~ g „&&]'„~,
t, S

i,s

In order that the condition Q„b' c Q, b'„„be sat-
isfied for some value of n, there must be some
value of i, say k, such that the number n, of
{$»', j belonging to Z, y'„ in unequal to the num-
ber n, of {$ '„j belonging to X,eE„, and without
loss of generality it may be assumed that n, & n, .
Then, by relabeling, we may write

EXQS+ps lp ~ ~ ~

gnat

3QyQ9 8 +~p 8 ng+ Ip ~ ~ » y Np
III & n

for J = lq 2.
Since each eigenvalue of the statistical operator

U(P„ST)U ' is associated with an invariant sub-
space of the range of this operator

Ny

x,', =g c,'. &,'„j= » 2.
S=1

The coefficients {c„,j, with fixed j= 1, 2 but with
~ and s varying from I to N„constitute a unitary
matrix, so that

N

x g c„, c„,, g», }(g», ,
~
.

Those members of {g»,j which belong to X,IIE„
are linear combinations of members of g»', j and

{$ '„,j with s & n, and s ' & n „re specti veiy; and
similarly for those members of g», j which belong
to

X, (3) I"
75&5

Consequently, if g, and g2 are nonzero, then a
necessary condition for the foregoing equation to
hold is that

Eg

Q c„»c„» =0~ for 8 ~+8)~ 8 &8». (2)
r-"1

But the N» -tuples {c„',j (fixed s) and {c'„,, j (fixed
s'), r =1, . . ., N„can be considered as vectors in
an N, -dimensional complex vector space with an
appropriate inner product By Eq.s'. (2) and (2),
the N, -tuples such that s - n, and s '& n, constitute
orthonormal vectors in this space. The number of
them is

n, +(N» —n, ) =N» +(n, —s»)», .
But this is impossible, since the space is N, -
dimensional, and therefore the conclusion of the
theorem follows.

III. DISCUSSION

In a procedure of measurement satisfying condi-
tions (a) and (b) of Sec. I the hypotheses of the
theorem are clearly satisfied whenever u, is cho-
sen from one of the subspaces E and u, is chosen
from another. Hence, if the number of the {E j
is greater than I, there exist initial states of the
object leading to final statistical states of the ob-
ject plus apparatus which cannot be expressed as
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mixtures of exact eigenstates of the apparatus
observable. Consequently, the problem of mea-
surement in quantum' mechanics cannot be solved
by imposing (a) and (b) as conditions of measure-
ment.

Fine' has proposed a formulation of measurement
more general than that discussed in Sec. I. Taking
the operators 0 and A on the Hilbert spaces 3C,
and X„respectively, to represent the object and
apparatus observables, he gives the following two
definitions (here slightly rewritten):

Definition l. If Q is a self-sdjoint operator on a
Hilbert space $C then the statistical operators W

and W'' are Q-distinguishable if and only if
Tr(WP, ) vTr(W'P, ) for some projection operator
2', in the spectrum of Q.

Definition 2. If W, is a statistical operator on
3C„ then a unitary operator U on X,e03C, is a W, -
measurement of 0 by means of A if and only if the
0-distinguishability of W„W,' implies the A-
distinguishability of U(W, SW, ) U ' and

U(W,' g W, )U '. The procedure of measurement
envisaged by Fine's second definition may give
extremely little information regarding the initial
eigenvalue of an object observable by means of a
single interaction of the object with a measuring
apparatus. For this reason, his conception of
measurement is very different from those con-
sidered in Ref. 1 and in Sec. I of this paper. How-

ever, his conception of measurement is legitimate
as a procedure for determining some statistical
information (in general less than the statistical

state) about an ensemble of objects by means of an
arbitrarily large number of measurements using
a certain type of apparatus.

Concerning his conception of measurement, Fine
asserts, but does not give a complete proof, of
this theorem: There are no W,'-measurements U

such that U(W, SW, ) U ' is a mixture of eigenstates
of 1A for all initial states W, . (He assumes that
the object observable 0 has at least two distinct
eigenvalues. ) His theorem is a consequence of the
theorem of Sec. II. Suppose Qy and Q, are two
eigenvectors of 0 associated with different eigen-
values, and hence O-distinguishable, and suppose
that U(P„W, )U ' and U(P„@W,)U ' are I@A-
distinguishable and are both expressible as mix-
tures of eigenstates of 1@A. Then the hypotheses
of the theorem of Sec. II are satisfied. Therefore
U(P„S W, ) U ' is not a mixture of eigenstates of
1&A, if Q is the superposition gyQy+ g2Q2 with non-
zero coefficients g, and g, . On the other hand, if
vectors Q, and Q, with the assumed properties do
not exist, then evidently Fine's theorem would
also hold.
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