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This is the first of two papers showing that the quantum problem of measurement remains
unsolved even when the initial state of the apparatus is described by a statistical operator
and when the results of measurement have a small probability of being erroneous. A
realistic treatment of the measurement of observables of microscopic objects (e.g., the
position or the spin of an electron) by means of observables of macroscopic apparatus (e.g.,
the position of a spot on a photographic plate) requires the consideration of errors. The
first paper considers measurement procedures of the following type: An initial eigenstate
of the object observable leads to a final statistical operator of the object plus apparatus
which describes a mixture of “approximate” eigenstates of the apparatus observable. It is
proved that each of a large class of initial states leads to a final statistical operator which
does not describe any mixture containing even one “approximate” eigenstate of the apparatus

observable.

I. INTRODUCTION

Several writers! have tried to solve the quantum-
mechanical problem of measurement through one
or both of the following proposals: (a) describing
the initial state of the measuring apparatus by a
projection onto a subspace of the associated Hilbert
space or by a statistical operator, thus taking into
account the practical impossibility of knowing the
exact quantum state of a macroscepic object; (b)
recognizing that there may be some physical in-
accuracy, such as a small error in the position of
a pointer needle, in the final registration of the
outcome of the measurement by the apparatus.
These writers hope that in a measuring process
which satisfies (a) and (b), any initial state of the
object will result in a final statistical state of the
object plus apparatus which is a mixture of exact
or approximate eigenstates of the apparatus ob-
servable. If this hope were justified, then the
quantum-mechanical problem of measurement
might be resolved. The apparatus observable could
be considered to have, at least with high probabil-
ity, a definite though unknown value at the end of
the physical process of interaction between the
object and the apparatus. The consciousness of
the observer would become aware of this definite
value, and therefore would not have to be assigned
the role of reducing a superposition.

This and the following paper on approximate
measurement are a continuation of earlier work,2™
initiated by Wigner, strongly indicating that no
satisfactory solution to the measurement problem
can be obtained in the manner that has just been
sketched.” The papers differ in their formulations

9

of the approximate measuring procedure proposed
in (b). In the present paper the following formula-
tion is adopted: If the initial state of the object

is an eigenstate of the object observable, then the
final statistical state of the object plus apparatus
can be described as a mixture of pure quantum
states, all of which are “almost” eigenstates of
the apparatus observable associated with the same
eigenvalue. This is a less stringent conception

of measurement than those treated in Refs. 2-6,
and one might therefore conjecture that it permits
any initial state of the object to eventuate in a
final mixture of “almost” eigenstates of the appara-
tus observable. The falsity of this conjecture
follows from a mathematical theorem which is
proved in Sec. II and discussed in Sec. III. Even
if the conjecture had been true, however, it is not
clear that progress would have been made towards
solving the problem of measurement; for unless
each pure state of the final mixture were an exact
eigenstate of the apparatus observable, a reduction
of a superposition would seem to be required in
order to produce an objectively definite value of
this observable. For this reason, the formulation
of measurement analyzed in the sequel to the
present paper probably has greater philosophical
interest than the one analyzed here. A further
conjecture, primarily of mathematical interest,
is discussed in Sec. IV.

II. PROOF OF A THEOREM

In the following discussions, 3, and 3C, denote
the Hilbert spaces associated with the object and
the apparatus, respectively, and 3C,®3C, denotes
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the space associated with the composite system,
the object plus apparatus. Subscripted letters E
and F are used for projection operators on 3, and
JC,, respectively, and correspondingly subscripted
underlined letters, E and F, are used for the sub-
spaces onto which they project. However, the pro-
jection operators onto 3¢, and 3, themselves are

in each case denoted by 1; and the one-dimensional
subspace (ray) spanned by a nonzero vector u is
denoted by (u), and the associated projection oper-
ator by P,. M* is the orthogonal complement of
M, and M* is the projection operator onto M*.

An eigenvector of a statistical operator with a non-
zero eigenvalue is called a “constitutive vector.”
A nonzero vector u is said to be “within € of being
contained in the subspace M” if [ful|[| M *u| is
equal to or less than €; and the same designation
is applied to a subspace N if every nonzero vector
in N is within € of being contained in M.

The theorem to be proved is the following.

Hypotheses:

(i) {En} is a finite or denumerably infinite family
of mutually orthogonal subspaces spanning C,,

{ _F_‘,,,} is a family of mutually orthogonal subspaces
of 3C,, and U is a unitary operator on 3, ® 3C,;

(ii) T is a statistical operator on ¥, such that
for every m and every vEE,,, the range of
U(P,® T)U ~! is within €, of being contained in ¢,
® F,,, where all €,, are equal to or less than some
fixed €, all but N of the €, are 0, and Ne’ is less
than 1;

(iii) U(P,®T)U ~! has a constitutive vector within
€, of being contained in one of the subspaces JC,
® F,, say, m=Ek.

Conclusion: u is within « of being contained in
E,, where k=(2N" % +¢,)(1 - Ne?)™?; the range of -
T(P,®T)U ~! is within k+ € of being contained in
¥, B L.

The proof will make use of three lemmas.

Lemma 1. Hypotheses:

(a) Same as (i) of the theorem;

(b) for each m, U(E,®(n)) is within ¢, of being
contained in ¥, ® F,,, where all €, are equal to or
less than some fixed €, all but N of the €, are 0,
and Ne? is less than 1;

(c) u is a vector of ¥, such that U(u® 7) is within
€, of being contained in 3¢, ® F,.

Conclusion: Same as the first part of the con-
clusion of the theorem.

Proof: Let ' =u/|lu| and ' =n/|nl|. Then «’
can be expressed as );c;#;, where u; is a normal-
ized vector belonging to E; and the sum of the |c;|?
is unity. Relabel the subspaces so that €,,..., €y
are the nonzero members of {¢,}. By (c)

i
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where x,, is defined as (1® F,)U(4,,®7n’). By (b),
[lxmll? is equal to or greater than (1 - €2) for m =k
and equal to or less than €2 for m #k. Therefore,
a lower bound % on | c,| is obtained by rewriting
the foregoing inequality as

N 2 N
Z CiXi I = 2Re<z CiXi» Cth) <lePlixell?,

i=k i=R

2
1-¢,~

and then replacing the third and fourth terms on
the left-hand side by their respective lower bounds,
—(1=h?Ne? and -2(1 4% 2N 2¢ and |x,||2 by

its upper bound 1. The condition on # (with much
information thrown away in this manner) is then

1-€,2=(1-h?Ne?-2(1 =)V 2NV 2 <p?,

This may be rewritten as a condition on (1 -2 2
which is an upper bound on (1 - |¢,|?) 2, Using the
resulting inequality together with the condition
that Ne? is less than 1, one finds that this upper
bound is less than k (the quantity defined in the
conclusion of the theorem).

Lemma 2. Hypotheses:

(a) Same as (i) of the theorem;

(b) T is a statistical operator on 3¢, having range
R and such that for every m and every v in E,, the
range of U(P,®T)U ~! is within ¢, of being con-
tained in 3¢, ® F,,..

Conclusion: U(E,®R) is within ¢, of being con-
tained in ¥, ® F,, for each m.

Lemma 3- If u is a nonzero vector of 3¢, and A
an operator on ¥C,, then every eigenvector of P,
® A with nonzero eigenvalue a is of the form u® 7,
where 7 is an eigenvector of A with the same
eigenvalue a,

Lemma 2 is a slight variation of the second lemma
on p. 65 of Ref. 5, while lemma 3 is exactly the
third lemma on that page.

The proof of the theorem now proceeds as fol -
lows. Let £ be the constitutive vector of
U(P,® T)U ~* referred to in hypothesis (iii) of the
theorem. Then U~'¢ is a constitutive vector of
P,®T. Hence, by lemma 3, U ~!£ has the form
u® 7, where 7 is a constitutive vector of T and
therefore also a member of the range R of T.
Therefore, (iii) implies that U(u® n) is within
€, of being contained in ¥, ® F,, satisfying (c) of
lemma 1. We have both hypotheses of lemma 2
and hence its conclusion, which implies (b) of
lemma 1. Since (a) of lemma 1 is given as hypoth-
esis (i), we now have all the hypotheses of lemma
1 and therefore its conclusion. But this is also
the first part of the conclusion of the theorem. To
prove the second part of the conclusion, let o be
any nonzero vector in the range of U(P,® T)U ™!,
Then for some p<E3,®3C,, 0=U(P,® T)U ~'p; and
hence for some 7€, T7+0, 0=Uu®T7). We
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can then write o as the sum U(E,u® T7)
+ U(Exu® T'1), the first term being a nonzero mem-
ber of the range of U(Pg,,® T)U ~*. Therefore

I(1® F)* U@ TT)| _|(18 F) ' UEu®TT)]|

Towe T7)] N lU@® T7)]
luer)uE, ueT)|
U@® T7)]
_lae Ry vEusT)
[oEue T
NuEiue o)
u® Tt
S€+kK,

where the last step uses hypothesis (ii) and the
first part of the conclusion of the theorem.

III. DISCUSSION OF THE THEOREM

A possible formulation of a procedure of mea-
surement in quantum theory which satisfies pro-
posals (a) and (b) of Sec. I is given by hypothesis
(i) together with a somewhat modified version of
hypothesis (ii), in which the condition that only N
of the {¢,} are 0 is replaced by the condition that
all the €,, are much less than 1. In this formula-
tion the subspaces { E,} are eigenspaces associated
with distinct eigenvalues of some object observable
O. The subspaces { F,,} are eigenspaces associated
with distinct eigenvalues of some apparatus observ-
able @. The initial state of the apparatus is de-
scribed by a statistical operator T, in recognition
of the fact stated in proposal (a) that the exact
quantum state of the apparatus in unknown. If u
€3¢, then P,® T is a statistical operator describ-
ing the object plus apparatus at the beginning of

the measurement process. U(P,® T)U ~! is the
statistical operator which evolves from P,® T in

a certain time interval, U being the unitary opera-
tor governing the evolution of any pure quantum
state of the object plus apparatus during that inter-
val. The modified hypothesis (ii) (with €,<<1,

but with no condition on the number of nonzero ¢,,)
asserts that the final statistical operator describes
a mixture of quantum states which are all “almost”
eigenstates of @ with the same eigenvalue. Hence,
if one begins with the object observable having a
definite value A,, then the final statistical state

of the object plus apparatus is such that a subse-
quent measurement of the apparatus observable
will yield a value from which the correct original
value of O can be inferred with a high probability.
Since @ is in practice a macroscopic observable,
the measurement of @ could presumably be per-
formed merely by looking, or in any case without
the elaborate amplifying equipment needed to mea-
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sure a microscopic observable.

The theorem of Sec. II shows that a procedure of
measurement which satisfies this formulation,
and also the condition of hypothesis (ii) that Ne?
is less than 1, will not fulfill the hopes of the
writers in Ref. 1. For, according to the theorem,
a final statistical state of the object plus apparatus
which describes a mixture of exact or approximate
eigenstates of the apparatus observable will come
about only if the initial state of the object is almost
an eigenstate of the object observable.

The mathematical results of Refs. 2, 4, and 5,
and part of Ref. 3, are contained in the theorem
by letting € and €, both be 0. The result of the
other part of Ref. 3 is obtained by letting € be 0,
but taking €, to be nonzero but much less than 1.
That of Ref. 6 is obtained by imposing the following
conditions: 0 <€,<<1, 0 <e<<1, and N=2.

The theorem can surely be strengthened some-
what, since much information was thrown away
in the course of proving it. However, the counter-
example given in Sec. IV shows that the natural
generalization of the theorem is false. It seems
unlikely that any of the valid strengthened versions
of the theorem would have any physical or philo-
sophical implications of interest which are not
already contained in the theorem as stated, unless
a different formulation of the procedure of mea-
surement is given.

Indeed, it is dubious that the results presented
above have much philosophical significance, be-
cause a scheme of measurement in which the pure
states of the final mixture are only “almost” eigen-
states of the apparatus observable does not seem
to ensure the objective existence of a definite value
of the apparatus observable. A superposition of
two non-null eigenvectors v, and v, of the operator
A, with distinct eigenvalues, does not represent a
state in which the corresponding observable @ is
definite, although possibly unknown. This is a
matter of principle in the ordinary interpretation
of quantum mechanics, and it is not altered when
the norm of v, is much greater than the norm of
v,. Any attempt to dismiss as negligible the con-
tribution from a vector of small norm must be
regarded as an alteration of principle, which
would require justification. Without such an alter-
ation of principle, the scheme of measurement
of this paper would not be satisfactory—even apart
from the theorem of Sec. II—because it would
apparently have to be supplemented by some means
of reducing a superposition.

IV. FURTHER CONJECTURE

A natural generalization of the theorem of Sec.
1I is the following.
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Conjectured theorvem: Hypotheses:

(i’) Same as (i) of the theorem;

(ii’) T is a statistical operator on ¥C, such that
for every m and every vE E,, the range of
U(P,® T)U ~! is within ¢,, of being contained in
3C1® Fm’ Em << 1;

(") U(P,® T)U ~! has at least one constitutive
vector within €, of being contained in the subspace
36,® Fp, €,<<1.

Conclusion: u is within « of being contained in
E,, k<<1.

A counterexample shows that this conjecture is
false, even when the relation << is construed as
stringently as one could reasonably demand in the
hypotheses and as liberally as possible in the con-
clusion. Let{E,}, m=1,...,N, be a family of
one-dimensional subspaces spanning JC;, and let
the unit vector %, span E,. Let T'=P,, where 7
is a unit vector of 3¢,. Let {xm, £} be a set of N+1
orthonormal vectors of 3C,, and let F,, be spanned
by X, for m <N, while Fy is spanned by x, and £.
Finally, let v be an arbitrary unit vector of 3C,
and (partially) define the operator U by

U, ®n)=(N+1)"v® [Nx, - jg)‘ X;+(N+ )Y/ 2£] .

U as so far defined preserves inner products, and
it may be extended to a unitarity. Clearly, hypoth-
eses (i’) and (ii’) are satisfied if N is sufficiently
large, with €, <(N+1)"/2, Now let w be defined
as N~V2z3 ¥, Then Uw®7) is in the range of
U(P,® T)U %, and

U(P,® T)U -1
= (N+1)"0® [N'I/ * Do+ (E 420V % ],

which is within (N = 1)/ (N2 + N)~'/ 2 of being con-

tained in 3, ® Fy. Thus, hypothesis (iii’) is satis-
fied, by taking N sufficiently large. But the con-

clusion is not satisfied, since

IE“wll/llwl= (1 - N -1/ 2,

which is as close to 1 as one desires.

The invalidity of the conjecture opens no new
avenue for a solution to the problem of measure-
ment, for if the hypotheses (i’) and (ii’) are satis-
fied, one can construct initial states of the object
such that the final statistical state of the object
plus apparatus is far from describing a mixture
of approximate eigenstates of the apparatus ob-
servable. For this purpose it suffices to choose
N greater than 2 but small enough that Ne,? is
much less than 1 for each m <N, and to let « be
N-V23%,  where u; is a unit vector belonging
to E;. If one takes the JC, of the theorem of Sec. II
to be the direct sum of the subspaces E;, with ¢
=1,...,N, and €, to be 3, then that theorem im-
plies that the final statistical state of the object
plus apparatus does not contain a single constitu-
tive vector within } of being an eigenstate of the
apparatus observable.
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