
HIGGS PHENOMENA IN ASYMPTOTICALLY FREE GAUGE THEORIES 22V3
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discussion of this case and a general discussion of
regional stability see, for example, N. Minorsky,
Nonlinear Oscillations (Van Nostrand, Princeton, N. J.,
1962).
We emphasize that this result does not depend on the
representation content of the fermions or scalar fields.
For example, if we had a set of scalars transforming
according to the (N, M) representation of O(N) xO(M)
then we might expect g&g2 and g2g& terms in the equa-
tions for P&(g&) from graphs of type shown in Fig. 1(c).
However, simple calculation shows that the coefficient
vanishes because of the vanishing of the trace over in-
ternal symmetry matrices.
See, for example, K. Johnson and M. Baker, Phys.
Rev. D 8, 1110 (1973) and the references contained
therein. This remark clearly does not apply to models

where SU(2) x U(1) is embedded in a larger group with
no U(1) factors.

23K. Symanzik, Nuovo Cimento Lett. 6, 77 (1973). How-
ever, a refined argument against & &0, using the re-
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(1973)].
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+3S2.
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We generalize the classical action-at-a-distance theory between point particles to include

one-dimensionally extended objects (strings) in space-time. We build parametrization-invariant couplings
which lead to equations of motion for strings in each others' influence. The direct coupling of the area
elements of the world sheets of the strings is considered in detail, from which we define an
antisymmetric adjunct field. We find that, for a given interaction, the nature of the forces depends on
the type of strings involved, that is, open- vs closed-ended. Our coupling can be understood in terms of
states appearing in the Veneziano and Shapiro-Virasoro models in 26 dimensions. However, we find an
additional massive pseudovector field which arises from the interaction between the "Reggeon" and
"Pomeron" sectors of this dual model.

I. INTRODUCTION

The dual resonance models, ' whose aim is a
self-contained description of the strong interac-
tions, have of late been understood in terms of a
strikingly simple and beautiful picture. On the
one hand, the states of motion of a one-dimension-
ally extended object (stringP with open ends are
identified with the mesonic resonances which me-
diate the strong interactions, ' while the "back-
ground" (Pomeron) is to be related to the states
of motion of strings which close on themselves.
On the other hand, Mandelstam has shown that
the Veneziano amplitudes can be obtained by break-
ing and joining open strings, thus completing the
description. It is therefore rather unfortunate
that such conceptual simplicity is spoiled by the
presence of tachyons, and long-range forces, all
in a 26-dimensional space-time. ' Still, these
problems appear only in the quantization proce-
dure, and do not subtract from the appeal of the

classical description. A difficulty in overcoming
these defects is that the strings have so far been
described in terms of their world sheets rather
than by the fields~associated with them. One may
hope therefore that the development of a more
powerful formalism might alleviate and perhaps
solve the aforesaid problems.

Nevertheless, at the classical level this remains
a very beautiful theory which does not make use
of a field description. In this light, it seems nat-
ural to try to understand Mandelstam's interaction
as being generated by direct interstring forces.
One already knows that Maxwell's theory can be
described in terms of such forces, as shown by
Feynman and Wheeler. ~ It is our aim in this paper
to generalize action-at-a-distance theories to in-
clude direct interstring interactions. As a first
step, we limit ourselves to a specific type of in-
teraction obtained by analogy to their work. Thus
we concern ourselves, in what follows, with a tiny
subset of all the possible direct interstring inter-
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actions, although we work out the general con-
straints they must satisfy.

We find that fundamental differences exist be-
tween open and closed strings and that the specific
coupling we choose has strikingly different physi-
cal consequences depending on the string's nature.
A special feature of our approach is that it gives
us a glimpse into the interaction between closed
and open strings.

In Sec. II we remind the reader of the action-at-
a-distance formalism for point particles, ' which
we generalize to strings. Section III is devoted to
the study of a specific coupling between the vari-
ous types of strings; in it we also show how to ab-
stract the fields associated with the particles
which eventually appear in the quantized version
of the theory. Our results are summarized in
Sec. IV, where we present our concluding re-
marks. In the Appendix the free-field theory for
an antisymmetric massless field, as well as its
quantization, is presented.

where we have taken c=1. By assuming that S&, is
stationary under the variation

x,"-x,"+ox,",
6x,"(Z., ) = 6x."(X.,) = 0,

we obtain the equations of motion

d u"
m a p'dz. (u. u.)~'

(2.4)

(2.5)

S =pm, ds,
a

P

+ dX dkgR g(x xg u ug) .
a,
g( b

(2.6)

Note the absence of self-interaction terms, and
the (standard} limitation of the dependence of R„
to first-order derivatives. Further, we ask that

To understand the way point particles interact in
this formalism, we postulate an action of the form

II. ACTION AT A DISTANCE
R,~=R~, , (2.7}

A. Direct interparticle action

Every point particle traces out in space-time a
world line x" with length squared

d8 =gyp' dx:—dx 'dx (2.1)

where the subscript a indicates the particle label;
g„„is the Lorentz metric (g«=-g„= 1). Introduce
a scalar parameter A., as a monotonically increas-
ing label along the world line, in terms of which
we define

dh,"
a

(2 2)

The free action for this point particle is given by

Sfa a ' dsa

=m, (dx, dx.)'~'

X y
=m ck (u u )'~'

~a&

(2.3)

In this section we review the general classical
treatment of the relativistic interaction of point
particles by means of action-at-a-distance forces.
The formalism is then extended to describe the
action-at-a-distance interaction of one-dimension-
ally extended objects (strings}. Although no sat-
isfactory quantization of such theories yet exists,
they can still be used to abstract the "fields" that
would mediate such interactions. These fields
can then be quantized in the usual manner.

a = 1, 2, . . . . (2.8)

It is interesting to note that the contraction of the
equation of motion (2.8) with u, „reduces to

1 —u," „Q J)dX~R,~ =0,

a=1, 2, . . . . (2.9}

Hence not all expressions for R„give rise to con-
sistent equations of motion. In fact Eq. (2.9) can
also be obtained by demanding that S be stationary
under an arbitrary change of parameters

(2.10)

In what follows we will always consider R„'s
which satisfy Eq. (2.9). Then, we are at liberty to
choose the most convenient interpretation for ~„
that of the path length s, . This leads to

u, u, =1, (2.11)

and X, becomes the proper time, ~, .
The action-at-a-distance (AD) form of dynamics

came into its own when Feynman and Wheeler'
showed that the classical electrodynamics of Max-
well could be understood in terms of AD forces
provided that radiation was always interpreted as
the transmission of energy (and momentum} be-
tween point particles. They started from the gen-

to preserve the symmetry of the action. The equa-
tions of motion are obtained by demanding that S
be stationary under the variation (2.4); these are
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Rgg= e~egQ~ 'Qgs(s~g ) ~ (2.i2)

eral form of the action considered above, Eq, .
(2.6), with

Hence A,"(x) has all the earmarks of the electro-
magnetic potential in the Lorentz gauge. It follows
that

where e, and e, are dimensionless coupling con-
stants and

~Xp F,""(x)= -4wj", (x) . (2.23)

s„'= (x, —x,) (x, —x,) .
The equations of motion are

m.xf =e. Q E,""( x)x,„,
with

~ u d uxg d Hg j Hg d xg f7
t2 ~a

x x

(2.18)

(2.14)

(2.iS)

(2.16)

It is now important to realize that we can abstract
from the Feynman-%heeler action the form of
Maxwell's equation. Still, in this formulation the
quantities associated with the fields are not inde-
pendent degrees of freedom, but rather constructs
from the world lines of the particles in the theory.
One may then drop the action-at-a-distance for-
malism and develop from the field equations a
free-field theory, which can then be quantized ac-
cording to the usual methods. This procedure will
be detailed in Sec. III.

Z,""(x)= A', (x) — A,"(x)
8xu 8xy

(2.17)

Here the "vector potential" due to particle 5 is
given by

A,"(x)= e, )tdx,"5((x-x,)') . (2.18)

and the field constructs are written in terms of
the world lines of the remaining particles: B. Direct interstring action

Instead of a point particle which traces out a
world line in space-time, we consider a one-di-
mensionally extended object which traces out a
world sheet in space-time, x,"(7„$,), where r,
and (, are the invariant parameters needed to
describe the world sheet.

The surface tensor element of the sheet is

Note that Etl. (2.14) differs from the usual Lorentz
force expression in that the field constructs con-
tain both the advanced and the retarded signals.
This can best be seen in Eq. (2.18) by noting that

do' = d7'g gq 0'

with

o,""= (x,"x.'" —x.'"x".)

(2.24)

(2.25)

A,"(x)= —,'[At'"'(x)+A," "(x)j . (2.19)

Here

2

~ A,"(x)= 4',"(x) . -
Xp

(2.20)

j,"(x)=e,j dx,"d"(x-x,) (2.21)

In Maxwell's electrodynamics, we would only have
A,""'(x). It was the great contribution of Feynman
and Wheeler to show that the extra terms (due to
the advanced signals) could be reduced to the ra-
diation reaction term that appears in Dirac's
treatment, ' provided that one assumes that no net
radiation exists in the system. Then causality can
be restored. It is clear from this interpretation
that it is contrary to the AD formalism of electro-
dynamics to talk of free radiation. Even though a
free-field theory does not exist, it can be ab-
stracted in the following way: VKe see from Eq.
(2,18) that A,"(x) obeys

exu exux'" =
o g+ y a (2.26)

Just as the action for a free point particle is the
length of its world line, the action for a free
string is taken to be the area of its world sheet,

'a='ay & &a='
Sg~~ = gg I' (-40 4' p)

' (2.2V)
&g0 gg

the minus sign appearing in the square root in-
dicates that we are only considering spaeelike
surfaces. The integration range is designed so
as to have only strings of finite spatial extent;
here / is a parameter with dimensions of length
and p, , is chosen to make the action dimensionless
in natural units. This action is manifestly para-
metrization-independent and remains so even
while the string is in interaction.

It is convenient at this point to introduce the
linear differential operator

a
,&A,"(x)=0. (2.22)

is the current generated by charge b. Further, ~u xsu ' u
e o gT a

which has the remarkable property

(2.28)
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(2.29) tained by demanding that the action (2.2V} be sta-
tionary under the variation

In particular

D"x" =(r"" .a a a (2.30)

x."(T., ~.}-x."(T., ~.)+6x."(T., ~.),
6x."(T...].) = 6xf (T.„t,) = O .

(2.31a}

(2.3 lb)

The equations of motion of the free string are ob-
I

Effecting the variation yields

0 = os(')
fa

pv

2pa Jl t
( . )&/2 xau ap

0 -Oa 'Oa

~af

- pa=i~af „7' f - gPV

7
'6 )

+ 2p'a d7 a i . iy/2 &a ~&&a p
ai =0a

(2.32)

Note that, in contrast with the point-particle case,
we have two surface terms to consider. The first
one vanishes because of the nature of the varia-
tion, but the second surface term is of additional
interest. If the string closes upon itself, i.e., if

g(s) ~ S(s)
fa

a, ba(b

and

x."(T., 0) =H(T. , l) (2.33)
(2.40)

with the dependence of the interaction term on up
to first-order derivatives, and

6x."(T., o}=6x~(T. , l), (2.34) R(s) R(s)
ab ba (2.41)

the vanishing of the second surface term is auto-
matically achieved. On the other hand, for an
open string where

from symmetry requirements. By demanding that
S~'be stationary under the variation (2.31), we ob-
tain the equations of 'motion

x."(T, 0) ~x,"(T., l)

6x."(T., 0) ~6x."(T., l),

(2.35)

(2.36)

I

2 ~ +aP&a~a
(
'. )1/2

a a

the vanishing of this surface term is ensured only
if we impose

b ~Zu ~& ~&u

(2.42)

)p/2
o' (T+ i 0)x g (T+ y 0)0 g/2 a

x, x,(T„O)=s, x,(T„ l) =0, (2.38)

which means that the end points trace out null
geodesics'; they must therefore move with the
speed of light.

Still, in either case, we obtain the equations of
motion for the free string

a ai
(2.39)

]|/2(x (T+y l)x p(T y l) 0 (2 37)-oa 'oa TNi l

The meaning of this requirement is nicely under-
stood by squaring the boundary conditions (2.3V);
one then finds

and, when a represents an open string, we have
the additional requirements at the end points

2 aP~ BRab(s)

2/a (
il/2 xa = Q CfTbd) ~-~a 'Oa& ' b~. 8+a

a,t $, =0 and l . (2.43)

It shows that the end points have an interaction of
their own with the "fields" created by the other
strings. Hence they do not necessarily move with
the speed of light in this case.

By multiplying the equation of motion (2.42) by
x," and x',", respectively, we obtain, after a little
bit of algebra,

~ ~ ~ ~ ~0=

If we wish to consider a number of strings inter-
acting via AD forces, we start from an action

X g i dT,+,R&'J,
bm

(2.44)
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The equations of motion also take a very appealing
form, viz. ,

x Q dr, dt, R~;,& . (2.45} 2 2+ +eQv
l a a ( o,o)ll2-~a Oa

A similar procedure for the boundary conditions
on an open string yields

0 =x, , P dr~d), R~J at (, =0, l, (2.46)
Xa bW

u. ' (-o. o.)"' = X.'",„,.
a

x dTb+bR b at $, =0, l.

(2.47)

Just as in the point-particle case, Eqs. (2.44}-
(2.47) can be obtained by demanding that the action
be invariant under the reparametrization

b&a~ - a a

and for the end points

(e)
2 O~gv ~ v 8R.b ~ v,~2x + ~I dr~cg, Pgpx =0

80

(2.56)

where Eq. (2 ~ 55) is like Eq. (2.8) for point particles
under the replacements

d 2DP
dT a

Ta- Ta+ &Ta y

h.-k, + &5,
(2.48)

sc" -v""
a a

(2.s7)

x, x,'=0,
x, x, +x,' x,'=0

(2.49a)

(2.49b)

in which case both T and $ have the same units.
In addition, T, may be taken to be the proper

time, which yields

Assuming this invariance to hold [i.e., by choosing
R~'j's which obey Eqs. (2.44)-(2.47)], we are free
to find the most convenient set of Ta and $, . We

will consider the choice, corresponding to an or-
thogonal parametrization, '

We now give several examples of interactions
which satisfy the above requirements:

R"=g g [(-o o )]' '[(-o, o,)] 'G(s„'),
(2.s8)

where Q is some symmetric Green' s function. It
is easy to see that it corresponds to scalar poten-
tials .

One can form the tensor interaction quite easily
by taking

x ~ x =1=-x' x'
a a a a

In this case, we have

(2.50)
pv p a

R(') = Oa Oa V +b~+bP gf+ 2&
al Bakb( o ~ ~)v2 ( ~ .~)v2 ' sb

b b

(2.59)

+a +a/ V
PV (2.51)

BT 80
(2.52)

to be compared with Eq. (2.16) for point particles.
To push the analogy even further, we might assume
that R,',~ depends on i, and x,'" only through the
combination o,"". Under these restrictions, we ob-
tain homogeneity conditions similar to Eq. (2.9):

This is exactly the stress tensor of the string. It
therefore describes a gravitonlike exchange if the
Green' s function Q is chosen to correspond to
zero mass. Note that the interaction between the
trace terms of the stress tensor is precisely
given by Eq. (2 ~ 58).

Now, if we want to take the replacements (2.57}
at face value, the electromagnetic coupling of
point particles should have as a string analog

1 —o,"' „„Ql dr, dt, R~;~ = 0 .
a Oa b&a +

(2.53)
Rab +a+boa odp&G( ab (2.60)

Further, for an open string, Eq. (2.46) is auto-
matically satisfied, while Eq. (2.48} reads

(-og 'cf~) —o pp Q dTg+yR y
O'a bM ~

at g. =o, 1 . (2.S4)

This antisymmetric second -rank tensor coupling
represents a new type of object previously unknown

in the point -particle construction. It can never-
theless be understood as an analogy to the vector
interaction of point particles. Its remarkable
properties will be discussed in Sec. III.
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III. ANTISYMMETRIC COUPLING

In this section we explicitly consider the action

S=-Qg ' (-do do )+'

+ gg gg dog dog p pG(s~~ ),
a,
a&b

(3.1)

where t" is some Green's function describing time-
symmetric interactions. Note that the coupling
constants g, have the units of mass. The sums
are over all the strings, both closed and open. In
view of the very different physical interpretation
of the above coupling depending on the nature of
the strings, we are going to consider all possible
cases separately in order of increasing complexity.

A. Coupling between two closed strings

In this case the variation of the action yields
only one type of equation of motion, i.e.,

~","(x)= y,"(x)+ y,'"(x)+ y", '(x),
p a

(3.3)

where Pf' is the tensor potential construct due to
string b. Its explicit dependence on the world
sheet of string 5 is given by

(3.2)

Note the great similarity with the Lorentz force
equation (2.14). The analog of the electromagnetic
field tensor is given by

obeys

82
+m2 t."x2 =-4~~~' x,8xp 8 (3 'f)

where m is to be identified (eventually) with the
mass of the field. It follows from the above that

c
82~+m', x =-4', a x,8xp 8xP

where jb ais the "matter current" construct

(3 6)

j, '(J)=g, do"'&'"(y —«(~, t')) . (3 9)

In the case b is a closed string; it is conserved
as can be seen from Eq. (3.5):

8 j"(x)=0 .8xa b (3.10)

These equations are now sufficient for us to ab-
stract a free-field theory which corresponds to
the same forces being exerted on the strings.
This is the more popular view of matter (strings)
interaction being mediated by fields. So as to
render the procedure completely obvious, let us
apply it to the classical electrodynamics of Feyn-
man and Wheeler. There the aim, of course, is
to obtain Maxwell's equations.

The first steps consist in remarking that the
field constructs only couple to point particles in
the combination

FIjv = 8jfAv 8vAp

which is invariant under the transformation

(3.11)

A~ -Ap+8~A . (3.12)

However, since we have in the action-at-a-distance
formalism

y,"( )=xg, do,"G((x x,)') .- (3 4)
8 A"=0, (3.13}

8
~ y,"(x)=0 (3.5)

only when 6 refers to a closed string.
We have not put any restriction on the Green's

function G except that it represents a time-sym-
metric interaction. The general expression for
G is then

G(s'}= 5(s'}-e(s'}
2 J;(ms), (3.6)

where J', (x) is the Bessel function of order 1. G

As in the Feynman-Wheeler theory, we expect to
recover causality by requiring that no net radia-
tion exists. This procedure will then yield the
radiative reaction force on the string due to our
coupling. Further, we find by explicit calculation
that

it follows that

(3.14)

Also, we require A„ to obey the homogeneous
equivalent of the equations of motion (2.20), i.e.,

s„s"A„(x)=0 . (3.15)

Our aim is now to build a Lagrangian density for
A„which is invariant under the transformation
(3.12), subject to the condition (3.13), and which
leads to the equations of motion (3.15). Such a
Lagrangian density is that introduced by Fermi
to quantize the electromagnetic field:

(3.16)

which yields the free Maxwell's equations in the
Lorentz gauge only. It is remarkable that the ac-
tion-at-a-distance theory gives only the Lagran-
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gian density that is suitable for covariant quantiza-
tion. Further, the gauge invariance (3.12) does
not allow for the introduction of any mass term,
thus requiring A„ to describe a massless vector
field. Then the field-theory equivalent of the Feyn-
man-Wheeler action would be

S=m (dx dx)~ +e dx„A"(x)+ ~ d4xg, ~

leads to the equations of motion

Oy" + (a'a yo" + aoa„y"') =0; (3.23)

then we choose the divergence of g „„to be any-
thing we wish by means of the gauge transforma-
tion (3.18).

The action we obtain through this procedure is
(for one closed string, say)

(3.17) S = -g' (-do do)~'+g da„.y""+ d4xg, (3.24)

(Here we have not yet associated a field with the
matter. } We follow exactly the same procedure in

the case of our string-string interaction and pro-
ceed to build a Lagrangian density for the anti-
symmetric tensor potential p„„(x).

First we observe that coupling to matter only

takes place through the combination

x,(y, ~)-x,(y, [),
'

x(y, t') - -x(y, $) . (3.25)

where 2 is given either by Eq. (3.20) or (3.22).
The parity of the potential p„„ is fixed through

its coupling to the string. We define the parity
transformation P by

~n By (an~ By+ a B~yn+ay~n8) (3.3') The above coupling is left invariant if we take

which is seen to be left invariant by the (gauge)
transformation

j~oi - -~oi
' Jyli +y&i (3.26)

y '-y '+a A' —a'A

In addition, since we have

(3.18) where

i j, =1, 2, 3.

a„y""=0,
the A"'s must satisfy

a„(a"Ao —a "A")= O,

(3.5')

(3.19)

which is the Proca equation for a massless spin-
one field. The Lagrangian density that is invari-
ant under the transformation (3.18), subject to Eq.
(3.5'), is given by

g=+ —'y yn'y+-, '(a yn'aye +a y'nays, ) .

(3.20)

One can check that the variation of this Lagran-
gian density with respect to P"" leads to the equa, -
tions of motion

k =k=0,
k =(1/~)(k —k ) =0,
k, =-(1/~)(k, +k, ) ~0 .

Then, under a gauge transformation,

+k~A

(3.27)

The free-field theory of this tensor potential is ex-
amined in greater detail in the Appendix, where
it is quantized along conventional lines. For our
purposes, it suffices to say that it represents one
scalar degree of freedom of mass zero. This is
most easily seen by going into momentum space
and taking a specific frame for the lightlike 4-
vector k„. Its null-plane coordinates are

ay„„(x)=0 . (3.21) P+(+ k+A(

12+a Byy+
1 a By' (3.22}

which has the full gauge invariance (3.18) and

Hence, we see that if we want to write a Lagran-
gian density that is left invariant by the transfor-
mation (3.18), we must have zero mass. This is
of course not unexpected. Further, the Lagran-
gian density we obtain is that suited for covariant
quantization, and it is the analog of the Fermi
Lagrangian (3.16). Of course we assume we still
are in the specific gauge (3.5).

Although we have written 2 in this specific co-
variant gauge, at the classical level, we need not
restrict ourselves to it, and we can start from

(3.28)

k,y,. =0,
k,g, =o, (3.29)

which shows that of the six possible degrees of
freedom contained in g„„, only one survives. We
should emphasize that this is not true for the mas-
sive case, where three degrees of freedom sur-
vive, giving rise to a pseudovector field.

12 12

where the tilde denotes the Fourier transform.
This shows that only Q, and Q» are gauge-inde-
pendent. However, the gauge condition (3.5}yields
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In conclusion, we see that our coupling between
two closed strings corresponds to the exchange of
a massless scalar meson. It is remarkable that
exactly such a state makes its appearance in the
quantized version of the theory (Virasoro-
Shapiro" model) as well as in the Pomeron sector
of the Veneziano model. " This is very encourag-
ing since the mechanisms that cause the particle
to be massless are of a very different nature in
both theories (at least superficially).

8. Coupling between two open strings

In this case the situation is much more interest-
ing because we have to take into account the bound-
ary conditions at the end of each string. While the
forces on the body of each string are still given by
(8.2), we have the additional equations

2 aPV ~ V
2Pa (, %l/2 «() ga ~ 4 b)()I«()-tea '0'ag

at $ =0, I . (3.30)

These mean that the coupling to matter does not
take place exclusively in the combination (3.3).
Thus we see that the end-point couplings break
our original gauge invariance.

A further difference is encountered in the diver-
gence of P,""(x). We find explicitly that

i'
s„p,""(y)= -g, ', d» dt' D"G((y —x)'). (3.31)

T] ~ 0

Integration by parts yields

s,y,"'(y) -g, d»(«:(», t)G{[y—«, (», &)]')},''.
(3.32)

The right-hand side is, up to a coupling constant,
the same as a vector field construct generated by
the end points of string b, each contributing with
opposite "charge. " [In the case where G corre-
sponds to a zero-mass interaction, it is exactly
like the electromagnetic vector-potential con-
struct of Eq. (2.18).] Another way of stating this
is to notice that with the Green's function (3.6),
the equations of motion for 4)~ "(x) still are

the amount of nonconservation corresponding to
"leakage" from the end points of the string. This
unwieldy situation can be rectified in the following
way.

First we remark that the gauge invariance of
Sec. IIIA is spoiled only by end-point couplings.
Thus it is natural to ask whether or not it can be
restored by adding end-point couplings between the
two open strings. This is a standard procedure
for generating additional interactions.

In order to get a hint as to what to add, consider
the change of the action

&~t g, ', do,"'y„.(x,) (3.84)

under the gauge transformation ($.18}. It is

5S~, = 2g, d», d(,D, )(A"(x,),
o

which is exactly the form of a vector interaction.
It is easy to see that it vanishes when string g is
closed. This leads us to add to the action (3.1),
between open strings, the additional interaction

(3.85)

-'I, Re.e, dv df D/fear, 4.,D,.„G(s ,'), (3.()6).
I

where now e, and e, are dimensionless coupling
constants. '2'" This extra term vanishes when
either string a or 5 is closed, so it will not affect
the "body" equations (8.2); it will only alter the
end-point equations as follows:

2 +aQV
a ( o,o )I/2 s

a a

= —Q [g,(t),„„+e,(e„B,„-s„B,„)]«,'

B,"(y) = e, J
d» f«,"(», ])G{[y—x,(», ()]'))f~),

(3.88)

that is, in view of Eq. ($.32)

at & =0, I, (3.3V)

where the extra vector-potential constructs are
given by

(o+m')y,""(y)=-4vg,
~

db,""6'{y—«,(», &)),

(3.8'}

but, because of (8.32}, the antisymmetric current
j~"(y}is no longer conserved, i.e.,

p T

d»[x,'(», ~)6&'){y —x,(», t))]',=„',

e„y,""(x)=~~B",(x) .
8y

By the antisymmetry of P,"", we see that

a„B,"(x)= 0 .
Furthermore, this vector potential obeys

(0+m')B,"(y)=-4wj,"(y),

(3.39)

(3.40}

(3.41)

(3.33) where the conserved current j,"(y) is given by
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j,"(y)=e, d~[x,"(v, &)6"'(y —x(r, t'})]t=o (3.42)
so that, contrary to a superficial reading of S~,
B„is a massive vector field with mass

or m
e

(3.49)

(3.43)

P„v -y„„+e„Av —ev A„,

Bp —BI, ——Ap,e

(3.44a)

(3.44b)

since only the combination

e
0pv = 4vv + —-(~pBv —ev Bp) (3.45)

occurs in the equations.
Just as in the previous cases, we proceed to

construct the Lagrangian density which is left in-
variant by the transformations (3.44}. If we ignore
the gauge conditions (3.39) and (3.40}, the Lagran-
gian density is given by

2

&~= zP'pvpF" —a(epBv ev Bpj -4 2 P P pve

(epBv —Sv Bp) .1g pv (3.46)

We emphasize that Z~ reflects the physical situa-
tion at hand only when the gauge constraints are
satisfied. To see this explicitly, note that the
equations of motion for B& are

This shows that the leakage can be understood in
terms of another conserved current. At this
point it is important to realize that if we had con-
sidered only the coupling (3.36) between two open
strings, the sole "equations of motion" would have
been Eqs. (3.37) with no P„,term. Thus we would

have recovered the usual electromagnetic-type
gauge invariance, since the right-hand side is
just like the Lorentz force. By a reasoning sim-
ilar to that of the Feynman-Wheeler theory, we
would have been led to consider a massless vec-
tor field. This, of course, corresponds to the
massless vector state encountered in the Vene-
ziano model. It is again satisfying to see that we
can understand the Virasoro constraints' in terms
of gauge invariances on local fields.

When both couplings (3.1) and (3.36) are con-
sidered simultaneously, we do not lose the whole

gauge invariance, for the coupling to matter is
still left invariant under the joint transformation

In view of this, we can rewrite g~ in terms of g„,
as

2
vp 1 g pvSp- j—,FpppF ——~ gyp'4 e- (3.51)

which is to be understood in conjunction with the
constraint (3.50). We have used the fact that the
vector field B„makes no contribution to the kinet-
ic part of 2~ due to P„„.

The equations of motion are now

(3.53)

This, together with the constraint (3.50), shows
that we now have a massive pseudovector field.
Its interaction with the string would be described
by the action

s = -p, 'J (-do do)'i'+ g do„„q""+ d' 2x~ .

(3.53)

In order to understand the meaning of this field,
we note that it is produced by the gauge-invariant
superposition of two types of couplings, each of
which represents a bona fide interaction between
strings. In fact, the fields B„and P„„, when

taken individually, are associated with massless
particles which mediate the long-range forces be-
tween open and closed strings, respectively.

On the other hand, the combined effect of these
fields produces a massive pseudovector interac-
tion between open strings. Let us recall that the
antisymmetric potential p„„acquires two degrees
of freedom when developing a mass, these being
provided by the massless vector field B„. So we
have a peculiar situation in which the vector field
(photon) gets absorbed, in contradistinction with
the more familiar Higgs-type mechanisms. '""

Before closing this section, let us remark that
the coupling between open and closed strings can
be analyzed in terms of the exchange of a massive
pseudovector.

Further, it follows from (3.39) and (3.48) that

(3.50)

aB" —e"(s„B")= ~s„y"",—
e

which in view of the gauges become

CIB = —(—. ) B„

(3.47)

(3.48)

IV. SUMMARY AND CONCLUSIONS

We have seen that a direct interstring action can
be constructed in analogy to the action-at-a-dis-
tance formalism for point particles. It lies in the
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correspondence between the line element of the
world line of the point particle and the surface ele-
ment of the world sheet of the string in space-time.
The concept of parametrization invariance was
generalized for the string case, leading to re-
strictions on the form of interactions, just as it
does for point particles. It is precisely this notion
which allowed for the elimination of ghost states
in the quantized version of the theory. "' We then
presented some interactions, which we suggested
could be linked to some specific spin exchange be-
tween strings.

In particular we studied the coupling between
strings which had the greatest similarity with the
Maxwell interaction between point particles. We
found that we had to consider separately strings
with open and closed ends because two types of
coupling were taking place; we had interactions
involving only the end points of the (open) strings,
as well as interactions that coupled only points
on the body of the strings. Thus we found that our
coupling between two closed strings led to Lor-
entz-type equations of motion for the string bodies
and that the forces it produced could be derived
(in field-theoretic language) from the exchange of
a massless scalar field, the masslessness being
the result of the invariance of the equations of mo-
tion. When looking at the case of two open strings,
we found that our coupling was capable of describ-
ing two possible physical situations. When the
interaction proceeded solely through the end
points, it was seen to reduce to the electromag-
netic-type interaction between point charges lo-
cated at the ends of the strings, thus likening it to
the exchange of a massless vector field. However,
we found to our surprise that when interaction be-
tween two open strings took place via both "body"
and "end point" mechanisms, a new solution
emerged which was shown to correspond to the ex-
change of a massive pseudovector field (in field-
theoretic language, of course). Further, we found
that the mass of this pseudovector was determined
in terms of the ratio of the coupling constants ap-
pearing in the aforementioned couplings. This is
very suggestive of a bootstraplike structure; it is
made possible by the fact that the coupling con-
stants for body interactions have dimensions of
mass. It is interesting to note that in the Venezia-
no model (for open strings) and in the Virasoro-
Shapiro model (for closed strings) all these states
make their appearance with the correct masses
(in 26 dimensions, of course). We see then that
our formalism provides a natural unification be-
tween closed and open strings, since the same
interaction produces different spectra, depending
on the nature of the strings they link. Further,
our work suggests that the massive pseudovector

mediates the interaction between closed and open
strings, thus leading to.yet another spectrum.

It would be interesting to see if the same type of
structure obtains when we look at more compli-
cated interactions. However, it is a much more
difficult task, because higher-spin field constructs,
in our approach, inter', ct with the strings in a
nonlinear way. In particular the spin-two inter-
action poses interesting challenges.
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APPENDIX

Here we will consider the free-field theory for
p „„and its quantization.

We begin by considering the Lagrangian density

& = ia+~8)+1 a8y

where

Fa8)' —say Sy+ s By ye+ sgya8

This Lagrangian is invariant under the gauge
transformation

(Al)

(A2)

Qpv -Ppv+~p~v —8vA

and leads to the equations of motion

~a8y pa (A4a)

where

&V = e&1 n8)+ n8y

(A4b)

(A4c)

K=I'0, G] =Q.

Thus we have

v x/=0,
g—K+V G=O,
Bt

(A6)

(A7a)

(A7b)

—G+ VK=O .at (A7c)

From these equations it is easy to see that

is the dual field. In terms of the potentials we
have

(A5),

We can write Eqs. (A4) in terms of a rotation
subgroup decomposition. Define
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(". ) x=o,

(,;; v)q=o.

(Aga)

s,.w"=(vx5) =0.
f (AVa )

The special singular object, 5,*»,(x -x'), must be
defined such that the equations of motion are con-
sistent with these cornmutators.

From the equations of motion we find that

In addition, a solution to these equations is"
thus, we must have

aK= —lti, 6 = -VQ,

provided that

QQ=O.

(A9)

(Alp}

, a,.o*"kl(x-x') =0 .
Define

5O'i jkl(+~ Xs}— q +i q ~ (x-x ')
(2w}'

(A16)

Thus, these equations are satisfied by a scalar
potential.

Let us define the canonical momenta, where

)( [Gijki tf ifkl(q)] (A17)

ag
pv ieo~ pv} +ppv vp ~ (All) Gijkl —&(5ik5jl 5il5jk) (A18)

We see that the momenta w, j (t,j = 1, 2, 3) are well-
defined conjugates to ljl. f . but the w«vanish be-
cause of the antisymmetry of E 8&. Thus, the
Lagrangian, in this form, cannot be used for can-
onical quantization.

The classical Poisson brackets, the antisym-
metry of ijl„„, and the usual postulates of quantum

mechanics lead to the canonical equal-time com-
mutators

[w,.(x, t), ((""(x,'t)]
= --,'t(gpPg, " -g, "g,")5'(x -x'), (A12)

However, by (All) these commutators are incon-
sistent with the Lagrangian (Al) and the resulting
equations of motion. We can restore consistency
by assuming that we are in the Lorentz gauge, de-
fined by

e„y""=0,
and adding the "Fermi term"

—( Sppp~p(tjpv +()p(tj p~p(t)vp)

(A13)

(A14)

to the Lagrangian, thus obtaining (3.19}. This
procedure leads to a covariant quantization. How-

ever, we can quantize (Al) directly by using non-
canonical commutators, thus choosing a specific
gauge. The corresponding situation in electromag-
netism is to quantize in the Coulomb gauge rather
than using the Gupta-Bleuler formalism.

Let us define the commutators

+jkl(q) — [(q(qk5JI qiql5 jk)1

2'
(qjqkdi) q fql dik)] (A19)

s'6*' "'(x -x') =0
k

(A20)

as well. This means that Skulk' is a c number.
Also from (A15}, we see that ljl" is a c number.

By appropriate choice of gauge, we can then have

yqi p (A2la)

() ykl p (A21b)

This situation is similar to choosing the Coulomb

gauge in the quantization of the electromagnetic
field, and is consistent with the Lorentz condi-
tions.

The meaning of this special 5 function becomes
clear if we define the fields

(A22)

The commutator becomes

i( t) ~j( I t)]
dq iq (xx)qq
2w' q

=- -t5I j~(x —x'), (A23)

with q'=
T(

~ (1, which has property (A16) and satisfies

[.„4"1=[.„e"]=[„,e"]=0,

[e",~"]=[... "']=0,
[w; j(x, t), itlkj(x', t)] = t5,*~ "(x,x-'),

(A15a}

(A15b)

(A15c)

a'p'~ = 0- v x g = 0,
8'g'f =0-v x @=0 .

(A24a}

(A24b)

where

i,j, k, ), =1, 2, 3.
Thus, the massless P„„has one degree of free-
dom. This can be chosen as p»-g, . The longi-
tudinal commutator is a direct result of the anti-
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K= Sag» ~ (A25}

symmetry of the field.
Equation (A9} shows us that K= s,p, but using

the above solution we have that

Thus, p and p» have opposite parity, and must
represent independent solutions to the equations
of motion. In addition, P is only a solution to the
free equations, but the (I5 „„will be a solution to
the inhomogeneous equations as well.
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