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We investigate the conditions necessary for the existence of scattering solutions to the Bethe-Salpeter

equation. We work with the causal Green s function in both timelike and spacelike regions of x —x'.

Our results indicate that high-momentum or small-relative-time limits must be taken. In the

small-relative-time limit, suitable restrictions on the interaction I(x) must also be considered.

I. INTRODUCTION

In recent years, increasing interest has been
placed on the use of the Bethe-Salpeter (BS) equa-
tion' as a vehicle for the study of the scattering
of elementary particles. " The usual approach ~'
demands the reproducibility of the Feynman-
Dyson perturbation series in the ladder approxi-
mation with the resultant demand that causal
boundary conditions must be used in the construc-
tion of the Green's function. It has been shown by
Schwartz and Zemach ' that the causal Green's
function for large spacelike separations reduces to
the form

Zetq ix-x'i
G, (x, x') =

Sx((u, + &u, )ix -x'i

necessary for the description of a scattering pro-
cess. The timelike regions, however, do not re-
duce to such a form. We investigate in this paper
what precise conditions are necessary in order
for the causal Green's function to lead to scatter-
ing solutions when both timelike and spacelike re-
gions are included.

The simplest approach would be to demand that
the integral representing the particular solution
to the BS integral equation,

models, ' current-algebra sum rules, ' etc. ), or the
small-relative-time limit, the scattering solutions
retained the nonrelativistic two-particle scatter-
ing form,

e jqr

g (x) = P (x) + f (8 )

The infinite-momentum limit has also been a
useful tool in studying the symmetries of the BS
equation. Recently, Kim and Zaoui ' have shown

that an O(3)-invariant integral equation resulted
from taking the infinite-momentum limit to the BS
equation.

We shall follow the procedure used by Huang and

De Facio '" in presenting the causal Green's func-
tion. However, we wish to point out some errors
in their derivation and present the corrected re-
sults. These are presented in Sec. II along with

our notation and a topology of the various space-
time domains necessary to perform our analysis.
Section III is devoted to the study of the conditions
necessary to maintain scattering boundary condi-
tions, and is separated into high momentum and

small-relative-time cases. Section IV contains
the summary.

We choose units such that 5 = c =1 and the inner
product between four-vectors p and x is p x
=p'x —po 0

where l(x') represents the interaction and P(x')
represents the BS amplitude, gives a vanishing
contribution when x —x' is timelike. We find that
this can be accomplished at the cost of requiring
either the momentum to approach infinity or the
relative time to approach small values. Using the
large-momentum limit, which has played such a
prominent role in recent particle theories (parton

II. FORM OF THE CAUSAL GREEN'S FUNCTION

We let x, and x, denote the space-time four-
vectors which locate particles 1 and 2. The relative
coordinate and momentum

x x]

p=e, p, -v&p2

are next introduced, where p,, + p., =1 is the only
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constraint placed on p, , and p2 We let ~, and ~2
denote the center-of-momentum energies of parti-
cles 1 and 2, and let q denote the magnitude of the
three-momentum for each particle in the c.m.
frame. A convenient energy variable is

The Fourier transform of G(x, x') leads us to an
off-the-mass-shell 0 plane in which we can select
the appropriate contours to define a causal Green's
function. If we denote the spatial part of x -x' as
g and the time part as T,

V I 2NZ p'&%2y (2.2) WfR=x -x
which allows the Green's function equation to be
written in the form T=t-t' (2.4)

[p ~ p —(po —v + e, )'+ W']

x [p ~ p —(p, -v + e,)'+ m, ']G(x, x') =5'(x -x') .
(2.3}

the causal Green's function can be expressed as

Q~ g v T oo ei(~&-~ra)T -«~2+ ~2&»
'G, (x, x')=-, dkk sin(kg)» +

4&'g a ~ia[(~» —~i-~2) -~2a] ~ra[(~2m+~|+~2) ~u ]

for T&0 and

&&
-ivT &i(~j+~j&)T &-i (+-~2q) T

G, (x, x') =, dkk sin(kg), , +
4&'& 0 ~»[~"'-(~»+~, +~2)'] &»[~»'-(&»-&i-&.)']

(2.5)

(2.6)

= (k'+ m ')'i'
ik (2.7)

for T&0. The superscripts + refer to the sign of
T, and ~i, is given by

f, (g, ~T) =i[B{g,+T) —C(g, +T)]

v (u[B(g, +T)+C(g, +T}], (2.13)

ge-i ~ v)T

f, (g, ) (2.8)

for spacelike intervals of x -x' and

&&i (~-u) T
'G'(x -x') =~, f, (g, ~T)

1&r'~g

&e-i (~+ u) T

f,(g, + ) (2.9)

for timelike intervals of x —x'. The superscripts
o' and ~ refer to the spacelike and timelike inter-
vals of x-x', and

f, (g, T) = A {g., T}—(uA (g, T},
f, (g, T}=A(g, T)+&oA(g, T),

f, (g, ~T) =i[B{g,+T) -C(g, +T)]

+ ~[B{g,vT) + C(g, wT)],

(2.10)

(2.11)

(2.12)

where i =1, 2. The evaluation of the above integrals
can be performed by going to the complex k plane
with q- q+$E'.

In the work by Huang and De Facio, '" the cut
structures of the integrands due to &,~ were taken
correctly; however, the sign of ~„was not taken
correctly everywhere in the complex k plane.
With the correct sign, the causal Green's functions
have the form (for m, = m, = m and &u, = v, = &o)

&e-iuT eiaR &p( -v) T

16m~ g 16m'&ug

with

( 2+g 2)1/2Rze ' "'" "sinh(zT)A', T =-i dz
p z +R

e ' " ' "cosh(zT)dz-
z +9)A(g, T) =

d0

(2.14)

(2.15}

B(g+T) = dz
~ ~ -z ) R]e '

(2 16)
0

and

sinh[(m' -z')'"g]e'"rB,+T =f dz 2 2
0 Z

z sinh[(m'+z'}"mg]e "r
1 Z2 + (d20

(2.17)

(2.18)

0

One can readily observe that A(g, T) and A (g, T)
are of order e ", and therefore

e-ivT eiaR
'G,'(x -x') = + O(e "),

16m' (2.20)

I(x„x,) =I(x), (2.21)

then the BS amplitude using the causal Green's
function takes the form

in agreement with the results of Schwartz and
Zemach . However, the timelike causal Green's
functions 'G~ do not have the above form.

If the interaction l(x„x,) has the symmetry
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TABLE I. Possible domains for the x' integration
with o, T, (+), and (-) referring to the spacelike, time-
like, and positive- and negative-time-component prop-
erties, respectively, of the relevant four-vectors.

x -x'

FIG. 1. The domain 8 +for the x' integration, given
that x is spacelike with time component positive. The
solid lines represent the light cone for the four-vector
x, while the dashed lines represent the inverted light
cone for the four-vector x-x'. T+

T+

gk, Tk

g+, T+

0'k, T—

g+, T+

0+, T+

O' —,T—

gk, T+

0+, T+

~+, T+

gk, T+

So„So,S„,S T

S, , S,,

+0+ ~ +T+

I+ S+

S,S,S,S

+a+ ~ +O-~ +T +

S'+, So,S+T,

f7+~ 1 +

+0+ ~ +g & ~T + ~ +7'

y (x}= Q (x) +Q d~x'G, (x —x'}f(x')y(x'), (2.22)
a "Px

where Q(x} is the homogeneous solution, D„repre-
sents the ath domain with a referring to the vari-
ous spacelike, timelike, and the sign of the time-
component properties of the four -vector x —x'. For
integrationpurposes, it is useful to break the do-
mains of the four-vectors x, x', and x-x' into
smaller regions such that one can specify a com-
mon Green's function. Since the Green's functions
are distinct for x -x' being spacelike or timelike
and T being positive or negative, we shall dissect
the entire region of x' into smaller domains, with
the a index previously mentioned referring to the
above possible regions of x -x'. We shall write
$8„and 5'8„ to denote spacelike (o) and timelike
(r} regions of x', respectively. The i superscript
refers to the sign of t', (+) for t ' & 0 and (-) for
t'&0. The P subscript refers to the spacelike (o)
or timelike (r} properties of the four-vector x -x'
and the h subscript refers to the sign of T, (+)
for T&0 and (-) for T &0. For a given four-vector
x, the possible regions can be read off from a
diagram similar to Fig. 1, which is the example
for the case x~o, (spacelike with t& 0). The
shaded area in Fig. 1 corresponds to S... the

S+,S+

S~„So,S,

solid 45 lines are the light cone for the four-
vector x', and the dashed lines inclined at 45' are
the inverted light cone for the four-vector x -x'.
Table I gives a complete topology for the x' re-
gions in terms of the properties of x, x', and
x ~ x ~

I

III. SCATTERING BOUNDARY CONDITIONS AND
THE INFINITE-MOMENTUM AND
SMALL-RELATIVE-TIME LIMITS

Using the relationships listed in Sec. II, we can
express Eq. (2.22) in terms of the relevant Green's
functions. The simplest method is to first specify
the domains for the four-vector x and then use
Table I to find the integration region D for the
four-vector x'. If we write the BS amplitude g
with subscripts Ph to denote the space-time re-
gions for x (not x -x' now), the amplitudes $8„be-
come

ge, (*)=p(*)~, I d e e'" g(e') ''[ee""+e' f, lR, T)-e ' f,cR, e)]
Dab

+ d4x'e-~"ry(x') [e ~ f (R, T) -s '~rf (R, T)]
A)2

Bh

, I x')~" rq(x ~e[e ~rf (R, T) s ~~rf (R T)] [
hh
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where

Do+ -S..S" &.+

O'. =S'. S-.,e S-. e q'. e v'-.,e W-. ,

D g -S7-+6 g7. +

D', =S', SS, S C',

D~ =So SS~~SS~ SVg $9~+,
D,

D, =S, eS, eK, e&,

(3 2)

has the form

d4, «„,»r, »I(x') ™z sinh(qg)e"'rdxe P I dz 2 2
~ g)Q Z

(3.3)

where D* is the relevant domain chosen from Eq.
(3.2) and q = (m' -z')'". The e 't" part of
sinh(riR) cause no difficulty; therefore, let us con-
sider only the e "~ part. The integral of interest
becomes

I&x'~ z e &"e'"'
d4 /z-$(vk»T(( I)

ag) 4 (d

(3.4)

We wish to separate the x and x' parts of I/It and
e"". This can be accomplished by the expansion

ftB OO

= 4vri j, (-igr, )h',"(-iris', )

As mentioned previously, the terms involving f,
and f, do lead to scattering solutions, while the
terms involving f, and f, lead to nonscattering
solutions. Let us illustrate this point by consider-
ing the total effect that B(R, +T) will have on the
BS amplitude tjlz„(x). The relevant contribution

" Q Yg*, ,
(8' 4')Yg, , (8, 4), (3 6)

ff1g= -l

where r = jxj, r' = jx' j, and where r, and r, are
the smaller and larger of r and r'.

Equation (3.4) can now be rewritten as

l

4v d4x's ~'"~ 'rg(x')I(x') dz 2, gj, ( ir/r&)hI"(-i—re&) p Y,*„,(8', p')Y, ~ (8, Q)
g) Q 0 '- l=p nlg= l

We can expand D* into domains such that y&y' and y&y'..

D* =D,*8D,*.
Equation (3.6) can be expanded into two parts, giving the integral

(3.6)

(3.7)

4z d'x'e ""'"'rg(x')I(x') dz, , g ', (-iqy')h', "(-iqr) g Yt' (O', P')Y, (8, P)"D+

z e'"~
+4z)l d x'e ''" 'rg(x')I(x') dz, , Q g( iver)h, "( ir') Q-Yf (8, p)Y(, (8', Q') ~ (3 6)

D&

h',"( iqy') =-
sinh(qr')

3p(-&~ j =

(3.9)

Since the z integration ranges from 0 to m, the
worst possible behavior for large r' is e "/r'. If
suitable restrictions are placed on I(x'), the x' in-

It would be helpful at this point to consider the be-
havior of the functions h',"( iver') and -j, ( imp'). -
The l =0 case is sufficient to inform us of the rele-
vant properties for our scattering boundary condi-
tions,

tegrations are well behaved. However, we are
left with an amplitude whose large-y behavior
seemingly increases exponentially, violating the
scattering boundary conditions. We shall intro-
duce two different methods to handle this difficulty,
the large-momentum limit and the small-relative-
time limit.

A. Large-momentum limit

In the large-momentum limit, we may neglect
terms contributing to the causal Green's function
which are of order I/ur'. From Eqs. (2.6)-(2.19)
we can see that all the f, 's can be neglected and
the BS amplitude can be written as
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&&aR

ps„(x) =p(x)+ d~x'e '"r I(x')p(x') .
7T g)8

(3.10)

The troublesome timelike regions of x -x' are
conveniently eliminated from the integration over
x'. For ~»r', the above reduces to the familiar
form

et(qr-vt)
ash(x) =4(x) + f (q'-q)r

where

(3.11)

f (q'-q) =
6

d~x'e'"' e'~'" I(x')P(x').

(3.12)

B. Small-relative-time limit

(3.13)

where z runs over the real numbers from 0 to m.
Let us assume that the BS amplitude can be writ-
ten in the form

It is desirable to set up a procedure which would
not require the large-momentum limit since there
are many applications of the BS equation to non-
asymptotic energy regions. " We return to B(g, aT)
and its contribution to the BS amplitude in the form
of Eq. (3.3). Collecting all of the t' dependence in
Eq. (3.3), we have J

- (F-b-t)
d ~

i
&

-a ) t '
i &

f (» 4 tu) t ' (3.19)

and

it )g $(e k )t
r-b+ t

(3.20}

where we have omitted the irrelevant I,(x') factor
and have represented the finite limits by just

where a is a positive real constant. If we remem-
ber that the r»r' condition really implies that
I(x') is nonzero only for small (compared with r)
values of r', the regions D» and D„wiQ overlap
with the nonzero regions of I(x') only for large
values it'i, providing that the relative time t is
zero or close to zero. This point is illustrated in
Fig. 2 for the case of zero relative time, where
the horizontally shaded region is the nonvanishing
domain of I(x') and the two cross-hatched areas
are the overlap regions. The boundaries of the
overlap regions formed from the dashed lines in
Fig. 2 give half of the limits for the integrals in
(3.16) and (3.17), with plus or minus infinity giving
the other half. Since the slope of the dashed line
(the inverted Minkowski cone for x —x') is 1, the
magnitude of the finite limits is between y -b and
y +b, where b is the range of the short-ranged in-
teraction I(x'). If the relative time t was not zero,
the magnitude of the finite limits would just be
shifted by an amount t and would now be between
jr —b ~ ti and ir +b ~ &i.

Specifically, the integrals (3.16) and (3.17) be-
come

y(x') =e '"'q, (x'). (3.14)

Substituting Eq. (3.14) into (3.13) and dropping the
irrelevant P, (x) factor, the integral (3.13) be-
comes

g t typal}t

df I s kf (&%1&t 'I(xi ) (3.15)
derek(st&&t

I( I)
t'c n&z

(3.16)

It would be useful at this stage to write down ex-
plicitly the D* domains. The integral in (3.15) has
the two forms,

I
'2/

IX
J

x
py X

dtls-l{a Aw)tI(xi}
t &D8g

(3.17}

I(x') = Io(x')e 'i' i (3.16)

It would be highly desirable if we could set condi-
tions on I(x') such that the above two integrals
(3.16}and (3.17}would vanish. Let us assume that
I(x') has the form

FIG. 2. Minkowski diagram showing that for t =0 the
overlap region with I(x') (cross-hatched area) occurs
only for it'i large. The solid lines represent the light
cone for x', while the dashed lines represent the inverted
light cone for x -x'.
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s(y —

bat�)

for simplicity. After we perform the
indicated integrations in Eqs. (3.19) and (3.20) for
the case y -b+ t&0, the term is of the form

q(b & r f)e &ate-ar (3.21)

where

exp[ah -i(z a &d)(r —b+ t)]
a+i(z s ar)

Referring back to Eqs. (3.8) and (3.9), we see that
the e '" factor has exactly the form required to
cancel the e "factors appearing in Eq. (3.8) [from
h&»(-i&)r) andj, (-i')]. For a»», the BQ, -T)
contributions to the BS amplitude vanish for small
values of ~t~ in the asymptotic region s» b. It is
obvious that the same statement can be made for
B(&&t, +T).

The C(g, aT) and C(R, aT) terms can also be
treated by this type of analysis, but instead of
Eqs. (3.21) and (3.22), we have

exp[(a+ z)b + iz (r —b v t)] &„,&„,&,+,&&

(a+ z) -i&L&

(3.23)

The form of Eq. (3.23) will cancel the exponentially
increasing behavior caused by the factor
sinh[(z'+»&')'"ft] appearing in Eqs. (2.18) and
(2.19). The sinh factor gives rise to a contribution
of the form exp[(z'+ m' )'"r]. However, for a & m
we always have (a+ z) & (z'+ m')'~'. Therefore,
for small values of relative time (t~, the C(R, +T)
and C(g, +T) contributions will also vanish in the
asymptotic region. A large value for z does not
invalidate our argument since we are in the region
where (T~ &It and from Eq. (2.18) the net expo-
nential factor will always damp. We now have
eliminated in Eq. (3.1) the integrals over the do-
mains D&„and DB„. As was previously noted,

f, (R, T) and f,(R, T) can be neglected in the asymp-

totic region and we are left with the same results
of Sec. IIIA, Eqs. (3.10)-(3.12).

IV. SUMMARY

We find that the high-momentum limit will allow
the BS equation to have a plane-wave solution plus
outgoing scattered-wave solutions. The scattering
boundary conditions can also be obtained if the
relative time ~t~ is small and if the integrals of the
form (3.15) decrease faster than e " . These con-
ditions on the interaction can be met if I(&&') has
the form

I(x', t ') = I,(x')e '~ ' &,

with a&m and Io(x') having a short range b «r.
From a slightly different perspective, we can

understand why extra conditions are intrinsically
necessary in the study of the BS equation. Con-
sider the timelike causal Green's functions
'G;(g, T) given in Eqs. (2.8) and (2.9). These
functions contain factors of the form e" ' which
will reappear in the inhomogeneous solution to the
BS equation. However, the terms of the scattering
solution must all contain the same exponential time
factor (conservation of energy). The homogeneous
solution P(x) and part of the 'G,'(0, T) contribution
to the inhomogeneous solution both have exactly
the factor e '~; therefore, conditions must be
placed on the remaining terms to either cancel
the e" ' factors or eliminate entirely the remain-
ing terms. The conditions listed above accom-
plish exactly this. For the part of 'G,'(R, T)
which contains e" ' factors, there is no problem
since these terms are of order e ". However,
they also vanish in both the high-momentum and
small-relative-time limits.

Finally we note that exactly the same analysis
can be carried out for the nonequal-mass case
(m, om, and &d, o ~,). There are more terms for
the nonequal-mass problem; however, they are all
of the same form as presented here.

*Work supported in part by the University of Missouri
Research Council and the Aspen Center for Physics.

Y. Nambu, Prog. Theor. Phys. 5, 614 (1950); E. E.
Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).

2C. Schwartz and C. Zemach, Phys. Rev. 141, 1454
(1966).

3J. L. Gammel and M. T. Menzel, Phys. Rev. D 7, 565
(1973).

4For a comprehensive discussion of the Feynman-graph-
generated approach, see the following review article:
N. Nakanishi, Prog. Theor. Phys. Suppl. 43, 1 (1969).

~M. M. Broido and J. G. Taylor, J. Math. Phys. 10, 184

(1969).
6J. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1975

(1969).
~S. L. Adler and R. F. Dashen, Current Algebras (Ben-

jamin, New York, 1968).
Y. S. Kim and R. Zaoui, Phys. Rev. D 4, 1764 (1971).

~J. C. Huang and B. De Facio, J. Math. Phys. 11, 715
(1970).

0. Hormozdiari, J. C. Huang, and B. De Facio, J.
Math. Phys. 14, 563 (1973).
K. Erkelenz and K. Holinde, Z. Naturforsch. A 28,
353 (1973).


