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The theoretical possibility that in a limited domain in space the expectation value & P(x) ) of a

neutral spin-0 field may be abnormal (that is to say quite different from its normal vacuum expectation

value) is investigated. It is shown that if the $ coupling is sufficiently large, then such a configuration

can be metastable, and its physical size may become substantially greater than the usual microscopic

dimension in particle physics. Furthermore, independent of the strength of the f coupling, if $(x) has

suRiciently strong scalar interaction with the nucleon field, the state that has an abnormal ($(x) )

inside a very heavy nucleus can become the minimum-energy state, at least within the tree

approximation; in such a state, the "effective" nucleon mass inside the nucleus may be much lower

than the normal value. Both possibilities may lead to physical systems that have not yet been observed.

I. INTRODUCTION

In a relativistic field theory, the vacuum state
is defined to be the lowest energy level of the

system. In analogy with other quantum-mechan-

ical systems, however, a relativistic field may

possess a degenerate lowest state. Perhaps the

best known and simplest analogy is to Heisenberg' s
infinite ferromagnet, in which case the degen-

eracy of the ground state is due to rotational
invariance. The assumption of a degeneracy of

the vacuum state, connected with a symmetry

group of the Lagrangian, obviously has some
far-reaching consequences, the most alluring

of which is the possibility to "understand" that

puzzling aspect of particle physics, the existence
of broken symmetries. As is well known, this

has given rise to a host of interesting theoretical
speculations.

Besides spontaneous symmetry breaking, ' and

other well-known consequences' related to it
(Goldstone bosons, the Higgs phenomenon, etc. ),
the assumption of vacuum degeneracy, or near

degeneracy, probably has other striking con-

sequences, which have received little attention

so far. We describe in the following an investi-
gation of various questions which arise naturally

out of the virtual existence, within a given dy-
namical scheme, of states which could play the

same role as the observed vacuum state, but are
nevertheless different from it. We shall see
that, depending on the details of the theory and

on the values of certain physical parameters,
which are not too well known experimentally,
there may or may not be consequences that are
just as drastic as the already-known features
of this kind of theory.

All the schemes so far considered in the lit-
erature have two assumptions in common:

(a) The Lagrangian of the system is invariant

(or sometimes nearly invariant) under a certain

group of transformations of the field variables.

(b) In the (observed) lowest state of the system,
some of the field variables have expectation val-
ues which are not invariant under all transforma-
tions of the symmetry group. Because of (a)
we must envisage the existence of other possible
lowest states, or nearly lowest states, in which

the expectation values of some of the fields are
different; such states represent the abnormal

vacuum states.
This is, of course, what is referred to in the

literature as degeneracy of the vacuum; at the

same time we are often reminded of the essential
difference between this phenomenon and the com-
mon variety of degenerate ground state encoun-

tered in finite systems: In the latter case all the

states of a degenerate multiplet have the same

degree of physical reality; the system can easily
be induced to make transitions from one substate

to the others. On the other hand, only one vac-
uum state is realized in our world; all the others
are unphysical.

On second thought, the difference is not as
profound as it seems. For the sake of clarity,
and at the cost of repeating familiar things, let
us recall in somewhat loose terms what is really
implied. In a field theory of this type, the sys-
tem possesses several "equivalent" configurations

of minimum potential energy; in the observed

lowest state the system performs small zero-
point oscillations about one of these configura-
tions. When the system is excited the configura-
tion will deviate more strongly, but in any event

only locally, from the basic equilibrium con-
figuration. Fundamentally the stability of the

situation is attributed to the infinite nature of

the system; owing to this, the system will never
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flip over as a whole from the normally observed
minimum configuration to one of the others whose
existence is required by the symmetry group.
(As an example, the reader may recall what is
usually said about the Heisenberg ferromagnet,
spin waves, etc. , and in particular the physical
impossibility of rotating all the spins of an infinite
ferromagnet simultaneously. )

Now in certain attempts at a sharp mathematical
formulation of this state of affairs, it has even
been asserted (perhaps on quite sound mathe-
matical grounds) that in the limit of an infinite
system one can construct a Hilbert space which
contains only one "vacuum state, "e.g. , the ob-
served one, and the excited states built upon it
by local excitations. In this Hilbert space the
physical quantities corresponding to local mea-
surements are represented by mell-defined op-
erators; some global quantities such as the total
energy or momentum are also represented, we

hope, but the global generators of the group are
not.

It may seem, at first sight, that in this way one
has neatly thrown the abnormal degenerate vac-
uum states out the window, but physically it does
not make so much difference, since in a certain
sense they can reappear in the form of local
excitations. I'n ferromagnetism the phenomenon
is well known under the name of domains of mag-
netization. More generally we argue as follows:
Suppose the configuration of the system flips
over from the ordinary one to an abnormal equi-
librium configuration, but only in a finite though
large domain. As a volume effect, this will cost
nothing; the difference in energy will be a rela-
tively unimportant surface effect. In the case of
a ferromagnet, for example, a very weak ex-
ternal field applied to a sufficiently large volume
can easily cause the transition. Physical common
sense suggests that any system with analogous
features in the structure of the Lagrangian can
exhibit similar phenomena under suitable cir-
cumstances. The absolute stability of the asym-
metric vacuum state is therefore a relative thing.

In this paper we intend to investigate the general
question of vacuum stability, and in particular to
inquire whether it is experimentally possible in
a limited domain in space to "excite" (flip) the
ordinary vacuum to an abnormal one. As we
shall see, our discussion can be readily extended
to include also theories that have no vacuum
degeneracy, but only other local minima in the
field energy. For definiteness, we shall first con-
sider the simple theory of a renormalizable spin-0
Hex mitian field @. The Lagrangian density is

8 j) —U(Q)+ counterterms,
2 Bx~

where

U(Q)= ~a/'+(3!) 'bg +(4!) 'cg4, (1.2)

8(g)—= lim 0 '(minimum & !FI! ) ), (1.4)

where H is the total Hamiltonian and the minimum
is taken among all states

~ ) under the constraint

0 ' x de=

The value P =0 is, by definition, the minimum of
8(g). Furthermore, it is convenient to adjust the
constant part of the counterterms in (1.1) such
that at the minimum P =0

8(0)=0.
The question whether there are other, either
degenerate or "excited, "vacuumlike states then
reduces simply to the investigation of the function
8(g) for Q o0, which turns out to have some
rather interesting properties.

As will be shown in the next section, the de-
pendence of 8(P) on P bears a certain resem-
blance to the dependence of the Helmholtz free
energy on the specific volume in thermodynamics.
Just as in thermodynamics, when there is a phase
transition, the Helmholtz fx'ee energy exhibits a

Q denotes the renormalized field operator, and

a, b, c are the appropriately defined renormalized
constants. As usual, the countexterms are for
renormalization purposes; their precise defini-
tions are given in Sec. IG and in Appendix A. In

U(Q), the constant c is assumed to be &0 so that
the energy spectxum has a lower bound. Through
the transformation Q(x)- Q(x)+constant, one may
always assume that for the vacuum state

( vac i g(x) [ vac) =0.

Thus, U(Q) does not contain a term linear in Q.
[Note that in order to maintain (1.3) there is a
linear term in the counterterms. j Furthermore,
since the vacuum state is assumed to be the
lowest-energy state, the constant a is also & 0.
For convenience, by using the transformation
Q(x)- —Q(x), we may also choose the constant
b to be ~ 0. As a result, but without any loss of
generality, the three constants a, 5, and c are
all assumed to be positive.

To study the question whether there are other
abnormal vacuum states, i.e. , either degenerate
or "excited" vacuumlike states, we find it con-
venient to first quantize the system in a box of
a finite volume 0 with the periodic boundary con-
dition, and then let 0-~ in the end. A useful
concept is to define an energy density function
&(0):
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straight-line dependence on the specific volume,
its slope being the negative of the pressure; here,
depending on the values of the renormalized con-
stants a, b, and c, the function 8(g) may also
contain a straight section, say between Q

The existence of such a straight section appears
to be a general feature of the theory, provided
that the P' coupling constant b is sufficiently
large. It exists even in the approximation of
neglecting all loop diagrams; in such an approx-
imation, one has 8(Q) = U(Q) outside the straight
section, where U is given by (1.2). [Note that

U(Q) does not contain any straight section. ] Along
the straight section Q & Q& Qs, the system actual-
ly comprises two phases, in analogy to the phase-
transition phenomenon in thermodynamics. Out-
side the straight section, Q&Q or Q&Qs, the
system exists only in a single phase. The "true"
vacuum state /=0 is included in the region Q& Q~,

as illustrated in Fig. 1.
The inclusion of loop diagrams does not alter

the general character of the energy density curve
$($). The explicit contributions of all one-loop
and two-loop diagrams and some of the general
properties of other multiloop diagrams are given
in Sec. III. From these results, one expects
that the function h(Q) defined in either one of the
two single-phase regions, say Q& Q, can be
analytically continued beyond the point Q = Q

to the region p & p; its analytic continuation,
called g (p), is, of course, different from h(y}
in the two-phase region. [This phenomenon is
again in close analogy to the familiar gas-liquid
transition in statistical mechanics; the analytic
continuation of the gas (or liquid) phase is the
supercooled gas (or superheated liquid) region,
not the two-phase region. '] Similarly, one may
analytically continue the function S(Q}, defined
in the other single-phase region Q& Qq, to the
region Q

& Qs and call its analytic continuation

88(g). In general, one expects the function $„(Q)
to have a minimum at

3ac =b'. (1.9)

3ac& b (1.10)

otherwise, the role of the states Q =0 and Q = Q „

will be interchanged.
In Sec. IV, we study the question of the lifetime

of the system in the excited state Q = Q „.We

&.e.

(b)

As we shall discuss in Sec. III, there is a simple
and convenient way to define the renormalization
constants so that (1.9) is the exact condition for
degeneracy when all the loop diagrams are also
included. Consequently, in order that the ab-
solute minimum energy level is at Q =0, we must
have

where the subscript "vex" denotes the vacuum
excitation state.

In the case of the degenerate vacuum, both the
true vacuum state / =0 and the vacuum excitation
state Q = Q„,„appear as the end points of the
straight section Q ~ Q & $8, i.e. ,

&ta=4 . 48=0

and because of (1.6)

h(4' )=@(48)=0.

From (1.2) one sees that if all loop diagrams are
neglected, then the degeneracy occurs at

FIG. 1. Examples of graphs of 8(g) and J(Q)
= —(d8/dQ ) in the tree approximation. The two-phase
region is between the points e and P; Q ~ and P 8 are
their abscissas. In (a), outside the interval Q~~ Q~ $8,
Sg) = U(P); inside the interval, the solid line refers to
8, and the dashed curve to U. In (b), the two areas
CnA and CpB (between the dashed curve and the solid
line) are equal.
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shall show that in the nondegenerate case (Sac & b~),

as the votume A-~, the Lifetime becomes zero
Dn the other hand, there may exist metastable
states which sa,tisfy approximately

(1.11)

in a fimte volume L,', where I ~m ' and m '
denotes the relevant microscopic length in the
problem; m can be either - O(b) or O(a'"). Out-

side the volume, except over a surface region of
a volume - O(L, 'm '), one has ( ~ P(x) ~ ) = 0. The

excitation energy of such a state in its rest frame
is given by

(l.12)

where O(I, 'm') denotes the surface energy and

8 (Q) is the aforementioned analytic continuation

of 8(Q). The lifetime v of such a state is given by

78'1, ,

provided ln(I, m) is not too large, though (I,m)
must be» j.. Only in the special case of a vacuum

degeneracy, i.e. , 8 (Q „)=0, can the size L, be

arbitrarily large; its rest mass is determined
completely by the surface energy. In general,
the ratio of the width to the rest mass of such

vacuum excitations in either the degenerate or
the nondegenerate case is exceedingly small,
given by

(~M„„)-'~[L,'8 (4„)+O(I, 'm'}]-'~ 1. (1.14)

In See. V, we discuss the classical solutions
corresponding to the vacuum excitations. The
most interesting aspect of these solutions occurs
when there is an extended external source. For
definiteness, we may treat approximately the

effect of a heavy nucleus as that of an "external
source, " assuming that there is a strong inter-
action ~ y,fQ between the scalar field Q and

the nucleon field $. As we shall see, within the

tree approximation, if the surface energy can be

neglected, then when g is sufficiently strong, or
when the nuclear density is sufficiently high, the

lowest-energy state becomes one in which the

expectation value ( P(x)) inside the nucleus can
be quite different from its normal vacuum ex-
pectation value (which is zero, by our convention}.
Furthermore, inside the nucleus the "effective"
mass of the nucleon becomes m„+g(Q), which

can also be quite different from its normal value

PPg ge

A concrete example of such a strong inter-
action is given by the well-known g model. This
is examined in Sec. VI. It appears that, within

the tree approximation, if the mass of the 0

particle is ~ a fear GeV, there may well exist

a new family of metastable, or even stable, super-
heavy nuclei.

By taking the zero pion mass limit, we can

readily extend our discussion of the g model to
theories with Goldstone bosons; with some further
minor modifications, it ean also be applied to
fields with Higgs mechanisms.

H~ =-H+J x d t', (2.1)

where J is the Lagrangian multiplier and H is
the original Hamiltonian, which according to

(1.1) is given by

H = ~Il'+ ~ Vg '+ U +j eounterterms d'r,

(2.2}

where II is the conjugate momentum of P. Let
the lowest eigenvalue of H~ be QX~, i.e. ,

(2.8)

By using (2.1), (1.4), and (1.5), we find the energy
density function 8($) to be given by the Legendre
transformation

@(4')=4 -~4,
where

(2.4)

(2.5)

s8(4)
cj

8

To calculate X~, let us decompose

H, =H, +H„
where

(2 5)

(2.7)

Ho=& 0 + VQ +&aQ d r, (2.8)

and regard H, as a perturbation. The power-
series expansion of A~ in terms of the constants
J, 5, and c can be readily derived. Following the
treatment given by Coleman and Weinberg' (which

is also formally analogous to some of the analysis
developed in statistical mechanics and many-body
problems' ), we may regroup the perturbation-
series expansion of AJ into sums of tree diagrams,

II. ENERGY DENSITY FUNCTION

To evaluate the energy density function 8($),
defined by (1.4), we apply the standard Lagrangian-
multiplier method to take into account the con-
straint (1.5). Let if& be a new Hamiltonian, de-
fined by
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one-loop diagrams, two-loop diagrams, etc.
The systematics of these loop diagrams will be
given in the next section. Here we only discuss
the tree approximation. It is not difficult to see'
that in the tree approximation A~ is given by the
absolute minimum of

Uz(4) = J4+ U(4)

=Jp+ —'ap +(3!) 'bp' +(4!) 'cQ (2 9)

and g = Q is the minimum point. (For complete-
ness, a proof is given in Appendix A. ) At J=O,
one has U~ = U. Since we are interested in the
case where the function U(Q) in the original
Lagrangian (1.1}has more than one local mini-
mum, the Q' coupling constant b cannot be too
small:

&'+~sac. (2.10)

On the other hand, because of our convention
that the absolute minimum of U(Q) should be
at P =0, we have

5 ~c 3cc ~ (2.11}

[The apparently narrow region defined by these
two inequalities may be deceptive. Actually, only

(2.10) is the relevant one. If b'& 3ac, then the
absolute minimum of U is not at g =0. By using
the transformation Q- /+constant, this absolute
minimum can be shifted back to /=0. Under

such a transformation, only the coupling constant
c is invariant; the new constants a and 5 now

satisfy b'& 3ac.]
Next, we consider the equation sU~ls$=0;

i.e. , on account of (2.9),

J = ——= —a/ —2b@ —(3!) cQ
BU 2 1 s
a

(2.12)

which at J=O has three roots:

=0

and

Q = P, —=—[ bs (b' —-+ac)"'] .-3
2G

(2. 13)

Among these, Q =0 is the absolute minimum of
U(Q), Q= Q, is a local maximum, and P= P
is the other local minimum. As J increases,
these two minima will move, and the correspond-
ing values of U(Q) will also change. There is a
critical value J, at which these two minima be-
come degenerate. As illustrated in Fig. 1, we
may determine graphically the value J=J, by
using Maxwell's rule of equal area. The absolute
minimum Q = Q makes a sudden jump from P = $8
at J =J, to Q= Q at J=J,+. By using (2.4) we
find in the tree approximation

$(P) = U(P)

in the region

0-48 and 4~4 . (2.14)

But in Q
~

Q & Qs, $(Q) is a linear function of Q,
which is simply the common tangent line of U(P)
at Q=Q, snd Qs.

Such behavior is analogous to the problem of
phase transition in statistical mechanics. In the
statistical analog, the roles of J, Q, $(p), and
A~ are replaced by those of pressure, specific
volume, Helmholtz free energy density, and
Gibbs free energy density, respectively. The
straight section Q

& Q &
Qq denotes the two-

phase region. As already noted in the Introduc-
tion, the function 8($) in either one of the single-
phase regions, Q & $8 or Q& Q, can be analyt-
ically continued into the two-phase region. In
the tree approximation, these two analytic con-
tinuations are identical and both lead to U(P).
This is again analogous to the Van der Waals
approximation used in statistical mechanics. In
statistical mechanics, the analytic continuations
of the thermodynamical functions of the liquid
and the gas phases are respectively those of the
superheated liquid and the supercooled gas, which
should be different functions, but they reduce to
the same expression in the Van der Waals ap-
proximation.

In the present problem, except for the degen-
erate vacuum case, the energy density function
8(g) has only one minimum at P = 0, and that is
the true vacuum state. On the other hand, if the
P' coupling constant b is not too small, the ana-
lytic continuation of g(g) is expected to have
another minimum at P = Q „which denotes the
vacuum excitation. In the above, this property
has been established in the tree approximation;
as we shall see in the next section, if the cou-
pling c is not too large, this property remains
correct at least to every order in the loop ex-
pansion.

III. LOOP DIAGRAMS

The reduction of the perturbation-series expan-
sion of g(P} into a sum of tree diagrams, one-loop
diagrams, etc. has been given in Ref. 4. In this
section we shall first briefly review the procedure,
and then discuss some new properties.

A. Prototype diagrams

By using the free-field Hamiltonian H„defined
by (2.8), as the unperturbed Hamiltonian, one can
readily expand the energy density function $(p) as
a power series in b, c, and P. As will be shown
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in Appendix A, we may separate b (7()) into a sum
of tree diagrams and loop diagrams:

(3.1)

D(k)= i[k'+-a(1+ 4)]-',
where

&= y(b+ a c4)/a.

(3.3)

(3.4)

Let us first consider the sum of all one-loop dia-
grams, and differentiate [S(T())],„,„„withrespect
to a, but keeping b, c, and T() fixed. We obtain

(2w) ~ d'k [D(k)+ subtraction term], (3.5)
1

which can be readily established by first expand-
ing both sides as a power series of T(), then noting
that graphically the differentiation 6/ea on the one-
loop diagram is just like cutting open one of its in-
ternal lines; this turns each loop diagram into a
propagator diagram. Thus, diagram by diagram,
both sides of (3.5) are equal. The subtraction
term in (3.5) is needed to eliminate divergences.
(The details of the subtraction term will be given
in Sec. III B.} From Eq. (3.5}, it follows that"'

x~(ln [iD(k)]+ subtraction term} .

(3.6)

Throughout the paper, 4'=k'-p, ' and d'k is real.
It is straightforward to express the higher-order

where [g(T())], „,represents the summation over
all one-particle irreducible scattering diagrams
that have l loops and in which every external line
carries a zero 4-momentum and contributes a fac-
tor T() to the Feynman integral. For the tree dia-
grams (away from the two-phase region), one has

(3.2)

where U is given by (1.2}, provided that the re-
normalized constants a, b, and c in U(T()) are re-
lated to the appropriate scattering amplitudes at
zero momentum. (See Sec. III B and Appendix A
for further discussions of renormalization. )

For leO, it is useful to introduce D(k), defined
to be the propagator of the spin-0 particle moving
in a given constant external field (t),„,whose value
happens to be given by P,„(,=T(). Thus, D(k) is iden-
tical to the propagator of a free particle, but with
its (mass)' given by (O'U/8~$); i.e.,

loop diagrams in terms of D(k) I.n this way all
external lines attached to a three-point vertex and
all pairs of external lines attached to a four-point
vertex are implicitly accounted for. We need only
consider those l -loop diagrams, called prototyPe
diagrams, ' in which all external lines, if they
exist, must be attached separately to different
four-point vertices; i.e., every three-point vertex
bg' connects only internal lines and every four-
point vertex c(t)' connects at most one external line
to the diagram. For any given l&1, there are only
a finite number of such prototype diagrams. We
shall evaluate these prototype diagrams according
to the standard Feynman rule, except that each
internal line gives a factor D(k), not -i(k'+ a) ',
to the Feynman integral. Qtherwise, all the re-
maining factors in the Feynman integral are as
usual, i.e., we assign factors b, c, and T() respec-
tively for a three-point vertex, a four-point ver-
tex, and an external line. Except for the subtrac-
tion terms that are needed for renormalization
purposes (and which will be discussed in Sec. III B),
the function [g(T())], „,for l&1 is simply given by
the sum over the finite set of all different proto-
type I-loop diagrams. As an example, for I=2,
there are only four different prototype diagrams;
these are given by diagrams (i)-(iv) in Fig. 2.
[Because of renormalization, one must combine
these four diagrams together with diagrams (ii)',
(iii)', and (iv)' in Fig. 2. The explicit value of
these two-loop diagrams is given in Sec. IIIC.]

B. Renormalization

in (3.6} the integral fd'k ln(iD) is quartically
divergent; therefore three subtractions are needed
to eliminate the infinities. The corresponding sub-
traction term should be at least a quadratic func-
tion in T(). However, it is entirely a matter of
choice whether or not one should also subtract the
finite T()' and P' terms from the integral. Similar
ambiguities also exist for higher-order loop dia-
grams. This problem is closely tied to the origin-
al freedom in defining the renormalized constants
a, b, and c. Any finite loop-diagram contribution
to the T()' and T()' terms can either be included in
the renormalized constants [i.e., already included
in the bT()' and cT()4 terms in the original U(T()) func-
tion given by (1.2)] or not included. If they are in-
cluded, then a corresponding subtraction is neces-
sary in the relevant loop calculation to avoid dou-
ble counting, but otherwise this is not necessary.
As it turns out, there is a particularly convenient
way to decide on which choice to make.

Let us first consider the special case of degen-
erate vacuum. If 3ac= b2, the function U((t)) in the
original Lagrangian (1.1) is symmetric with re-
spect to the transformation
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(3.7), and that implies a degenerate vacuum. In

the following, the requirement (3.8) will be im-
posed also for the general case, even when there
is no degeneracy.

With this requirement, and the convention that
T(2=0 denotes the true vacuum, we derive the in-
equality

5 +3ac, (3.9)

C

(iv)

/

/

b

which is the same as (2.11), but is now valid with

the inclusion of all loop-diagram corrections, not
just in the tree approximation.

C. Loop expansion

In order to understand the nature of the loop ex-
pansion, we establish first the following theorem:

Theorem 1. At any l~1, [8(T(2)]2 [ can be writ-
ten in terms of l dimensionless functions F~

~ y,

F», . . .F» which depend only on ~:

[2(b}] =Pic" '[a '(b' ~ 2bck)]' "2, „(4),
(3.10)

FIG. 2. Diagrams (i)-(iv) are examples of two-loop
prototype diagrams. Each solid internal line carries a
propagator factor D, given by (3.3). Diagrams (ii)'- (iv)'
are related to (ii)-(iv) through renormalization. In
diagram (v), the dashed line carries a factor -i(k + a)
hence (v) is not a prototype diagram.

where 4 is given by (3.4).
Proof Let us co. nsider an I-I opoprototype dia-

gram with N three-point vertices, M four-point
vertices, E external lines, and I internal lines.
From the explicit Feynman rules given above, it
follows that the corresponding Feynman integral
for h(T(2) is of the form

bN N~xf ( (3.11}

(3.7)

It is clearly desirable that the symmetry should
also be maintained by the counterterms; in that
case the entire Lagrangian (1.1) is invariant under
the same transformation, and consequently the
vacuum degeneracy becomes an exact property. It
is quite simple to show that the dependence of
[&((tb], „,on T(2, except maybe for the subtraction
terms, is completely through the variable ~, giv-
en by (3.4). Since 4 is invariant under the trans-
formation (P+b/c) (Q+b/c-),-the same symmetry
holds for g(T(2} if all these subtraction terms in the
loop-diagram calculations are also functions of 4.
Because & is a quadratic function of p and because
these subtraction terms should be at most quartic
functions of P, we require them to be quadratic
functions of ~.

Thus, in a power-series expansion in 4,
(3.8}

where n, P, y, . . . are constants. As a result, if
3ac= b', the entire Lagrangian is symmetric under

Since the total number of loops is given by l
= I-N-M+ I and since (2I+E) is equal to (3N+4M},
we have

l= gN+M-pE+1. (3.12)

The a dependence in (3.11) can be easily obtained
from a simple dimensional analysis. Because ~
and c are both dimensionless, but a, O', P&, and

[g(T(b)]' ' are of the same dimension (mass}', we

obtain

(3.13)

2 N(h2/ )2-N-2P(g) (3.14)

Now, from the definition of prototype diagrams
we see that any EWO prototype diagram can be
transformed into an E=O prototype diagram by
simply replacing all four-point vertices that are

where F is dimensionless. For the special case of
E=O (i.e., those prototype diagrams with no ex-
ternal line T(]}, by using (3.11)-(3.13) we find that
the Feynman integral of such a diagram is of the
form
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attached to external lines by three-point vertices,
but keeping all internal lines and other vertices
unchanged. Formally, we may represent such a
replacement by

cd' '-by;.' (3.15)

where P denotes the appropriate internal line and

P the external line. Thus, the sum over all differ-
ent prototype diagrams that can be transformed
into the same E=O prototype diagram through
(3.15) is equal to the Feynman integral of the E=0
diagram, provided we change b-(b+cP}; therefore,
(3.14) becomes

a2c [a '(b +2acA)]' 'F(&) .
Since M can vary from 0 to l -1, Theorem 1 is
proved.

Remarks. According to (3.9), b'~3ac; we may
regard the loop expansion as a power-series ex-
pansion in c, but treating A and (b'/ac) [and there-
fore also (bP/a) and (c~P/a)] as s0(l).

Theorem Z.
a[b(Q)], =32 ~[—,'(1+4)'ln(1+3)- —,'A- —,'4']

(3.16)
and

2 a b' 2acA
[g(p}] = 2[(1+&) In(I+&)-&] + 2 2 (2(1+6)[ln(1+6)] -2(1+4) ln(1+4)+28+ 2 A j .

I

(3.17)

Proof. The evaluation of [g(P)],„,„,follows
readily from (3.6) and (3.8); the result is (3.16}.
(If b=0, that is in the pure P~ theory, the above
expression for [g(p)],„,„,reduces to the form
derived by Coleman and Weinberg. ') The two-loop
prototype diagrams are listed in Fig. 2. These
diagrams can be calculated according to the gen-
eral rules given in the previous sections. The cal-
culation is somewhat involved because of renormal-
ization. The details are given in Appendix B, and
the result is (3.17).

The evaluation of higher-order loop diagrams is
complicated partly because of the large number of
diagrams and partly because of the renormaliza-
tion procedures required to eliminate infinities.
For simplicity, we shall consider the special case
c=0. In such a case, there are only the bp' ver-
tices, and the theory is superrenormalizable. The
Feynman integrals of the majority of the l -loop
diagrams are convergent. In the following theo-
rem, we shall restrict our discussion to these
convergent diagrams, or "primitively divergent"
diagrams as in the case of l=3. (A primitively
divergent diagram, as defined by Dyson, ' is one
whose Feynman integral, though divergent, be-
comes convergent when any one of its internal
momenta is held fixed; here, the only example is
in l=3.)

Theorem 3. If c=O and if we include only con-
vergent, or primitively divergent, diagrams, then

[ g (P)] „=(constant) b'[ln(1+ 6) -A+ —,
' A']

(3.18)

and for l&3

[g(P}], „,=(constant)a'(b'/a)' '

x [(1+A)'-'-I+ (l -3)A

-4(l -3)(l -2)~'] . (3.19)

(This theorem is proved in Appendix C.)
Remarks. From Theorem 2 and Theorem 3, it

follows that every term in the loop expansion is
singuIar at b=-1, i.e., at

P= c '[-b+(b'-2ac)' ~ '], (3.20)

which are the points of inflection A and B of the
function U(P}, as illustrated in Fig. 1. This im-
plies that the energy density function g(P} can be
analytically continued from either one of the two
single-phase regions, +Q„orp&Ps, to the two-
phase region. Let h„(P)denote the analytic con-
tinuation from p&P, and b 8(P) that from P&Ps.
If the loop expansion is used, then g (P) has a
singularity at A, and b s(Q) a singularity at B. [At
A= -1, the propagator D(k) is that of a zero-mass
particle. Thus, physically, it seems reasonable
that there should be such singularities for these
analytic continuations, independent of the loop ex-
pansion. ] The true vacuum is at /=0, and there-
fore it lies in the single phase region p&ps. The
vacuum excitation P= P„,„denotes the minimum of
the analytic continuation b (P}. From Fig. 1, one
sees that the point P=g„,„

lies in between P=p and
the P corresponding to A.

In Fig. 3 we plot the modification of the J vs Q
curve due to the one-loop diagram for the special
case b'=3ac. Because of the symmetry under the
transformation (3.7), the two-phase region, with
the inclusion of the loop-diagram correction, re-
mains given by
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a

-2 p 1 0

C -I
sawg

(
C

)

but in the vacuum excitation state Q
= p „.As re-

marked before, only in the case of a degenerate
vacuum do both p =0 and y = p „

lie on the energy
density curve g(y). In the nondegenerate case,
while the true vacuum state y =0 is on the energy
density curve g(p), the vacuum excitation state

lies on the analytical continuation of g(|t },
denoted by g„(p),as illustrated in Fig. 1.

A. Nondegenerate case (b2 &3ac)

We assume that at time t =0 the system is in the
vacuum excitation state

l ) which satisfies

(4.1)

2bJ=O and ——&]&0.
c (3.21)

It is convenient to introduce the dimensionless
variables y, V, and j, defined by

b
4 -=-(x-I},c

ab'
h= —2V,c

ab .J=- —jc

(3.22)

and therefore j=-SV/SX. From (3.2) and (3.16),
we have (for the special case b'=3ac)

FIG. 3. J in units ab/c vs Q in units b/c for the special
case b = Bac and (32m2) c= 10 . The solid curve de-
notes the tree approximation, and the dashed curve in-
cludes the one-loop approximation.

at every point x in the volume Q. For convenience,
let us take 0 to be a cube, which will be divided
into N smaller cubes, each of a linear size L; all
adjacent cubes are separated by a distance 5.
Hence,

0 =N(L+6)~, (4.2)

L&&5. (4 3)

Let P(t) be the probability that at a later time t the
system is either in a state in which

0 in one of the cubes L'

( l p(&) l }= arbitrary in the surface region -O(L'5)

Q„,„outside

where 6 is of the order of the microscopic length
of the problem, but L is much larger and may even
be of a macroscopic dimension; e.g. ,

5-O(a "') or O(b ')

= 8 (1-x'}' (3.23) (4.4)
and

where

A= a(X'-I)

and

(3.25}

V,„,z, = —,
' y[2(1+4)'in(1+&)-&A-$ Aaj, (3.24)

or in states that differ from (4.4) by some addition-
al high-energy quantum excitations inside the cube
L' that has been singled out. In the nondegenerate
vacuum case, one has g„(g„.„)&g(0),where g
denotes the analytical continuation of $. These
states can have the same energy as the initial
state, provided

cy= 32r' (3.26} L'g„(P„,„)=Iong(0)+excitation energy. (4.5)

= 10-1 (3.27)

In Fig. 3, for definiteness we assume arbitrarily Since L is»O(a '"}or O(b '), there is a large
number of such states that satisfy (4.5); their en-
tropy is proportional to L'. Thus, by using the
standard calculation of transition rates, one finds

IV. STABILITY p(t) = 1 —exp(-x~t), (4.6)

In this section we discuss the stability problem
if the system is not in the true vacuum state p =0,

where A~ c0, and at fixed L and 5 the probability
P(t) is indePendent of N As shown in .Appendix D,
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a lower bound in A~ ean be easily estimated; me

find for I. sufficiently large
rived by using the %KB approximation; me may
write

in'~ & (-eL'), (4.7)

where z is positive-definite and depends only on
the renormalized constants a, 5, and c.

Since the N cubes are arranged to be physically
separated from each other, they ean be regarded
as independent systems. For an initial state (4.1),
the probability that at a later time t the system re-
mains in the same state is

(4.8)

which, at a fixed I„approaches zero as N (and
therefore 0}becomes ~. Thus, if the vacuum ex-
citation state extends over an infinite volume, irs
lifetime is zero.

However, the lifetime of a vacuum excitation in
a limited volume g is quite a different matter. Let
us consider a finite volume v and a surface region
s that surrounds g. The domain v+s is, of course,
inside the bigger volume Q of the entire quantum
system; for simplicity, one may assume 0 to be
infinite. Let the vacuum excitation be described
by the state ~vex) which satisfies

Q„,„

in v

0 outside v +s

arbitrary, though smooth,
i inside s. (4.9)

Furthermore, me assume that in its rest system
(i.e., ~vex) of zero 3-momentum) the shape of v
is one in which the linear dimension is -O(v'") in
all directions. Thus, because of (1.6}, the rest
mass of ~vex) is

M„.„=vg„()t)„,„)+surface energy. (4.10)

Such a state can decay through meson emissions.
There are tmo dominant modes of decay: Qne is
via the surface contraction, and the other is via
the decay law (4.8), provided that v is sufficiently
large. The latter resembles a "boiling" mecha-
nism; me may first imagine that u is divided into
n smaller volumes, v =n(L, +5)', and then each
smaller volume L' decays exponentially as
exp(-X~t). Let 7; and 7., be, respectively, the
time scales for surface contraction and for boiling.
It is clear that

T, -v"' and T, (nZ~) '. - (4.11)

For v small, the decay time is determined by w„
and for e sufficiently large by v.~. To have a rough
idea of the critical volume size when T, -r„me
may use the lower bound (4.7) as an estimate of X~.
As shown in Appendix D, this lower bound is de-

(4.12)

in which 5 is, as before, -O(a "') or O(b '), ft()t)) is
given by (1.2), and the integral extends from )t)

„

to )t)„where U(P, )=U(Q „).Because f, »6, we
expect P to be quite large, and therefore at 7~-7,
the critical volume u, should also be rather large.
For example, if me arbitrarily assume L, -105,
5-10 "cm, and P-10', then g, is -1 mms; the
corresponding lifetime of the vacuum excitation
state

~
vex} is -3 x10 "sec. Since the theory is

Lorentz-invariant, such a state can acquire a non-
zero momentum; of course, its shape mould then
undergo a Lorentz contraction, and its lifetime a
time dilatation.

B. Degenerate vacuum (b' =3ac)

In this ease, the system is invariant under the
transformation

(4 18)

The states T)) =0 and T)) =-(2b/c) are therefore com-
pletely symmetrical with respect to each other.
We observe that any classical path in the functional
space )t)(x) that connects these two states must pass
through a potential barrier mhose height is at least
proportional to Q"', where 0 is the volume of the
entire system. The transition matrix element be-
tween these two states becomes zero as Q ap-
proaches ~. Consequently, in an infinite volume,
the states 4) =0 and p =-(2b/c) are degenerate, and
are both stable.

Next, me examine the lifetime of a vacuum exci-
tation that extends over only a limited volume u

(but 0 is still ~). Let ~vex) be such a vacuum ex-
citation state defined by (4.9), where )t)„,„=-(2b/c).
In this case, the rest mass consists of only the
surface energy, and the lifetime is determined
completely by surface contraction. It is not possi-
ble to have "boiling" inside v, because of energy
conservation. Near the surface, *'boiling" is pos-
sible, but then there is no clear distinction betmeen
that and surface contraction.

In both the degenerate and the nondegenerate
cases, me see that the vacuum excitation can, in
prin iple, extend over a domain of macroscopic
sizes. In the degenerate case, there is no limit
to its size; the larger its dimension is, the bigger
its mass but the smaller its width, and therefore
the sharper the definition of the state. In the non-
degenerate case, the same holds only if the '*boil-
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ing" mechanism can be neglected, and that gives
an upper limit: to its size.

V. CLASSICAL SOLUTION

Some knowledge of the actual shape of the vacu-
um excitation state in space may be obtained by
studying its classical solution; this is especially
useful if its size may extend over a macroscopic
region. For simplicity, we concentrate mainly on
the degenerate case (b' =3ac) in this section. With
slight modifications, the method used below ean
be readily applied to the nondegenerate ease
(b'c 3ac) as well.

A. One spatial dimension

It is convenient to introduce the dimensionless
variables

X = +tanh8,

where

8=-,'(1 —u'} '"(t' —u~+ const ant }.

(5.6)

B. Three-dimensional case

one of the two peaks of W, and (5.7) is the solution
such that the particle goes from one peak to the
other. In the field-theory problem, the two solu-
tions in (5.6) represent simply the two degenerate
vacuum states p =0 and p = (2-b/c) The solution
in (5.7) gives the details of the transition from

Q = 0 at, say, z =+~ to P = -(2b /c) at x = -~.
Through a Lorentz transformation, the solution

(5.7) can be easily transformed to one in which the
transition region moves with a velocity u. The ex-
plicit form is

x=a "'F„
I, =a-'"7-,

0 = -(X —1)
C

(5 1)

For simplicity, we consider only the spherically
symmetrical solution. Again, we introduce the
dimensionless variables

~ =a '"p,
t =a-"'7.,

The wave equation for the degenerate case 5' =Sac
in a one-dimensional space becomes

8 8
+ " +-'X(1 —X') = o

87 8$

%e first examine the time-independent solution.
From (5.2) it follows that if sy/Br =0, then

dK—=0,
d$

where

(5.3)

(5.4)

Thus, if we regard $ as a fictitious "time, " the
problem becomes identical to one in elementary
mechanics, in which there is a point particle at X

moving in a potential

(1 X) (5.5)

and Z is the total energy of the particle. The ex-
plicit solution y = y($) can then be readily obtained.

To illustrate the different types of solutions in
this problem, we may consider, for example, the
special case K =0. The solutions are

(5.6)

and

g =+tanh-,'(( —$,), (5.7)

where F„is a constant. In terms of the mechanical
analog, {5.6) is the solution that the particle is at

{5.9)

+ —.—p —+2X{1-X) =o.BX 1 8 28X
BT p Bp Bp

(5.10)

For the time-independent solution sy/sr =0, one
has now, instead of (5.3),

(5.11)

where, as before,

K = — ———1-X (5.12)

Again, we may consider the mechanical analog
by regarding p as the "time" and X as the "posi-
tion" of a particle. The "potential" S' is again
given by (5.5). But now, because

dK «0
Gp

(5.13)

the particle is in a dissipative system, with a
*'time"-dependent frictional force. The motion of
the particle ean be discussed in the standard way'
by plotting the K = (constant) contours in the phase
space (with y and dy/dp as the coordinates). Since
a regular solution at p =0 implies that g(0) is finite
and (dy/dp)~, is zero, at p =0 the trajectory must

y = -(y —1).
C

For the degenerate case (b' =3ac), the wave equa-
tion becomes



2302 T. D. LEE AND G. C. W'ICK

begin at a point on the real axis (i.e. , dX/dp = 0) in

the phase space. As p increases, because of
(5.13), the value of K along the trajectory must

keep on decreasing. From Fig. 4, one sees that
the K =0 contour divides the entire phase space in-
to one closed region g and four open regions.
Thus, depending on the initial value y(0}, there
are three types of solutions:

1. Stationary solution. If y(0}=1 or -1, then at
au poO

X(p)=»r -1 (5.14)

C. Constant external source

It is therefore of interest to examine the three-
dimensional time-independent classical solutions
which may exist in the presence of an external
source J(x). For example, we may assume that

the spin-0 field P(x) is of parity +1 and interacts
with a spin--,' nucleon field g through a scalar cou-
pling -~ y~gP. The Lagrangian density is given

by

g — p

—g g~ y4$$ +counterterms, (5.15)

where U(Q) is given by (1.2), m„is the physical
mass of the nucleon, p

~ is the Hermitian conjugate
of P, and g is the renormalized coupling constant.
The wave equation is now of the form

&. Runasuay solution, For y(0) & 1 or & -1, the

trajectory in the phase space moves toward points
at infinity as p increases.

3. Spiral solution If -1.&g(0}&1, the trajectory
lies within the closed region Q. bounded by the K =0
contour. Inside (R, the minimum K is at the origin.
As illustrated by the dashed curve in Fig. 4, a typ-
ical trajectory would begin at a point on the real
axis at p =0, then spiral in, and eventually ap-
proach the origin as p-~.

Returning to the field-theory problem, one sees
that the two stable solutions given by (5.14) corre-
spond to the two degenerate vacuum states (Ij} =0
and P = -(2b/c). Both the runaway solution and the

spiral solution have a field-energy content
fd'r[ (V2Q)' U+(P)] that is infinite. Thus, they are
unphysical. This situation is quite different from
the one-dimensional case; as shown in the previ-
ous section, there is a time-independent solution

(5.7) in which y is not a constant, and the solution
has a finite field-energy. In three dimensions, a
similar transition from X=--1 at, say, p«R to

X =+ 1 at p» R gives rise to a surface energy which

can always be reduced by decreasing R. Thus,
such a solution cannot be stable (i.e. , time-inde-
pendent) as in the one-dimensional case.

FIG. 4. Phase-space diagram for the mechanical
analogy discussed in Sec. V B. Inside the region 8, the

1
minimal K is —g at the origin. The dashed curve
illustrates a spiral solution.

Bp dU——-J=O
Bx~ dp

where (neglecting the counterterm}

J=gt ~44

(5.16)

In this section, we shall assume that in regions
occupied by nuclear matter, the source J is a con-
stant. Physically, we may assume either g weak

or m„large, so that

ms*» (g y...)' (5.17}

[The case m„'s(gP„.„)'will be considered in the
next section. ] Thus, when P changes from 0 to

O(p„,„),the coupling term gQgty, g remains much
smaller than the nucleon-mass term m„pty~p. The
perturbation on g due to the variation of P may
therefore be neglected. So far as the classical so-
lution is concerned, we may then regard J(x) as a
given function. For definiteness, we consider g(x)
to resemble the nucleon distribution in, say, a
spherical heavy nucleus; it will be assumed to be
time-independent and of the form

0 if p&R,
Z(x}=

(ab/c)j if p&R,

where p is defined by (5.9); R and j are both di-
mensionless constants.

By using the dimensionless variables introduced
in (5.9), we find that for the degenerate vacuum
case (b' =3ac), the time-independent spherically
symmetric equation is, as before,

1 d 2dXp' —+2X(1 -X') =o
p dp dp

in the outside region p&R; it is

(5.18)
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1 d 2dx
p dp dp
—.—p

—+-.X(1-X )=j (5.19}

Xo + Ep slnh(/cp),

where e«1, X, satisfies

(5.21)

Xo(1 —Xo') = 2j (5.22)

x'= a(3X.'-1)
It can be readily verified that in the outside region
the asymptotic solution (5.20) satisfies the differ-
ential equation (5.18) to first order in (X —1); sim-
ilarly, in the inside region the corresponding
limiting solution (5.21) satisfies (5.19) to first or-
der in (X —Xo). The exact determination of these
parameters A. and c in terms of j and R is rather
involved, but some of the general characteristics
can be derived without detailed calculations.

For j &+„Eq.(5.22) has three real roots,

y, =y~, yz, y„,given by

2 Q 2m
Xn-~ cos 3+

2 5
X8--~3 cos

2 g 4m
cos 3+

(5.24}

cos5 = -3MS j .
%e choose 7t & 5&0, and therefoxe X &gz&g~. By
following the same argument given in Sec. VB, one
can show that for j&0 there is no solution which

satisfies the desired boundary conditions (5.20)
and (5.21). At j =0, the three roots are X„=-1,
Xa=+1, and y&=0, but there is only one solution
that satisfies the boundary conditions (5.20) and

in the inside region p &R. At p =R, the outside and
inside solutions are joined together so that X and
dX/dp are both continuous. The solution is then
determined by requiring X to be regular at the ori-
gin and at infinity.

The solutions that we are interested in are those
in which R is large and X is nearly a constant
either inside or outside p =R; only near the bound-

ary p=R does X have any significant variation. In
order to have the "true" vacuum (Ip) =0 at infinity,
we require that in the outside region X- 1 as p- ~,'
the next term in the asymptotic expansion of X is
then exhibited in

(5.20)

where I is a constant. In the inside region, we

require that as p-0,

(5.21): X(p) =1 at all p.
At a fixed R, as j increases gradually from

zero, the inside solution assumes (except near
the surface p=R) the form (5.21) with X, =X8. Be-
cause of the continuity condition at p =R, the value
of e is -O(e ""). For R»1, which is the case of
physical interest for the classical solution, e is
exceedingly small. Thus, y-= Xa &1 near the origin.
At larger p, the inside solution increases very
slowly. -It makes a rapid rise only when near the
surface p =R. At the surface, it connects with the
outside solution, and then approaches unity asymp-
totically as p-~. According to (5.22), as j in-
creases beyond j=i/3MS, the root X, =X8 ceases
to exist, and therefore the solution disappears.
Physically, this means that inside p &R, as j in-
creases adiabatically from zero, the state shifts
from p(x) =0 to p(x) &0, until j reaches the value
at point 8 in Fig. 3. Beyond that, P(x) has to make

a jurnp to a completely different solution which

represents the vacuum excitation state.
To obtain this other solution, let us first consid-

er the case R» 1 and j«1. %e assume that the
solution is approximately given by (5.21}in the re-
gion p &(R -d) where X, =X„-=-1 and d-O(1). In

the region p & (R +d), we assume that the solution
is approximately given by (5.20). In the transition
region (R —d) & p & (R +d), we may neglect both R '
and j as a zeroth approximation; thus, according
to (5.V), we have

X
-=tanh-,'(p —po) (5.25}

where po lies within the transition region. From
the continuity condition, it follows that e -O(e ),
and therefore X-=-1 in the region p&(R -d}. Sim-
ilarly, we find y =+1 in the region p &R+d. By
multiplying (5.18}and (5.19) by dX/dp and then in-
tegrating over all space, we find

(5.26}

5X =X(R) -X(0). (5.27)

2j&—
3R

(5.28)

in order to have the vacuum excitation solution in-

In terms of the mechanical analog discussed in the
previous section, (5.26) implies simply that the
energy dissipated by the "frictional force" equals
the work done by the "external force" j. To evalu-
ate approximately the "energy dissipation, " we

need only to consider the transition region. By us-
ing (5.25), we find the right-hand side of (5.26) to
be approximately given by 4/3R. Since for j« I
5A. is &2, we derive the appxoximate condition
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side p=R.
Next, we examine its field-energy content

4m H pldp,

471'—R'(2 -Rj) .
3

(5.29)

This is to be compared with the approximate ener-
gy content

4n'
Rsj (5.30}

of the other solution (y=-yz-1 inside p&R). Thus,
for R» 1, by comparing (5.29) with (5.30), we find

that the vacuum excitation solution has a lower en-
ergy if j&1/R.

To summarize: For R»1, as j gradually in-
creases from 0, the solution changes continuously
from y =1 everywhere to one in which y -=X8& 1 in
the inside region p«R, but X remains =+1 in the
outside region p»R. As j becomes larger than

2/3R, there appears another solution, called the
vacuum excitation solution, in which y =X & -1 for

where H is

1 dy ' 1.(,), jx for p&R,
2 dp 8 0 for p&R.

By using the above solution, which is valid for
R»1 and j«1, we find that to first order in j the
integral of the Hamiltonian density H in the inside
region, p&R-d, is given by

t
R-d 4~

(4v) ' iXp'dp= — 3R—'j
0

The energy content in the transition region is ap-
proximately given by

1 dx ~ 1 2 2 Sw
4vR — —+—(1 —y2)2 dp —= —R

2 dp 8 3

To the same order, we may neglect the energy
content in the outside region p&(R+d). The total
field energy content is therefore

p«R, though X is still =-+1 for p»R. If j be-
comes &1/R, then the vacuum excitation solution
has a lower energy. When j exceeds I/3M3, the
vacuum excitation becomes the only form of time-
independent solution.

D. External source (free nucleon gas)

&y'y} =n, (5.31)

where n is the nucleon density, and ( ) denotes the
expectation value. However, as we shall see,
when g is strong (or relatively speaking, m„not
too large), in contrast with (5.17), (sty, g) vcon-
stant and must depend on P.

To discuss the classical solution of the spin-0
field, we shall assume the nucleons to be approxi-
mately described by a degenerate Fermi distribu-
tion, characterized by a maximum Fermi momen-
tum kF. In the simple example of an equal number
of protons and neutrons, kF is given by

= (3v~n}~&~ (5.32}

Since the classical solution p(x) is expected to be
slowly varying inside the nucleus, one may treat
m„+gP(x)as the "effective" mass of the nucleon
at x,' the density of the kinetic energy of nucleons
is therefore given by

We now turn to the case in which the coupling
constant g in (5.15}is assumed to be sufficiently
strong that (5.17) may not hold. We recall that in
the "true" vacuum, because of our convention
(1.3), P =0; by definition, the nucleon mass is
m„. However, in states with Pe0, the nucleon
mass is m„+gP. In discussing the classical equa-
tion, if the solution P(x} is slowly varying, we may
expect P(x) to replace locally the role of g in the
quantum-mechanical treatment. Thus, the "effec-
tive" mass of the nucleon becomes m„+gP, which

in the present case may be quite different from
m„.For definiteness, let us again consider the
example of a heavy nucleus. Inside the nucleus,
we have

U„=— k'(k' +M')"'dk
0

+(k 2 + M2~1/2
=(2v') ' k (k '+M')' '(k '+ —'M') -'M'ln

M
(5.33)

where M' =(m„+gP)'. The nuclear density n is
determined both by the usual short-range nuclear
forces (generated through the exchange of high-
frequency virtual mesons} and by the long-range
"classical" potential P(x) (which, in the time-in-
dependent solution, is of zero frequency). In the

following, we shall consider two models: (i) the
free-gas model, to be discussed in this section,
and (ii) the incompressible-fluid model, which will
be discussed in Sec. VE. The actual physical situ-
ation should lie somewhere in between these two

extreme possibilities.



VACUUM STABILITY AND VACUUM EXCITATION IN A SPIN-0. . . 2305

Free-nucleon-gas model

E—= 2 VQ 2+ p&+U„d3r (5.34)

but subject to the constraint that the total number
of nucleons N is a constant, where for-a system of
equal number of neutrons and protons,

(5.35)

U„is given by (5.33) and U& is given by (1.2); i.e.,
(5.36)

By setting, at constant k~, the variational deriva-
tive of E with respect to Q equal to zero, we de-
rive

8-V'P+ —U + —U =0.
df ~ sp

(5.37)

Next, let us consider the variation of E with re-
spect to k~, at constant P and under the constraint
(5.35). By using the standard Lagrangian-multi-
plier method, we find that in order to have E mini-

mums

In this model, we neglect all short-range nuclear
forces, as well as the electromagnetic interaction
between nucleons. The nucleons are treated as a
free degenerate Fermi gas moving in a classical
field P(x). To derive the time-independent field
equation, we consider the minimum of the field
energy E, defined by

&u in (5.39) is chosen to be &1, so that there can be

a finite volume in space in which gQ is negative
and & -m„(1—&u}. The nuclear matter will be con-
fined in this volume, whose boundary is defined by

gy(x) = —m„(1—u)) & 0. (5.40)

As we shall see, if g is sufficiently large, one

has

m~+gy =-0 (5.41)

inside the bound volume, except in a small region
near the boundary; therefore, because of (5.39),
inside the volume

kp —Qpmg y (5.42)

where Q„denotes the volume of the bound solution
and Uz(-m„/g) is the value of U~ at P =-m„/g.
Because of (5.85), k~~A„"'.Therefore, if
one neglects the surface energy, the minimum of
E occurs at (BZ/sf4) = 0; i.e.,

(5.43)

By uslllg (5.85), one finds

i.e., the nuclear density n-=2(3v') '(&om„)' is also
nearly a constant inside. Furthermore, because
of (5.41), the "effective" mass of the nucleon is
=0. Thus, the field energy E for such a bound so-
lution is given by

((um „)4 m pfE=, + U& — 0„+surface energy,2m' g

k~'[(kr'+ M')"' —constant] =0, (5.38)

where the constant is the Lagrangian multiplier.
Thus, at any point in space, either there is no nu-

clear matter, hence k~ = 0, or since M = m „+gQ,
k~ is related to P by

k~'+ (m „+gP)'=—&o'm„'= constant, (5.39)

which implies that the top energy of the degenerate
Fermi sea is a constant. Together, (5.37) and

(5.38}determine the classical time-independent
equation for p.

The most remarkable consequence of the above

field equation is the possibility that it may have

solutions in which the N nucleons can be bound to-
gether in a region of finite and nonzero volume,

even though the nucleons are treated as free gas
particles without any short-range forces. Furthex-
more, these solutions exhibit typical "saturation"
properties; i.e., for N sufficiently large, the vol-
ume is proportional to N and the binding energy
per nucleon is independent of ¹ In such solutions,
the classical field f- 0 at infinity, so that, in ac-
cordance with our convention (1.3), we have the

usual vacuum at infinity. However, the constant

The minimum energy E of the bound solution is
given by

(5.44)

This is to be compared with the lowest energy
Nm„of the unbound solution [in which P =0 and

k~ =0 everywhere, but one retains (5.85) by having
the particles at infinity]. Now since, according to
(5.36) Uz =0 at P =0, the bound solution has a loat-
er energy than the unbound solution, provided g is
sufficiently large that

(5.45)

and therefore ~&1; in addition, N must be suffi-
ciently large that the surface energy can be ne-
glected. The binding energy per nucleon is
(1-(o}m„.

[Note One may w. onder, as P varies from 0 to a
nonzero value, what happens to the energy change
of the Dirac sea of negative energy states. Naive-
ly, one might expect the increment hg in energy
density to be given by the difference
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where 9 is the volume of the system. Since the
summation extends over all negative energy states,
the expression for d is ~ if P e Q. Actually, b, h
wd. By following the argument given in Sec. III, it
can be shown that 68 should be given by the ap-
propriate sum of all nucleon loop diagrams. If we
include only the one-nucleon-loop approximation,
then hg is equal to the above expression d, but
only after a subtraction of a fourth-order polyno-
mial in P; its explicit expression, after summing
over both proton and neutron, is

1 d

p dp dp
p —+2x(i-x )=o,

=jg, p&R

where

(5.48)

(5.49)

(5.9), one has

r=a '"p and X =I+(gy/m„). (5.47)

Let p=B be the boundary of a spherically symmet-
ric solution, representing a heavy nucleus. Be-
cause of (5.37)-(5.39), the corresponding time-
independent equation is given by

hh =- (m +gQ) ln
8&R E

PS g

+a finite fourth-order polynomial. (5.5l}

The exact form of the polynomial depends on the
definition of the renormalized constants a, b, and
c, just as in the case of the boson loop discussed
in Sec. III8. If one wishes, one may determine
the polynomial by requiring that as P- 0, 68 is
O(g'); in that case

1
L8 = —

8
—,{(m» +gp)' ln[(m» +gp)'/m»']

-2gk~m» +rm» g0 ++ m»(Ag }

k»/m» = ((u' —x*}'".
The boundary p =R is determined by

x(B}=(u.

(5.52)

X-1-Ap '8 ~,
I

where A. is a constant. As p- 0, we have

(5.53}

As p- ~, the asymptotic behavior of X is given by
(5.20);

X ~ 6p slIlhgp y (5.54)

which gives aS=(I6»') 'm»' at m»+g&=0. In a
complete treatment, one should, of course, in-
clude hh in U&(-m»/g), together with other cor-
rections due to higher-order fermion loops as well
as all boson loops. (Note that the above expression
gives 6w'hh =I' m»'& m„', therefore the inequality
(5.45) is not violated. } In this section, however,
our discussion is restricted to the semiclassical
equation, without taking into account any loop cor-
rection. ]

%e emphasize that, unlike the other topics dis-
cussed in this paper, the existence of this rather
unusual type of heavy "nucleus" is independent of
the existence of another local minimum in Uz (be-
sides p =0); it may occur even if the p' coupling
b =0.

To illustrate more explicitly the details of such
bound solutions, let us consider the degenerate
vacuum case b~ =sac. In addition, for simplicity
we shall also assume

(5.46}

so that both U@ and U„aresymmetric under the
transformation (3.7): P+5/c -(/+5/c). -By us-
ing the dimensionless variables introduced in

where

K =2P& (5.55}

Thus, when R is sufficiently large, (5.48) implies
that at p =R the outside solution X„,satisfies

dXottt 1=r('-x.„,), (5.56)

which can be easily derived by following the same
steps leading to (5.4). Similarly, from (5.49) one
concludes that in the transition region near the
boundary,

ft ~ p ~ (It -d)» l, (5.57}

which is assumed to be &0. Both X and dX/dp are
continuous at p =R. Therefore, the constant e is
O(e ""); consequently, except when near the
boundary, inside the nucleus X -O(e "s}-=0,
provided that R is large.

Let X,„,and Xh, be, respectively, the solutions
of (5.48) and (5.49) that satisfy the conditions (5.53)
and (5.54}. To study how these two solutions can
be connected at p =8, we note that at p»1,
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the inside solution X =y. satisfies

—8 (I —X')' — j// dX = constant, (5.58)
1 dX

2 dp

where

d~
dp

I j~dX=vp ~(5X'-»')4'-X'}'/'

(g + (~2 xm)1/8
3X41n

X
(5.59)

The width d of the transition region (5.5'I) is -0(1);
it is chosen such that at p =R —.d, X and dX /dp
are -=0. Since at p=R, X. =or, (5.59) is zero; we
obtain for R sufficiently large, at p =R,

0.5—

(5.60)

The intersection of (5.56) and (5.60} determines x
and dX/dp at p =R. We find

xs) = ~ =
( S8) (5.61}

provided that R is sufficiently large. This result,
of course, agrees with (5.43). If we neglect the
surface energy, then the binding energy per nucle-
on is

Q.5

FIG. 5. g vs dg/dp at p = R. The "outside" curves
refer to solutions of (5.48), integrating from p = ~ to
R. The "inside" curves refer to solutions of (5.49),
integrating from p = 0 to R, with P = 10.

(5.33), then the time-independent equation for @ is

m„(1—(u) . (5.62) -Vy+ —U =02 d

dy
(5.63}

As we shall see in Sec. VI, in the o model the con-
stant P is given by

[See Eq. (6.13).j This leads to a value P =10 if
(4w) 'g' = 15.7 and m, = m„.The corresponding
value of e is =0.44. In Fig. 5, the two solid
curves labeled "outside (R =~)" and "inside
(R =~)" refer respectively to (5.56) and (5.60)
with P =10. These are to be compared with the
dashed curves for R =10, determined by the nu-
merical solutions of (5.48) and (5.49). As a fur-
ther illustration, the numerical solution of x(p) is
plotted in Fig. 6 for R = 20 and P = 10; the corre-
sponding value of N is =210 and that of ~ is =0.46,
which is to be compared with the asymptotic value
e -=0.44 if R is ~.

outside the nucleus, and

d 8-V'P+ —U&+ —U„~ =0
dy ~ sy

inside the nucleus, which is the same as (5.3I),
excePt that instead of (5.38) we have now

(5.64)

k~ = constant. (5.65)

for p &R= 20,
. 5

To illustrate the main feature of the mode1, let
us consider again the degenerate vacuum case

E. External source (incompressible nucleon fluid)

In this model, we assume the short-range nucle-
ar force to be so strong that the nuclear density
n is a constant. The nuclear matter resembles an
incompressible fluid. Thus, if we retain the ap-
proximation that the nucleon density is still related
to the Fermi momentum k~ by (5.32}and that the
kinetic energy of the nucleons remains given by

l8 20 22 24 P

FIG. 6. Numerical solution of g (p) in the free nucleon
gas model. The total number of nucleons is =210 and the
top Fermi energy is ~m~ —= 0.46m+. The nuclear radius
is B= 20, and the nucleon density n is zero outside the
nucleus, but ~ (~2 —g )3 inside.
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2—.—p' —+-'X(l-X')=o, p»
p dp dp

(5.66)

= „—V„, p &ft (5.67)

where

v (g) = P(u (n' +y')'I'(a'+-,'y')

a+(a'+x')"' 'I—
X ln

X
(5.68)

p =R is the radius of the nucleus, and n, P are
both constants, given by

c( =Op/Bl))) and P = 3g /2w c ~

The field energy of the system is given by

~ =&Out+&n y

(5.69)

(5.70)

where apart from a common multiplicative factor

Eau~~ pdp — —+s(1-y )
2 dx
2 dp

(5.71)

2 dx + V(X) (5.72)

5' =3ac, and let us assume that (5.46) holds. For
the spherically s metric case, in terms of the
dimensionless v iables p and X introduced in
(5.47), Eqs. (5.6 and (5.64}become

j-="=2P(o.(a'+I)'"-In[a+(n'+I)"'])
dx

(5.74)

)( Ep slnh(Kp) ) (5.75)

is a constant inside the nucleus. Equation (5.6'l)
reduces to the previous equation, (5.19). Next,
we consider the case where g is strong, but the
nucleon density n-0, and therefore also e-0. At

y = 0, one has dV/(fy = 0 and @~V/dy' = 2Po. ~ ——'„
consequently as a —0, the point g =0 is a local
maximum of V. The minimum of V remains at
X

= +2; the solution then retains the character of
the constant-current model. However, when n in-
creases to

2]4' &-'

the point X =0 becomes a local minimum of V.
%hen the nucleon density becomes sufficiently
high, g =0 becomes the absolute minimum of V.
Thus, it resembles the free-gas model mhen g is
strong and nuclear density is sufficiently high.
(This is in contrast with the situation in the con-
stant-current model, in which X =0 is always the
local maximum of the fieM energy. ) The corre-
sponding solution inside the nucleus can be readily
obtained by using (5.67).

As p-0, the solution satisfies

and

(5.73) =2Pa (5.76)

in which the constant term -V„(1)is arbitrarily
added, such that for the true vacuum P =0, X =1,
one has V(1) =0. In contrast with the previous
free-gas model, the nuclear radius B is predeter-
mined by the given constant n and the given num-
ber of nucleons. By varying E,„tand E indepen-
dently, we derive the field equations (5.66) and

(5.67).
Outside the nucleus, the solution has the same

form as that in the previous section; e.g., the as-
ymptotic solution remains given by (5.53) as p- ~.
However, as will be analyzed, the solution y inside
the nucleus changes its character depending on the
yhysical parameters. In the weak-coupling limit,
as expected, the equation becomes identical to that
in the constant-current model, discussed in Sec.
V C. Similar behavior also occurs in the low-nu-
cleon-density limit, even though the coupling con-
stant g may be strong. But when the nucleon den-
sity is sufficiently high and g is strong, the solu-
tion resembles that in the free-gas model.

%e first observe that as g - 0, the minimum of
V is at y =+I+0(g}; therefore, to zeroth order in

g, the current

Because X is continuous at p =R, and because out-
side the nucleus, according to (5.53), y is «1, one
finds that e is -O(e ""). Thus, if A is sufficiently
large, for the most part inside the nucleus, the
value of X is near zero. As p approaches 8, X be-
gins to increase. If one neglects O(R '}, then one
has for p near 8 but inside the nucleus

2 dx —V(X) =--V(0).
2 dp

(5.77)

for p near 8 and outside the nucleus, one has

22~0 (5.78)

Consequently, at p=B, X satisfies

V~(X) P~'+s=. (5.79)

In order for y =0 to be the absolute minimum of
V, we must have V(0)& V(1), i.e.,

(5.80)

If P» 2, this inequality can be satisfied for a
relatively small a, and therefore also a relatively
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low nuclear density. Since for a small V„(1}
= vs', (5.80) can be satisfied if a is above a
critical value a„

The vacuum state satisfies

(vac)o(x)[vac& =o, (6.5)

32P
(5.81}

provided that P is sufficiently large; the corre-
sponding critical density is ~~,3 ~p-~.

The above discussions, after some minor
changes, can be extended to cases where b2w sac
and tl1g Sg5/c.

VI. a MODEL

It is not our purpose here to start a complete
reinvestigation of the 0 model' of strong inter-
actions; such a project clearly lies outside the
scope of the present paper. However, as we shall
see, there are some rather new and interesting
properties in the o model when a sizable chunk
of nuclear matter is present; these properties are
closely related to those discussed above. In this
section, we shall give only a brief survey of these
new features. Our discussion will be restricted
to the tree approximation.

The 0 model consists of a spin-2 nucleon field
Q, a spin-0 (even-parity) field c, and the usual
pseudoscalar pion field Tr The L.agrangian den-
sity is given, apart from the eounterterms for
renormalization, by

and (vac
~ w(x) ~

vac) = 0. In the o model, the con-
stant g is given by the well-known m-nucleon cou-
pling, (4v} 'g'—= 15.7. The only unknown param-
eter is m~. However, from the absence of any 0+
resonance that has been positivel, y identified ex-
perimentally, we may conclude m, is»m„and
may perhaps be" -0(m„).

%'e note that if m =0, then U, reduces to the form
(1.2) with Q~(u-o, ). Owing to the smallness of
m, and therefore also of C„the function U, has
a local maximum at 0 near zero and a local min-
imum, besides 0=co, at g near -Oo. However,
when n is now allowed to vary, this local min-
imum at e near -ao turns into a saddle point; it is
connected to the absolute minimum point o =cro by
a smooth path, o'+ m2 = oo', without passing through
any potential barrier. Thus, in the absence of
nuclear matter, the o model is quite different
from the system discussed in the previous sec-
tions. On the other hand, when there is nuclear
matter present in a certain region, then for a
sufficiently large nuclear density and the r.egion
not too small, the o model exhibits almost exactly
the same property as that discussed in the pre-
vious sections.

It is convenient to introduce, similar to (5.9),
the dimensionless variables

where

Ay, -fo+~s rr J44 em„

(6.1)

p=-&2is and X-=Xa/g;

i.e., on account of (6.4),

p =(m '-3m ')"'y

(6.6)

C~ =Go(3L go -p ) ~ (6.3)

In the tree approximation, the renormalized con-
stants X, p, , g, and C» are related to the physical
masses m~, m, and m» of the particles by

U, =-,'x'[(c'+P) (p/x)']-' C,e. - (6.2)

For convenience, we assume the parameters C„,
p, , and A. to be all positive. The minimum of the
e-number function U occurs at o =o, and r =0,
where e, is & (p, /X) and satisfies

X = (gc/m„}(m,*-m,')'I' (m, '-3 m„') "'.
For simplicity, let us consider a spherical nu-
cleus of radius p=B. Furthermore, just as in
Secs. VD and VE, we assume for the nucleons a
degenerate Fermi distribution with a maximum
Fermi momentum kz, given by (5.32}. By fol-
lowing exactly the same discussion given in the
previous two sections, we find that outside the
nucleus the classical time-independent spherically
symmetric equation for s (with @=0) is

mg -Wo ~

2C» =m„eo,
~ 0'o P

2 ~3/2g 2 p2

(6.4)

d 2dX d—
s ~ p'

d
—d„~e(x)-0,

I' (x) I(1 =x')' -nx-
and where because of (6.4) q is given by

(6.7)

(6.8)
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g =m.'(m, '-m„'p12(m.'-Sm, ')-'~2 « I. (6.9)

Inside the nucleus, the corresponding equation is

1 d, dx dp'
d

—d„ I'.(x}=js(x}. (6.10)

in which ~ is a constant, related to the value of
g at p=A by

x(R) =~,

The function j„(y)depends on the nuclear model.
Under the assumption of the free-gas model, we
have j» = (j„)„,where, just as in (5.50),

~ir)... = 2PX
I

(~'-x')"'td

~ + (~2 ~2)1/2 2 f-~x ln
X

(6.11)

then the field energy is given by (5.70}-(5.72), ex-
cept that V()() is now

&(X) = I'.(X)+ y.(X)-y.(I), (6.18)

e ~ ~021 mo (6.19)

where V is given by (6.8), but V„remains given
by (5.68). The above expression reduces to (5.7S)
in the limit m, =0. As noted in Sec. VE, when
the nucleon density is sufficiently high„ the min-
imurn energy state of a very heavy nucleus flips
from the "normal" solution (in which )t is near
unity and the nucleon mass -=m„)to an "abnormal"
one, in which both X and, the effective nucleon mass
are near, O. In order to produce the Qip to the
abnormal solution, (5.80) must be satisfied. By
using (5.81) and (6.16), one finds that the critical
density is approximately determined by

and, because of (6.4),

g m~~- sv(m. m-m„) . (e.is)
s = —(i.S &&10-"cm)'

4n'
0 (6.80)

If m —=m~, then the critical density is about the
usual nuclear density

P=—10(m~/m, )'. (6.16)

In the free nucleon gas model, by using (5.61) we
find

On the other hand, if we assume the incompress-
ible-fluid model then j„=(j„)„„„., where, just as
in (5.67) and (5.68),

0 )„., = 2pxI ~(~'+x')'"

a+(a'+ x,
')"*

--'X ln
X

(6.14)
in which p is given by (6.13) and a is a constant
related to the Fermi momentum k& by

-':(- --::)"
In the limit m, -0, one has g-0 and a -m~ '4»
Eq. (6.10}reduces identically to either (5.49) or
(5.6V).

In the e model, (4w) 'g' —= 15.V and therefore
(after neglecting m„')

If m~ 4m~, then the critical density n, varies
pp

' t ly

(e.si)

provided that m is not too large.
In Fig. 7, the function V()t) is plotted for m~ =m„

and the usual nuclear density n =no, with m, 40.
From the plot one sees more explicitly that under
these conditions, if the nucleus is sufficiently
heavy (so that surface energy can be neglected),
then, as expected, the abnormal solution has an
energy comparable to but slightly higher than that
of the normal solution. For m & m„, one may pro-
duce the abnormal nuclear state by increasing the
nuclear density through, say, high-energy collis-
ions between very heavy nuclei. From Fig. 7 one
observes that there is practically no potential
barrier between the normal and the abnormal can-
figurations once the critical density is reached;
the corresponding production probability should,
therefore, be not too small.

co =—0.44( m~/m„)'~' . (6.17) VII. REMARKS

If we neglect the surface energy, then according
to (5.62) the binding energy per nucleon is
(1-&o)m„. Thus, in this model, if m~ is less than
-5m„there will be a new type of stable heavy
nucleus, provided that the short-range nuclear
force can be neglected and that the nucleon number
is sufficiently large.

If we assume the incompressible-fluid model,

In this paper we have investigated, among other
things, the possibility that over a limited region
in space the expectation value (P) of a spin-0
even-parity field P(x) may be different from its
"normal" vacuum expectation value (which can be
chosen, by convention, to be zero). This investi-
gation leads us to a study of several different
physical problems, each containing some rather
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ao=u+~u

b =5+ 5b,

co=c+5C,

and the constant J, is related to J, introduced in
(2.1}, by

g(y, ) =~,mg, .
Thus, keeping ao, bo, and co f'ixed, we have

(A12)

(A18)

J =JZ''
0 (A6)

Since the counterterm 6Z is determined by (A3),
in which

~
vac) is defined to be the lowest-energy

eigenstate of HI with J', =0, there should be a non-
zero expectation value of P(x) in the lowest-energy
eigenstate ~) of Hz when J', 40. We define

y, = o 'f ( I y, (x)I & Pr . (AQ)

Both $0 and the corresponding lowest eigenvalue

X~ of 9"'H~ may be evaluated by regarding H, as
the unperturbed Hamiltonian and H, as the pertur-
bation. The perturbation series of X~ is the sum
of all connected Feynman graphs that have no ex-
ternal line. Vfe may write

X, =(X,)„„+(X,). „.,+(k, ) ...,+ ~ ~ ~, (Alo)

8'g a'Z,
8y,' 8g,2 (A14)

1. Tree diagrams

In Fig. 6, we list the sum (Xz)„ofall the tree
diagrams. In these diagrams, there is no external
line. Every internal line carries a zero 4-momen-
tum, so it gives to the Feynman amplitude a factor
-i(JP+s,} ' with 0=0. Every one-point vertex
gives a factor -iJ„every three-point vertex a
factor -ibo, and every four-point vertex a factor
-ico. From Fig. S, it follows that, keeping g„bo,
and co fixed, (A11) hoMs within the tree approxi-
mation, i.e., (8X~/8 J,)~ =P,. Furthermore, in
the same tree approximation, the full propagator
of p, at zero 4-momentum is simply t(8'X~/8 J,')„
Thus, one derives

in which (A~)„denotes the partial summation of
all such diagrams that are trees and (X~), ~., de-
notes the partial summation of all such diagrams
that have l loops.

From (A6), (AQ), and (2.3) one sees that, keep-
g co, bo, and co fixed

Because of (A14), this leads to

1

8
—a =so+ &oko+2c040 ~

0 ttoS
(A16)

8k~
8~ =40 ~

We recall that according to (2.4)

(A11)
Again from Fig. 6, one sees that as J',-0, (X~)„
-0 and (N~/8Z, )~-0. Therefore, as $0-0, one
must have (6 )„-0and (sii /8/0)~ -0. Con-
sequently,

' ( r}~.ee + ~ + ~

8
J'~ tfOO5

+ 0 0 ~

+ ~ ~ ~

FIG. 8. Tree diagrams for A~ and its derivatives. All lines carrJJ zero 4-momentum. For the Feynman amplitude,
there is a factor -(i/ao) to each line, —i Jo to each one-point vertex, —ibo to each three-point vertex, and —i co to each
four-point vertex. Each open circle denotes a differentiation vrith respect to (-&()).
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2. General expression

To find the general expression of 8 (Q,), let us
consider the scattering of n zero-momentum me-
sons whose interaction is given by the Lagrangian
density (A2); n may vary from 2 to ~. We define
[S($0)]„,~ to be the sum of all such one-particle
irreducible scattering diagrams that are not
trees; in these diagrams, each external line
carries zero 4-momentum and gives a factor Q,
to the Feynman integral. The corresponding fac-
tors for the internal line, the three-point vertex,
and the four-point vertex are, respectively,
-i(k'+ao) ', -ibo, and -ic, (N.ote that there is
no one-point vertex in these scattering graphs. )
We shall now establish

8(y,) =[8(y,)]„.. + [iS(y,)],., (A18)

To prove this, we consider the sum (A10) and note
that, similarly to (A15),i, = [S,(k)],—

„

0

where ~z(k) is the full propagator of the meson
field $0 in a theory in which the Hamiltonian is
given by (A4}. We may write

[ia)~(k)] '=k'+a, + iz(k), (A20)

where Z(k) is, by de5nition, the sum of all proper
self-energy diagrams. Let us separate in Z(k) the
Zo-dependent part Z ~(k) from the Z,-independent
part Zo(k):

one-particle irreducible (proper self-energy}
diagrams. In this set, for k 40 every diagram, has
at least one zero-momentum external line. Among
these diagrams, there are only two diagrams m'th-

out any loop; these are simply -ib,g, and -i-', c,Q,'.
The rest all have some loops.

Next, we note that for 0 40 the J'0-independent

part Z, (k), defined in (A20), consists of all one-
particle irreducible proper self-energy diagrams
that do not have any zero-momentum external
line. Together, Z(k) =Zo(k) + Zz(k) is then the sum
of all one-particle irreducible proper self-energy
diagrams which may or may not have additional
zero-momentum external lines. It is now straight-
forward to show that [S(P,)]„,„,, defined above, is
related to Z(k) at k = 0 by

2

iz(0) =k,y, +-'c.y,'+ —.[iS(y.)]i... (A22}0 O & 0 0

By using (A14) and the boundary condition that at
P, =o, both g and (sg/SP, ) vanish. We establish
(A18).

Equations (AIV) and (A18) still differ from (3.1)
and (3.2) by being expressed in terms of a„k„c„
and Q~ rather than the corresponding renormalized
quantities. We note that whatever may be the pre-
cise definitions of these renormalized quantities,
the counterterms 6a, 65, 5c, and (Z"'-1) can al-
ways be expressed formally as sums over the
appropriate set of diagrams in which only the re-
normalized quantities u, k, c, and P appear
Every one of these diagrams must have loops. By
redefining "loop*' to include also these loops in
the counterterm, we derive (3.1) and (3.2).

3. Renormalized constants

z(k) =z,(k)+ z,(k), (A21)

where as 4;0, Zgk)-0 and therefore Z(k)-Z, (k).
According to (A6), the dependence on Zo is com-
pletely due to the one-point vertex. Thus, every
diagram in Z~(k) is one-particle reducible —i.e.,
it is possible to separate every diagram in Zgk)
into two disconnected parts by cutting an internal
line open; one of these two disconnected parts
contains the external momentum k„and the other
does not. By repeating this cutting procedure and

keeping only the part that contains k&, we can re-
duce each of these diagrams to a one-particle
irreducible diagram in which there is no J0 vertex,
but besides the two external lines that carry k&

we have also other zero-momentum external lines
(as the remainder of the cutting). If we assign to
each of these additional zero-momentum external
lines a factor Q0 to the Feynman amplitude, we
find that Zgk}, introduced in (A21), is equal to
the summation over the set of all such different

m, (k)=-i[k2+s, +Z,(k)] ', (A23)

where Z, (k) is defined in (A21). Let k' =-m&' be
the zero of [u,(k)] '. We require as k'- -m~'

[e,(k)] -'- iZ-'(k'+ m, ') . (A24)

Thus, Z is defined and m~ is the physical Inass of
the meson. The renormalized constant a is de-
fined by

Z,(k)- ~Z/s as k'-O

Consequently,

a = [a, + z,(o)]z .

(A26)

(A26)

From (A18), (A22), and the fact that Z(k}-Z,(k) as

To def'ine the wave-function renormalization
constant Z, we may follow the standard procedure:
Set J,=o. The full propagator of the Q, field be-
comes then
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T() -0, we obtain in the same limit, T() 0,

g (y)--,'a@+O(P). (A27)

We may expand the scattering amplitude [S(P,)]„,
as a power series in T()0:

say Z-gZ, provided that a-ga, 5-f'~'&, c Pc,
and P i-;

' 'Q; of course, the residue of the re-
normalized propagator at k'+ m~' = 0 now becomes
not I but f '.

[S(y,)], , =g (s!}'S„y,",
ff- 2

(A28) APPENDIX B

in which n denotes the number of external mesons
in the scattering amplitude. From (A21), (A22),
and (A26), it follows that

a =[a()+ fS2]Z. (A29}

Since S, contains a quadratically divergent Feyn-
man integral, two counterterms 5a and (Z-l) are
needed to render (A29) finite. The renormalized
coupling constants 5 and c are related to the scat-
tering amplitudes 83 and S, by

5 + finite term = [50 + i Ss]Z'~' (A30}

c+ finite term =[c,+i S,]Z'. (A31)

Since S, and Z both contain only logarithmically
divergent integrals, one counterterm 5b is suf-
ficient to render (A30) finite; similarly, one
counterterm 5c is sufficient to render (A31) finite.
The precise values of the finite terms in (A30)
and (A31) are determined by imposing (3.8), as
discussed in Sec. III B.

If one wishes, one may alter the above definition
of Z by an arbitrary finite multiplicative factor,

in which the two constants are determined by re-
(luiring I to be O(d') as A- 0. The integral (B2)
can be readily evaluated. We find

I= (16m'} 'a[(1+4)1n(1+4)- I(] . (B3)

According to (A18), in order to obtain g( (())) we
should multiply the scattering amplitude (B1) by i;
this gives the first term on the right-hand side of
(3.17).

The evaluation of the prototype diagram (ii) in
Fig. 2 is complicated, since it can be made finite
only after we include also the diagram (ii)'. Ac-
cording to the rules given in Sec. IIIA, we find

According to the rules for the prototype dia-
gram, given in Sec. IIIA, the Feynman amplitude
for diagram (i) in Fig. 2 is given by

A&;! =()( ic)I- (Bl)

where the factor 8 denotes the inverse of the sym-
metry number, and

~g d4kI=, , —constant —constant x A,

-ib d4k d'q"!2(3!)(2w)' [k'+a(1+A)] [q'+a(1+6)] [(k+q}'+a(1+4)) + " (B4)

-hz d k
A&, , &= (, , + subtraction term, (B5)

and, to the lowest order,

-i b' d'q
2(2v) (q2+ a)

(B6)

where, according to (3.8), the subtraction terms
must be quadratic functions of d, . Since both in-

tegrals in (B4) and (B5}are not primitively diver-
gent, even with the subtraction terms included,
(ii) and (ii)' are still logarithmically divergent. It
is convenient to introduce another diagram, dia-
gram (v) in Fig. 2, in which the dashed line de-
notes the propagator i(k'+a) -'. [The solid line
remains -i(k'+ a+ah, ) '.]

-ib2 d4k d4q
())) 4(27))8 (k2+ a)( 2+ a)[(k+q'P + a(1+A)] (B7)

Again, the subtraction term is assumed to be a quadratic function in A. We shall calculate first A(, , ),
+A&„]and A&, , )

—A(„&separately, and then sum these two terms together. By u'sing the standard paramet-
ric representation of the Feynman integral, one can show that

3 3

&„;,+&,„,= ( .p ll&, & r *,—()E(* &)I(*, , +*.*,+*., *,)-' —x, -'(, +*,)-'I,4(16~, l 1
(B8)
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where x~~ 0 and the function J is

F(y) = (1+y) ln(1+y) —y ——', y'.

Similarly, we find
~ b2 3 3 3 I

A(;, )
—A(„)=12,~ IIdx,. () Q x, —1 (x, x, +x, x, +x, x,) ' F(n, ) —p F(x a)

1 1

(B9)

(B10)

iab
A(, , )+A(, , ), = (,p

[F(a)—G(a)],

where

(Bl1)

G(h) =-,'(1+~)[ln(1+3)]' —(1+n) ln(1+8)+a .

Both expressions are now finite. It is straight-
forward to verify that

(mass)'. Thus, from a simple dimensional con-
sideration and by using (Cl), one sees that the
amplitude should be proportional to a'(5' ja}) '.
Now, according to the rules for the prototype dia-
gram given in Sec. IIIA, the parameter a appears
only in the product a(1+a); this implies that the
amplitude is proportional to

(B12)
+2(f 2/ )) -l(1 +~)) -3 (C2)

By using Theorem 1, one sees that diagrams
(iii)+ (iii)' and (iv)+ (iv)' are related to (ii)+(ii)'
in a simple way. Their entire sum is given by
(Bll), provided one substitutes f)' by b'+2ach, but
keeping a and 6 fixed. E(luation (3.17) is then es-
tablished, and this completes the proof of Theo-
rem 2.

APPENDIX C

To establish Theorem 3 (stated in Sec. IHC) we
shall consider first the case l&3 and c=0. One
can readily verify that in this case there is no
primitively divergent prototype diagram; conse-
quently, we need only consider the convergent
ones. A typical example is given by diagram (i} in
Fig. 9. Let I and V be, respectively, the number
of internal lines and vertices in the diagram. We
have

2 I=3 V, l =I —V+1

and therefore

APPENDIX D

In this appendix, we give an estimate of a lower
bound for the'decay rate )(~, defined in (4.6). Let
us expand the field operator Q( r, t ) in terms of the
Fourier series in the volume L'.

y(r, t) =q, + g q, e'"' ' .
k~o

The Lagrangian for the system inside L' is

(Dl)

Since the diagram is a convergent one, one finds
the proportionality constant to be finite and inde-
pendent of h. E(luation (3.19) now follows because
of (3.8).

Next, we consider the case l =3 and c =0. In
this case, there is only one primitively divergent
prototype diagram, given by (ii) in Fig. 9. By
writing down explicitly the corresponding Feynman
amplitude, one can readily derive (3.18). Theorem
3 is then proved.

V=2(/- 1) . (C 1) Zd')'=-,'L' ' —U(q, ) + ~ ~ ~,dgo
(D2)

Since each vertex carries a factor b, the corre-
sponding Feynman amplitude is proportional to b~.
The dimension of the energy density function is

where Uis given by (1.2), and ~ ~ ~ is q, -dependent
(ke0). The conjugate momentum of q, is

(D3)

Therefore, the Hamiltonian is

H = 2[L ~pa +L~U(qo)]+ (D4)

FIG. 9. Examples of prototype diagrams in a Q3 theory.
Diagram (i) is convergent, and diagram (ii) is primitively
divergent.

According to (4.1), at time t =0 the system is at
q, = P „,which is only a local minimum of U(q, }.
There is a potential barrier that separates this
local minimum from the absolute minimum of
U(qo), which is at q0=0. To estimate the barrier-
penetration probability, we shall use the WKB
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method for the q, degree of freedom, but suppress
all other kv0 degrees of freedom (i.e., set q, =0
for ke0). The result is

- td exp ~-2I'I [ U(q, ) —U(P„„)]'"dq,I,

where

&u'= a+bQ „+2cp„,„'.' (D&)

In (D5), the integration is from q, = P„,„

to q,',
where U(q,')= U(Q„.„)and Q„,„&qt~0. Such an

estimation of A.~ is obviously an underestimation,
since by using the other k c0 degrees of freedom
one can easily show that there are other paths
leading from the local minimum qo= Q„,„

to regions
near the absolute minimum q, =0, but passing
through a much /orner Potential barrier.
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