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We examine in detail the possibility of using the Higgs mechanism to remove the catastrophic infrared

singularities in non-Abelian gauge theories which are asymptotically free. Our investigation encompasses

theories based on SU(N) or O(N) with scalars in one vector, two vector, M vector, adjoint, tensor,

and adjoint plus one vector representations. We find that for these theories an S matrix, in the

perturbative sense, and asymptotic freedom can not coexist. We show that a wide class of Yukawa

couplings can be ignored in studying the large-momentum properties of the scalar couplings.

I. INTRODUCTION

Recently, Politzer, ' and Qross and Wilczek'
have discovered, ' using the Qell-Mann-Low re-
normalization-group techniques, ~ that for non-
Abelian gauge theories the origin of the coupling-
constant space is a stable fixed point' in the deep
Euclidean limit. Theories having this property
are now often referred to in the literature as being
"asymptotically free."' Furthermore, extending
the result of an earlier work of Zee, ' Coleman
and Qross' have shown that no renormalizable
field theory can be asymptotically free without
non-Abelian gauge fields. There are also theo-
retical arguments' indicating that Bjorken scaling
as observed in the deep-inelastic electroproduc-
tion experiments at SLAC and its implied canon-
ical behavior of the light cone in the configuration
space can only be obtained in a theory where the
effective coupling constants vanish in this asymp-
totic limit. All these developments lead us to the
following conclusion: If B|orken scaling, as a true
asymptotic phenomena, " is to be explained in re-
normalizable field theories, we must have a non-
Abelian Yang-Mil. ls theory for the strong inter-
actions.

The great practical advantages of asymptotically
free gauge theories is that one can study certain
physically interesting strong-interaction quantities
in the ultraviolet regime by perturbative methods.
The high-energy e'e annihilation (via one photon)
total cross section goes as s ' with calculable
logarithmic corrections. " The anomalous dimen-
sions of the entire tower of low-twist operators
in the Wilson light-cone expansion may also be
calculated. " It was found that such theories give
scaling up to logarithms. ""

One of the difficulties of asymptotically free
gauge theories is the presence of very severe in-

frared singularities coming from the massless
nature of Yang-Mills particles. Because of the
non-Abelian nature of these gauge symmetries,
these infrared singularities cannot be handled like
those of the usual quantum electrodynamics
(QED)." The consequence is that only off-shell
Qreen's functions can be studied, and the on-shell
S-matrix elements are left undefined. However,
it is well known that the Higgs phenomenon, "in
which the gauge symmetry breaks spontaneously,
can give masses to the gauge particles in such a
way that the renormalizability of the theory is
preserved. The aim of this paper is to investigate
whether by this mechanism we can remove all the
infrared singularities while maintaining the asymp-
totic freedom.

The px'oblem of incorporating scalars in the
asymptotically free theories was first examined
by Gross and Wilczek. " The difficulty, as pointed
out by these authors, lies in the fact that the self-
quartic couplings of scalars, inevitably present
in any renormalizable field theories involving
scalars, are inherently unstable but for the pres-
ence of gauge couplings. In Ref. 13, scalars are
restricted to a single low-dimensional represen-
tation. The cases of one vector, one adjoint, or
one symmetric tensor in SU(N) and the case of
scalars belonging to one (N, N) in SU(N) x SU(N)
are worked out. Furthermore, Yukawa couplings
are excluded. Since Yukawa couplings enter in a
nontrivial way in the renormalization-group dif-
ferential equations of scalar couplings [see
Eq. (2.8)], they can in principle have an effect
on the stability properties of the scalar couplings.

In Sec. II we set up the general foxmalism and

establish our notation. We make some general
remarks about the calculation of the coefficients
in the renormalization-group equations for the
coupling constants and discuss our method of de-
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termining the stability of this system of differ-
ential equations. Ne also briefly discuss the
situation in semisimple groups. We note that if
any one of the product groups is a U(1) the theory
will not be asymptotically free.

In Sec. ID we consider the effect of the presence
of Yukawa couplings on the asymptotic freedom of
the theory. %e demonstrate that if the Yukawa
couplings are stable at zero they will be driven to
zero at a faster rate than the gauge coupling con-
stant itself and hence will not influence the sta-
bility properties of the scalar couplings. The
proof for a case of more than one Yukawa coupling
is left to Appendix A.

In Sec. IV we investigate the asymptotic stability
of the scalar coupling constants. Vfe examine
scalars belonging to one vector, two vector, M
vector, adjoint, antisymmetric tensor, symmetric
tensor, and adjoint plus one vector representa-
tions of O(N) and SU(N}. Many of the details of
the calculations are left to Appendix B. Ne ob-
serve a general pattern of the occurrence of as-
ymptotic freedom in gauges theories with scalars.
As the number of scalar fields increases, the
dimension of the group and therefore the number
of gauge bosons must also be increased to main-
tain asymptotic freedom. Ne find no examples

. when the symmetry is broken down to an Abelian
symmetry which is also ultraviolet-stable. For
completeness we include an Appendix C that
reviews the results of one of us (L.-F.L.)" on the
symmetry breaking induced by the Higgs mech-
anism for various representations of SU(N) and
0(N).

In Sec. V we make some concluding remarks as
to the compatibility of asymptotic freedom and
the existence of an S matrix in perturbation theory.

8=—g E'„„E'"'+~ (Dqp), (D"»}»), +» gy"Dqg

F-».»t T» -I»» 4»t » -I'(4 } (2.1)

(2.3)

(D» 4'). =8~4» +t ge'»»»t»A»

(D„g)„=B~»}»~+I gt'»»»t»8A' .

(2.4)

(2.5)

The scalar (fermion) fields belong to some, in
general reducible, representation of 9, with cor-
responding representation matrices of the gener-
ators, e'»» (ta s}. The constraints on e', t', m, , t»,

and V due to requirements of hermiticity and

gauge invariance of the Lagrangian may be easily
worked out.

Given the above Lagrangian we can immediately
write down the lowest-order approximation of the
renormalization-group equation for the effective
coupling constants:

16»»'—= —[~SS»(g) --', S,(E) --,'S,(S)]g'

(2.6)

16»»' ' =2l» I»;I» +~(h I»»»»;+k»I» I» )dt

+2 Tr(t»,. I» )I»„-3[2t'I»;t'+S, (E)t»;]g

1
+ 288„2f»»»»f»»»e"m» (2.V)

where V(»}»} is some quartic polynomial in Q,

1
V(»t») =4 , f—»»»»t»» Q, Q, Q + lower-order terms,

(2.2)

II. GENERAL FORMALISM

The most powerful technique used in studying
the asymptotic properties of the renormalizable
field theory is the Callan-3ymanzik equations.
Vfe refer the reader to Coleman's Erice lecture"
for an elegant presentation of this technique. Here
we write down only those differential equations
for the invariant coupling constants which are
needed for studying whether the gauge theories
can be asymptotically free in the presence of the
Higgs phenomenon.

Let A.'„, »t»», and Q be the Hermitian gauge fields,
real scalar fields, and spin-& fields, respectively.
The most general renormalizable Lagrangian
which is locally gauge-invariant under some
simple compact Lie group 9 with structure con-
stants C'"is as follows:

where

A»»„-=(e', }e,f ee'}„+(e',e'}„te',e'}„

(2.8)

H;, „» = —,Tr(»»»;h»(l»~, h»}+ t»»h~[t»», I»»}
1

+t, a,(t „a,}}.
%Ye have used the following identities:

2 d flkl16w . =f»» „f„„„+f»,„„f„;,dt

+f»»~„f~„;»» —12S2(S}g f»»»»»

+ 3A»s»» g'+ 8»(I»»t»m}f~»a» - 12%»»»»
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CacdCbcd S (9)6al

(t't'), , =S,(I')6„,
(8'8') (~ = S2(S)6;;,

Tr(t't') = S,(Z) 6",

Tr(8'8') =S,(S)5~,

(2.10)

which define constants 8„S„and8, depending

only on the group (9) and the representation of the
fermions (E) and scalars (S). We have also used
the fact that f;», is totally symmetric.

A number of comments concerning this set of
coupled equations are in order.

(a) These equations apply in the deep Euclidean
region where all the dimensional coupling con-
stants, i.e., mass terms and superrenormalizable
interactions, can be dropped. They desex'ibe the
response of the coupling constants when the nor-
malization point M at which the couplings are
defined is changed to ~. Thus the coupling con-
stants appearing in the above equations are func-
tions of t-=-ln~ and are commonly referred to as
"effective coupling constants" or "running cou-
pling constants. " The boundary condition for
these effective coupling constants is that they are
equal to the couplings appearing in the Lagrangian
defined at Euclidean symmetric points P' = -M'.
For simplicity of notation we shall not give the
effective coupling constants separate labels, and

their dependence on t is to be understood in the
following discussion.

(b) Since we are only interested in exploring
around the origin of coupling constant space, it
is adequate for our purposes to calculate to lowest
ox'der. It should be noted that the lowest-order
terms are not necessarily all single-loop dia-
grams. In particular, Fig. 2(c) is a two-loop
term. However, as it turns out, the structure of
Eq. (2.8) is such that if the theory is to be asymp-
totically free the scalar couplings f must be pro-
portional to g' as g approaches zero in the ultra-
violet limit. Consequently, the off term may be
dx opped and only one-loop diagrams need be con-
sidered.

(c) The algorithm for the perturbation calcula-
tion of the right-hand side of Eqs. (2.6)-(2.8) is
by now well known. It involves calculating the
logarithmically divergent parts of diagrams which
contribute to the coupling-constant renormaliza-
tion, and then taking the logarithmic derivative
with respect to mass scale M. These lowest-
order equations are gauge-independent. " The
computations are simplest when done in the Landau

gauge where many one-loop diagrams are finite
and hence do not contribute. The relevant dia-
grams for Eqs. (2.6), (2.7), and (2.6) are displayed

(b) (c)

g '(0)
I+(IJ16v')g'(0)t ' (2.11)

(c)

FIG. 2. Lowest-order contributions to the Yukawa-
coupling renormalization constants. {a), (b), and (c)
correspond to the hs, hg2, and kf ~ terms in Eq. {2.V).

FIG. 1. Lowest-order (g3) contributions to the gauge-
coupling renormalization constant defined here from the
vector-fermion vertex. The solid directed lines repre-
sent fermions, the wavy lines represent the gauge bo-
sons, dashed lines represent schlars, and looped lines
represent the Faddeev-Popov ghosts. (a), (b), and (c)
correspond to the first, second, and third terms on
the right-hand side of Eq. (2.6). Other possible one-
loop diagrams not displayed do not contribute in the
Landau gauge.

in Figs. 1, 2, and 3, respectively.
(d) We note that in the presence of spontaneous

symmetry bx'caking via the Higgs mechanism the
perturbation calculations of the renormalization-
group equations for g, hq, and fq, „do not depend

on whether or not the scalar fields are shifted to
have zero vacuum expectation values, thus giving
masses to the gauge bosons and fermions. This is
because shifting the scalar fields can only affect
superrenormalizable interaction terms in the

Lagraagian; these terms do not affect the renor-
malization-group equations.

(e) As explained in Ref. 19, the renormalisa-
tion-group equation for a single coupling constant,

f, is of the form df/dt =P(f) and has a stable fixed
point at f=0 if P(f)~&, =0 and dP/df~q, &0. We

first observe that Eq. (2.6) can be solved trivially
to give
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The pointx, is a stable fixed point if (I}E~(x,) =0 vi
and (2) all the eigenvalues of D„(x,) have negative
real parts.

The simple may to understand these conditions
is as follows. The local stability of the critical
point x, is determined by retaining in E,(x) only
the linear term in g=x —x~

dE;
D;g(x,)h, .dQ

(2.14)

Using the standard method, we write

(2.15)

/

Q
+ 5 OTHER DIAGRAMS

/
/

/

(e) + 5 OTHER DIAGRAMS

FIG. 3. Lowest-order contributions to the quartic
self-coupling renormalization constants. (a}, (b}, (c},
(d}, end (e} correspond to the fm, fg2, g, fh2, and h4

terms in Eq. (2.8}.

Hence if 6, &0, g(t) is real and tends to zero as
t +~. Equation (2.V) will be discussed in the
next section; me mill see that, in the cases of
interest, if h& =0 is a stable point as t- then
h& =h, /g goes to zero as t-~. Therefore the
Yukawa terms mill be ignored in the equation for
the scalar couplings, Eq. (2.8). In order to find
the stability properties of Eq. (2.8) we eliminate
the g'(t} dependence by introducing a variable
u =-(16s'/5, ) ln[g '(0)+(bJI6s')t] and f;,g„=f;;„/g'. -
The stability equations for f;,»(u) may be written
in the form

d
' =E;(x),dg

(2.12}

where x is a column vector with components the
f&,„'s, and E;(x}are quadratic functions of the
components of x. We find the stable fixed points
of this system of differential equations by the fol-
lowing method. We first find the solutions of the
system of quadratic equations E,(x) =0 vt The rea.l
solutions of E,(x) =0 Y i are called critical points
of the differential equations. Vfe now consider the
stability of each of these solutions. We define the
slope matrix of E;(x) at x, by

to get the algebraic equations

XCg =D;;(x,)C, . (2.16}

HI. RElVORMALIZATION-GROUP EQUATION FOR
THE YUKAVf A COUPI. INGS

No renormalizable field theory can be asymp-
totically free without non-Abelian gauge fields.

To have nontrivial solutions, me have to demand
det(D(x, }—XI)=0, which gives & complex eigen-
values ~„~„..., A.„. It is then easy to see from
Eq. (2.15) that the critical point xo is locally
stable if all the ~ 's have negative real parts so
that $;-0, or x-xp as ~-. "

Vfe note that x, being a stable fixed point implies
that f,», =g'(t)x, goes to zero as t- ~. In most
of the cases me consider in Sec. IV me use a
computer to do these straightformard but tedious
calculations.

(f) Up to this point we restricted our considera-
tions to simple Lie groups, i.e., theories mith
only one gauge coupling constant. We shall make
a brief comment on the more general cases in-
volving semisimple groups, which are just direct
products of simple groups G, x G, x & G„, each
with its omn coupling constant g;. To lowest order
(g ) the renormalization-group equations for each
of the coupling constants is independent of other
coupling constants, "and therefore the results
can be deduced from that of simple groups. It is
interesting to note that if one of these groups, G„
is an Abelian [U(1)] group, the associated gauge
coupling mill not be driven to zero and the theory
is not asymptotically free. Since most unified
theories of weak and electromagnetic interactions
are based on the gauge group SU(2) x U(l}, the
ultraviolet behavior of such theories is not con-
trolled by the fixed point at zero coupling and the
Johnson-Baker-Vfilley and Adler programs re-
main a possible approach to QED within these
unified theories.
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16m' —=Ah' —Bg 'h,dh
dt

(3.1}

where A. and B are some positive constants de-
termined by the representation content of the
fermions and scalars. For example, the case
where scalars belong to the adjoint representation
is just the generalization of the Yukawa coupling
scheme of Ref. 7 to the case of gauge theories. "
To solve this equation it is convenient to use the
variable h =(h/g)' to rewrite it in the form

It is understood in this statement that one accepts
the semiclassical arguments that the quartic self-
coupling fq, » must be a positive-definite tensor
for the energy spectrum to be bounded below. On

the other hand, Symanzik has suggested that such
an argument may not be so compelling in a full
quantum field theory" (i.e., beyond the tree-
graph approximation). Clearly, if this positivity
condition is relaxed, one can have an asymptotic
free y' theory. However, it should be pointed out
that in the view of the works by Zee' and Coleman
and Gross' it is impossible to construct any real-
istic theory even if the sign of q' term can be
changed. The nontrivial introduction of fermions
will immediately destroy the asymptotic freedom
since Yukawa couplings are inherently ultraviolet-
unstable, independent of the choice of sign for the
y' term.

The asymptotic stability property of Yukawa

couplings is altered dramatically in a non-Abelian
gauge theory. As we shall see, Yukawa couplings
can now be driven to zero in the deep Euclidean
limit. In fact, they are driven to zero at a much
faster rate than the gauge coupling itself.

To illustrate our point, consider first the simple
solution where only one Yukawa coupling constant
is present. The set of coupled equations in (2.7)
is reduced to (recall that the hf' term is negligi-
bly small)

only type of Yukawa couplings is the "vector-vec-
tor-adjoint" type, but the coupling constants for
fermions in different fundamental representations
need not be the same. For definiteness, let us say
there are M such sets. The scalars may belong
to a reducible representation, but we stipulate
that there is only one adjoint representation. Thus
there are &M(M+1} Yukawa couplings. We label
them as follows:

h=h~g t', (3.3)

where t', as before, is the representation matrix
of the generators. The index a runs from 1 to
the order of the group. The.indices a and P denote
the "fermion type, " i.e., they distinguish the dif-
ferent sets of fermions. So we can view h„s as an
M XM symmetric coupling matrix. Writing the
Yukawa couplings in this form, we have for Eq.
(2.7)

16m' 8 =A(hhh)„~+Tr(hh)h 8
—Bg'h

d 2

dt
—= af'+ bfg'+cg'+dfh'+ eh'. (3.5)

Since h goes to zero faster than g, i.e. h/g-0 in
the large ultraviolet regime, the fh' and h' terms
clearly can be dropped when compared with fg'
and g' terms.

(3.4)

4 and B are again positive constants. For exam-
ple, in SU(N), A = (N' —3)/2N and B=3(¹—1)/N.
The stability properties of this set of coupled
equations can be determined after they are sim-
plified by diagonalization of the h z matrix.
Again, we find (see Appendix A) that if the theory
is asymptotically free, i.e., h 8-0, then h„q/g-O.

The equations for the effective scalar self-cou-
pling constants, Eq. (2.8), are of the form

8w' —= h[Ah —(B- gb,)], (3.2) IV. RENORMALIZATION -GROUP EQUATIONS FOR
THE SCALAR COUPLINGS

where u and b, are defined by Eqs. (2.12) and (2.6),
respectively. If B- &5, &0, there is only one crit-
ical point h=O, because h=(h/g)' is a positive
quantity. This case is unstable because the slope at
thispointispositive. Inthe case B- &b, &0, there
are two critical points, k = 0 and 'h = (B- ,' b, )/A. —

The stable fixed point is at X = 0 because the slope
at this point is given by -(B- & b,) &0. This shows
that h must approach zero at a faster rate than g
if B—2b0&0.

We now turn to cases where there are more than
one Yukawa coupling. We consider the situation
in which all the fermions belong to the fundamental
representation of the group. Consequently, the

In this section we investigate the large-momen-
tum behavior of the scalar couplings for those
classes of gauge theories based on the familiar
0(N) and SU(N) groups with various choices of the
representation of the scalars up to second-rank
tensors. Tensors higher than second rank are
more difficult to handle. But we nate that in Eq.
(2.6) for the gauge coupling constant the contribu-
tions of gauge particles S,(9) have the right sign
for asymptotic freedom and are proportional to
N in both 0(N) and SU(N}, while the scalar contri-
butions S,(S) have the wrong sign and are propor-
tional to (N}' ' for scalars belonging to hth-rank
tensors (see Table IH). For large enough N, any



2264 T. P. CHENG, E. EICHTEN, AND L.-F. LI

A. Stabilities of scalar couplings in 0(N)

We first discuss the simplest case with only one

vector representation in O(N). The most general
O(N)-invariant quartic coupling contains only one

coupling constant;

(4.1}

The renormalization-group equation for A. takes
the form

, [(N+8)X' —3(N —1)Ag'+ g(N —1)g'],
dt 16~'

(4.2)

or in terms of new variable X=X/g'

1 dX—,—=p(X)g' dt

, f(N 8)+X'+ [bo —3(N —1)]X+$(N —1)),

where 5, is defined by Eq. (2.6),
(4.3)

tensor higher than second rank will destabilize the
gauge coupling and can be ruled out for our pur-
poses.

Since the calculations are very similar in all
cases, we will give only the results here and will
give some of the details in Appendix B. We will
first discuss the situation in O(N) in Sec. IVA and
will describe briefiy the similar situation in SU(N)
in Sec. IV B, followed by a discussion in Sec. IV C.

dP (X) =A(X, —i,) &0.

Hence the smaller root X, is a stable fixed point.
However, from the condition that the classical
potential corresponding to this interaction is
bounded below we have to require A &0. This con-
straint demands B&0 because both A and C are
positive. This implies that it is most favorable
to have b, as small as possible in order to have
large ~B~ to satisfy h=B'-4AC&0. This can be
achieved by having as many fermions as possible
without changing the sign of b,. It turns out that
in all the cases we consider the results do not
change very much if we use the smallest possible
b, instead of b, =0. So for the sake of simplicity
we will assume from now on that 5,=0. Then the
discriminant condition is simply

3(N —1)(2N —11)&0. (4.5)

The theory is stable for N& 6. On the other hand

it has been shown that for one vector representa-
tion in O(N), the symmetry is broken from O(N)
to O(N —1) (see Appendix C). This means that only
for &=2 does it break the symmetry completely,
and for O(6), the smallest group which has the
asymptotic freedom, there are still ten massless
gauge particles, corresponding to the generators
of a non Abelian O(-5) group.

We next consider the case where we use two sets
of scalars P, and g„each belonging to the vector
representation of O(N) The qu.artic scalar inter-
action contains four coupling constants:

—=-b,g' 32, , and b, &0. (4 4)

Since the right-hand side of Eq. (3.3) is a second-
order polynomial of the form P(X}=AV+ BX+C,
the condition for P(X) =0 to have real roots is
simply &= B' —4AC & 0. Let us call these two
roots X„L,with X, &A, and calculate the slope at
these points:

dP(Z)
=A(X, —X,) &0,

dA.

+ ,'z, (y, y—,)(q,y, )+ ,'X,(p, y, )(p~g,).—(4.6)

We have imposed a discrete symmetry Q, - -P,
to eliminate terms of the form (Q, g, )(f,g) for
simplicity. Notice that we have to deal with four
coupling constants, as compared with only one in
the previous case. The renormalization-group
equations for these coupling constants are also
very complicated:

dt 16m'~ [(N+8)A, +NA~ +4X3X~+4)4' —3(N —1)X,g'+~(N —1)g ], (4.7a)

2 [(N 8)X,+F2�,+' 4X,X+4', '+—3(N —1))~' + ~(N —1)g'],
dt 16m'

(4.7b)

, [(N+2)(X, +X~)X, +2(X, +X,)A~+2K, '+2k, ' —3(Ã —1)X~'+ ~g ],dt 16m'
(4.7c}

, [2()., + X~)%4+4A3A, + (N + 2)X,2 —3(N —1)X~' + g(N —2)g'] . (4.7d}
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TABLE I. The threshold values for asymptotic free-
dom in 0(N) with various vector representations and
the pattern of symmetry breaking.

N threshold
for asymptotic

freedom Symmetry breaking

7
8
9

10
11

0(N) 0(N —3)
0(N) O(N —4)
0(N) 0(N- 5)
O{N) 0(N —6)
0(N) O(N —7)

~ Number of vector representations.

We can proceed by using the variable X; = A, /g'
and finding all the real roots of these four simul-
taneous nonlinear equations, and then we can check
the stability by calculating the eigenvalues of the
slope matrix evaluated at these roots. Because of
the complexity of all these calculations, we do all
these steps numerically on the computer. The
result is that this class of theories will become
asymptotically free for N ~ '7. But the symmetry
is broken from 0(N) to 0(N —2) by these two sets
of vector representations (see Appendix C).
Hence, for N » 7 the Higgs phenomenon fails to
remove all the infrared singularities.

When we compare the two cases we have con-
sidered so far, it seems that as we put more sca-
lars into the theory to break the symmetries fur-
ther down, the threshold value of N for asymptotic
freedom of the theory also increases.

Since the number of coupling constants increases
rapidly with the number of vector representations,
it is very difficult to study the case with more
than two vector representations, even on the com-
puter. However, we observe that Eqs. (4.7a)-
(4.7d) are invariant under A.,—X„which corre-
sponds to Q, $, in the Lagrangian. The numer-
ical solutions for these simultaneous equations
have the property X, =X,. If we impose the extra
symmetry that the Lagrangian is invariant under
P, —g„ then it implies X, = X, and reduces the
number of equations to three. In the case where
we consider M vector representations, QC,',
QP', . . . , QP~, we can impose the interchange
symmetry among these M sets of scalar field to
reduce the number of independent coupling con-
stants to only three. The final results are sum-
marized in Table I. This table also shows the
pattern we mentioned before. In the limit N is
very large, the theory is stable for M ~ 0.8%i, but
the symmetry is broken completely for M ~ N - 1
=N.

We now consider the more complicated second-
rank tensor representations of 0(N). We give only
the results here. Details of the quartic couplings

TABLE II. %he threshold values for asymptotic free-
dom in SU(N) with various vector representations and
the pattern of symmetry breaking.

N threshold
for asymptotic

freedom Symmetry breaking

5
6
7
8

10
11

SU(N) SU(N —3)
SU(N) ~ SU(N —4)
SU(N) ~ SU(N —5)
SU(N) ~ SU(N —6)
SU(N) SU(N —7)
SU(N) SU(N —8)

Number of vector representations.

and stability equations are given in Appendix B.
For the second-rank symmetric tensor represen-
tation, the asymptotic freedom starts from N =14.
For the antisymmetric second-rank tensor rep-
resentation, it is asymptotically free for» 8.
If we add a vector representation to this antisym-
metric tensor, the threshold value of N for asymp-
totic freedom starts to move up to N = 9. But for
all these cases, it can be shown that the Higgs
mechanism fails to remove the infrared singular-
ities.

B. Stabilities of scalar couplings in SU(N)

The situation in SU(N) is very similar to that
in 0(N). We only describe the pattern here, and
we refer the reader to Appendix B for the form of
quartic couplings and stability equations.

In the simplest case of only one vector repre-
sentation of SU(N), the theory is asymptotically
free for N & 3, and the symmetry-breaking pattern
is from SU(N} -SU(N —I). Hence SU(3) gauge
symmetry has asymptotic freedom and also has
the infrared singularities associated with unbroken
SU(2) symmetry. We next consider the case of
two vector representations, which is enough to
break the SU(3) symmetry completely. It turns
out that the starting value for asymptotic freedom
moves up to n =4, and SU(4) is reduced only to
SU(2) by two vector representations. For the cases
with more than two vector representations, we
impose the same interchange symmetries among
these vector representations as in 0(N). The re-
sults are summarized in Table II. This shows the
same pattern as we indicated in the case of 0(N).
In the limit of large N we can solve the equations
analytically to show that it is unstable for N-1
vectors in SU(N}. We next examine the cases with
second-rank tensor representations. The choices
of second-rank symmetric tensor and adjoint rep-
resentations have been studied by Gross and
Wilczek. " We include their results here for com-
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pleteness and comparison. In the case of the sym-
metric tensor representation, the theory becomes
asymptotically free for &~ 9. If we use only one
adjoint representation, the asymptotic freedom will
start from &=6. Vfhen we add one vector repre-
sentation to the adjoint representation, the thresh-
old for asymptotic fxeedom move up to &= V. Vfe
have also considered an antisymmetric tensor in
SU(W; we find asymptotic freedom for & & 5.
Again for these values of & there is always a non-
Abelian symmetry left after the spontaneous sym-
metry breaking through the Higgs mechanism.

C. D18CllSSlD fl

The general pattern for all these cases seems
to be that when we put in scalars to remove all
the infrared singularities the theory will lose the
asymptotic freedom, or if we insist on asymptotic
freedom the maximum sets of scalars we can put
into the theory will only break the symmetry down
to some non-Abelian symmetry. For example, in
the most familiar SU(3) group, it is asymptotically
free if we use only one triplet of scalars, but there
is a non-Abelian SU(2} symmetry left unbroken,
which leads to the uncontrollable infrared catas-
trophe. If we use two triplets of scalars to break
the SU(3) symmetry completely, the theory will
no longer be asymptotically free.

%e have not exhausted all the possible choices
of representations for the scalars. Since there are
so many instances exhibiting the same feature, we
conjecture this to be a very general property of
the Higgs phenomenon in asymptotically free gauge
theories. The validity of this conjecture and the
possible physical mechanism responsible for this
property are under further investigation.

The fact that asymptotic freedom is only possible
in the non-Abelian gauge theories and not in any
of the other renormalizable theories (e.g;, Abelian
gauge theories, Yukawa coupling theories and Xp'
theories) is not well understood. It is a possibility
that the asymptotic freedom on non-Abelian gauge
theory is due to the presence of the infrared sin-
gulax'ities, since there is no infrared catastrophe
.in any other theory.

V. CONCLUSION

The systematic investigation of the effect of
scalar couplings on a wide class of non-Abelian
gauge theories leads to the results that the Higgs
phenomenon fails to remove the infrared singular-
ities in such a way that the asymptotic freedom is
pxeserved. Whenever enough scalars are intro-
duced to break the gauge symmetries completely,
the theory loses its asymptotic freedom. This
seems to indicate an intimate connection between

the infrared singularities and the asymptotic free-
dom in the non-Abelian gauge theories. It de-
serves further investigations, which may lead to
a better understanding of this feature; hopefully,
progress in this direction will shed some light
on the origin of the asymptotic freedom.

One might hope that somehow the symmetry is
broken dynamically to give masses to the gauge
particles instead of the simple Higgs mechanism.
So far only the plausibility of this idea has been
demonstrated in the context of Abelian gauge the-
ory." However, there is some difficulty in ap-
plying those arguments to the more interesting
non-Abelian gauge theory. One of the crucial as-
sumptions needed to demonstrate the possibility
of having a spontaneously-broken-symmetry solu-
tion is that the fermion self-energy Z(p) has the
asymptotic behavior Z(P)-(I/O')~~~ ', i.e., Z(P)
has anomalous dimension. However, in the as-
ymptotically free theor'y Z(P) behaves like (InP')',
i.e., it can never have anomalous dimension. "
Hence if this approach is to be workable at all,
new techniques are needed to implement this idea.

In the absence of any reasonable physical mech-
anism to break the gauge symmetries to give
masses to the gauge particles, it seems that we
have to face the sevexe infrared singularities in
the non-Abelian gauge theories seriously. One has
to handle the infrared singularities one way or the
other in order to have well-defined 8-matrix
elements. It has been speculated by a number of
people that the local gauge symmetry may in fact
remain exact and that the strong-coupling nature
of the theory in the infrared limit provides the
desired mechanism for quark confinement. ' Al-
though this possibility is very attractive, it has
not been well formulated in any kind of field-the-
oretical framework. Undoubtedly any progress
along these lines will lead to a tremendous en-
hancement in the understanding of strong-inter-
action physics.
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In this appendix we shall demonstrate that the
only possible asymptotic stable fixed point of the
equation for H 8=@ 8/g [see Eq. (3.4)]

16'' ~A(HHH) ~8 +Tr(HH)H~g

(AI}



HIGGS PHENOMENA IN ASYMPTOTICALLY FREE GAUGE THEORIES 2267

is H~q(~) =0.
Following the procedure for finding asymptotic

stable fixed points outlined in Sec. II E, we must
first find solutions to the coupled nonlinear equa-
tions

A(HHH} ~8+Tr(HH} H„s —B'H 8 =0, (A2}

H AH + H82-B' =0 +=1 .. . M.
=1

(AS)

For any &, we have the choice that H either is
zero or satisfies the equation

where B'=B-2b,. Then we must determine for
each solution of (A2) whether or not all eigenvalues
of the corresponding derivative matrix, Eq. (2.11),
have negative real parts.

We shall solve Eq. (A2) by first diagonalizing the
Hermitian matrix H z. In terms of the diagonal-
ized matrix H'8=5 SH Eq. (A2) takes the simple
form

We note the Lx L square in the upper left corner
in the D matrix may be written as

(C —D)1+DT, (A9)

where T is an Lx L square matrix with each ele-
ment equal to unity, hence satisfying the identity

T2= LT . (A10)

From this we conclude that the eigenvalues of T
are either zero or L. Since the trace is invariant,
T must be of the form

where the submatrix in the upper left-hand corner
is LxL and where

C = (SA + L + 2)H* —B',
D =2H*'

AH„+ H8 —B' = 0
=1

(A4}

which gives a nonzero solution for H . The most
general solution is then given by

and

AH + Ha —B'=0, @=1, .. . , L
=1

(A5) 0

when diagonalized. Now the requirement that all
the eigenvalues of D 8 be negative demands

H„=O, n=L+1, . . . , M (A5)

with L =0, . . . , M. From (A5) we deduce that all
the nonzero H„' are equal and given by

B'
A+L' (A7)

C D ~ . ~ D
D C ~ D

D D C

Das=

The next step is to show that in order for the de-
rivative matrix to have all eigenvalues with only
nonpositive real parts we must have L =0. Name-

ly, H~(™)are zero for all n the result —asserted
in Sec. III.

The derivative matrix is of the form

(3A + L}(H~) + 2L(H*) —B' & 0,
(3A+L)(H*) —B' & 0 (L) 1),
-B' &0.

(Alla}

(A1lb)

(Al1 c)

Since H*'=B'/(A+L) and B' must be )0, condition
(Alla} ca'nnot be satisfied. So the only possible
solution is L=O or H*=O for all n. Since H* is
nothing but a set of linear combinations of h's/g,
we conclude that h*~/g-0 as t- ~.

1. One vector and one antisymmetric tensor in O(N)

APPENDIX B

In this appendix we will try to illustrate the cal-
culations of the renormalization-group equations
for the scalar couplings described in Sec. IV.
Since the calculations in all the cases are very
similar, we outline the steps in one case and state
the results for all the other cases.

-B'

-B'
(AS)

The scalars which belong to the vector represen-
tation of O(N) are denoted by X, (i = 1, . . ., N), and
those belonging to the second-rank tensor repre-
sentation are denoted by Q„(i, j= 1, . . . ,N), with

We can write down the most general
quartic self-coupling by contracting all the indices
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to make it invariant under O(N):

~4& ~xl(eiieii) +X2(eii4'illekl fili)

+ 8'(xixi) + 2xg(XAXk)(4 ij 4ii)

set of real antisymmetric &xN matrices with
normalization

Tr(B B'}=--'5"' (B4)

+-'X.(x;x,)(ei,e.;). (Bl)
Then the interactions (Bl) and (B2) can be rewrit-
ten as

We also need the couplings between gauge particles
and the scalars,

[8„-P,~ g(A-i,«P» +A i,» Pi, )]
x [8"ijii| -g(A,",ij» +A), p,.i, )]

~(suxi gAviixi)(8 Xi —gAviyxa), (B2)

where A „,i = -A», are the gauge particles in O(N).
Though the tensor notations Q,z, A

&
„.are very

convenient for constructing invariants under O(N),
they are very clumsy for working out the Feynman
rules, because two indices are required to label
these fields. To overcome this, we first make a
transformation to go over to one-index labeling
by writing

Bj~jg~& Apii=B&jApi (B3)

where B"[a = 1, 2, .. ., ,'N(N —1)) —are the complete

and

-Z. , = —,X,(iji iji )'+X, Tr(B BsB"B )Q "i' Q&Q

+ k&, (x;xi)'+-'&.(Xixi)(4.4.)
-'x, (x,x,)(e e')(B"B')„

'(8-„-P gA-F88 i'„}(8"i' -gA 8iiP )

—2(s„X;-gA„BiiX;)(&"X;-gA"'B,'~X&)

(B6)

with

8s& =2i Tr([Bs, B ]B"). (BV)

With the interactions given above, it is straight-
forward to work out the Feynman rules to calculate
various renormalization constants. The renormal-
ization-group equations are given by

, ([gN(N —1}+8]X,+2(2N -1)XiX,+6X, +NP, ~'+2X~P., -6(N —2)gaA. , +9g~],

2 [(2N - 1)X22+ 12xix, + ~x, —6(N —2)g x, + 2(N —8)g ],

[(N+8)A, '+ gN(N 1)&~2+ (N —1)X4-&,+ a(N —1)X,' —3(N —1)Xg '+ ,'g (N- 1)], —

([~N(N —1) + 2]x,x~+ (2N —1)x,x~+ ~(N —1)xix, + A.,X, + (N +2)X,A., + XSA., + 2&~'
dt 16K

+-,'x,'- ,'(3N 5)g—'x,+ —,'g—'),

[2x,x, + (N —1)x2A., + 2x,x +4&,&, + INX, ' —2(3N —5)g'x, + z(N —4)g'] ~dt 16m

The calculations of these coefficients in the above
equations are straightforward but tedious. For ex-
ample, consider the diagrams given by Fig. 4,
where both external lines and internal lines belong
to antisymmetric tensor Q with vertices corre-
sponding to ~,. These diagrams contain the in-
ternal symmetry factors

S, = Tr(B"B B Bi},Tr(BiB Bi'Bi)„
P

where Tr(ABCD), denotes the totally symmetric
combination of A., B, C, and D. We need to sum
over the intermediate states p, g and project out
the term Tr(B B B&B },in order to calculate their
contribution to dX, /dt. This can be done by the
observation that B [a =1, 2, . . . , N(N —1)] form
the complete set of real antisymmetric +&+ ma-
trices. We can use them to expand any arbitrary
real antisymmetric &x& matrix M in the form

CX CXM, &
= Z B&a, M, ~

= -M&, . (Blo)
Si= Tr(B"B"BB },Tr(B B B B)»-

P

(B9)

The coefficient a" can be calculated from Eq. (B4):

S,= Tr(B B B~Bi},Tr(B B"B Bi)„
P a =-2(M, iB;,) =-2(TrMB ) . (Bll)
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~/
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FIG. 4. The three graphs contributing to the ~2 terms
in the renormalization-group equations for dQ/dt, in
the case where the scalar fields belong to the antisym-
metric-tensor-plus-one-vector representation of O(N) .

Substituting back into Eq. (B10), we get

M„=-2 g (B;&B,~)M», i, j= 1, . . ., N. (B12)
a

Taking into account the antisymmetric nature of
M, we can work out the completeness relation,

With this relation, the summation in (B9) can be
worked out to give the coefficient of X,' in the
equation for d»».,jdt I.t is clear from this example
how the calculations are carried out. The case
of an antisymmetric representation of 0(N) can be
obtained from this example by setting all the cou-
pling constants containing scalars X„~4, X, equal
to zero. Now we give the results in all the other
cases.

2. Symmetric second-rank tensor
representation in 0(N)

The couplings are

~mt 2~»(4»»4»j) +~2(4»»4»akk»4»} »t

with P;, = Q, ; and g&»j»»»=0, and

-Z, = [s „—0,, g(A—
„»» 0„+A„»» 0»»}]

x [e 4»j g(Ata4'»'+A»»»4»»)]

Q &»»&»a=-'(6 «6»» —6»a6»}. (B13) The stability equations are given by

dX, 1 N(N+1), 2(2N +3N —6) 6(N'+6)
i~2+ ~ ~2 -~~g +9g

12&,A, + X,
' —6NX,g'+ ,'Ng'»—

3. m vector representations in 0(N)
I

and

We label these vector representations by p„
The couplings are given by

~jiig 8~i fi i + SPif 4i i j f
4=1

+ ~n f&4i

We have assumed that 2-, is invariant under any
reflection Q»- —»7»; to make the thing as simple
as possible. If we further impose the symmetry
that S. , is invariant under any interchange among

we can get the stability equations in
the form

, [(N+6)y'+(m —1)Np'+4(m —1)Pq+4(m —1)g —3(N - 1)g'X+ W (N- 1)],
dt 16m'

[2(N + 2 )p& +4»}p +N (m —2}p' + 2p' + 2 rp +4 (m —2)»)p —3(N —1)g 'p +»g ],
dt 16m'

[4y»}+2(m —2)»}a+4»}p+(N+2) »' —r3(N —1)g q+»»(N —2)g ],
dt 16n'

where X»=A. (i=1, . . . , m), p;, = p (i, j =1, . . . , m),
and q»» = q (i,j = 1, . .. , m).

4. Vector representation in SU(N)

We denote the complex vector representation by
P, (i= 1, 2, . . . , n), and its conjugate by g»

= (g;)* (i=1, . .. , N). The gauge particles are de-

noted by A „; (i, j = 1, . . . , n), with A „,= (A'„,)* and
Q»A'„; =0. Just as in O(N), the SU(N)-invariant
quartic and gauge couplings can be written down

by contracting all the indices:

-s, = —,'» (q'y, )',
2, =(»»„y'+ tgA'„, q')(e "y, —igA»»y, ) .

The stability equation is given by
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dP. 1, 3(N' —1), 3(N —1)(N'+ 2N - 2)

5. Two vector representations in SU(N)

We denote these two vector representations by, »j»» and li', . The quartic and gauge couplings are
=-'X (0' 0 )'+-'X (0"0'}'+X (»I'»j )(4"»)'"}+X (e"0 }(»j"0')+-'X [(0'0 )'+(0'0'}']

Z, =(s„y,+igA„, y,)(sj'»g-»A,"'y')+(s„y', +igA'„, j,'»)(s" j"»—»gA, 'y"),
where we have assumed that 2» has the symmetry»jl'--»j'.

The stability equations are given by

dA. , 1 . . . , 3(N' —1) ~ 3(N —1)(N +2N —2)(N+4)X, +NXi +2X~X~+X~ +X5 —
N &,g + .. gdg Sm'

ck, 1 . . . , 3(N' —1) 2 3(N —1)(N'+2N- 2)(N+4)X +2NXB'+2XiX~+X~ +X5 — Xmg + 2 gSm'

dx, 1
[(N+1)X, +A.,](A»+X,) +2X,'+X,'+X,'- Xg '+, g'3(N -1) 2 3(N +2)

dg Sn'

X,(X, +X,) +4X,X, +NX, '+ (N+2)X,' — X~'+ g'

dA. , 1
X,[(X,+X,)+4X, +2(N+1)X,]—3(N —1)

dg Sn'

6. m vector representations in SU(N)

These ~ sets of vector representations are denoted by g", P@, ... , g'"'.
The quartic and gauge couplings are

g»x (y»a)ice))2+»)) (lie)iyI»))(ys)»y0))+, ,

p (~(a)»y(b))(ye)»~(a)) g» [(~l'p)i~e)}2 (~»)))»~»»)}2]
a= a »2 »2 AQ

and

g —P (s»j»Q)» yigA' jyA) )( s»y»Q i)fgA»»»y(~)l!)
»2=1

where we have assumed the symmetry under any reflection»))e») --p";). Again, if we further assume the
interchange symmetries among these m vectors, the stability equations become

(N+4)X'+ (»n - 1)(N))'+ p'+o') + 2(m —1)))p —
N

))g'+ ~ g'dz 1 3(N' —1), 3(N —1)(N +2N —2)

dg 1
2(N + 1)X)}+ 2zp+ p' +o'+ 2))' +N(m —2))}'+ 2(»)» —2))}p— ))g'+ g'3(N —1), 3(N +2)

d] Sm'

dp 1
2&p Np+(N2+2)++»4))p )(+2»»}»p — pg + g

3N2 —1 2 3N —4

dg 1
cr 2X+4»)+2(N+1)p —

N
g'+())» —2)o

3 (N —1)
dg Sm'

7. One vector and one adjoint representations in SU(N)

We denote the vector representation by X; (i = 1, .. ., N) and the adjoint representation by g';

(i, j=1, .. . , Ã), with g'»=(j'}* a»Ind Q;p', =0. The quartic and gauge couplings are given by

-&I» = aX»(4»»j'») +&g(N»6fa0») +kX3(X Xi) + +~4(X X»)(4»g») + ~g(X»X )(44») y

2, = (s „X'+igA '„,.X')(s "X,- igA„'»X, ) + (s „g,'+ igA»r/r,
'

igA'»»I»,'}(s"—»j);' —igA»"'»j)'; + igA»"'g» ) .
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The stability equations are

dA. , 1 N'+7, 2(2N' —3) 6(N'+3)
+ A $A2 + ~ ~2 +NA4 + 2A4A5 6NAyg + 9g jd] Sm' 2

+ 6A yA2 + z As 6NA g ' + —g '
dg Sw'

dX, 1,N —1 2
N' —1 2 (N- 1)(N'+2N —2) 3(N —1), 3(N —1)(N +2N —2)

»it 6»»' ' 2 4 g

dA. 1 N'+1 2N -3 N' - 1 N'+3
df =6"

+A. A +2A. +ah. — A.~ +~3(3N' —1)

dA. , 1 N' —6 N —4 3(3N' —1)—- 2 As Al+ A2+A3+2A4+ As- g +4Ng

8. Antisymmetric tensor in SU(N)

We consider the antisymmetric tensor repre-
sentation of SU(N) for completeness (Th.e sym-
metric tensor representation was covered by
Ref. 13.) We denote the antisymmetric tensor rep-
resentation by g„(»,j= 1, . . . , n), with g;» = g»». -
Also, the conjugate fields P„are denoted $". The
quartic and gauge couplings are given by

-~
» =.~(& '0*»)'+ *&0"O'P-'4»

2, = (8 „$"+»gA'„» g»» +igA'„»y")

(s "4»» »g»t»"'0»—; »g&" 0;—»)

The stability equations are

dX 1 N(N —1}+6, N —1 q'

6(N+1)(N- 2), 3
N N

dq 1 I N —2 6(N+ 1)(N —2)
—, 4A.»}+ — — »lg'

12(N' —4N —16)
N

9. Contributions of various representations to S3(~)

Using the trick of introducing the transformation
matrix, as described above, we can calculate
easily the quantity S,(R), which is the contribution
of scalars to P(g) of the gauge coupling constant.
We tabulate the results and show them in Table III.

APPENDlX C

We shall illustrate, in a simple case, the pat-
tern of symmetry breaking via the Higgs mechan-
ism. We refer the reader to Ref. 19 for the de-
tails. One of the purposes of this exercise is to
emphasize that the form which vacuum expectation
values of the scalars can take in a given theory
is dictated by the structure of the Lagrangian and
cannot be set to some arbitrary values —a point
which is often overlooked in the various attempts
to construct gauge models of weak and electro-
magnetic interactions. Let us consider a gauge
theory based on the scalars belonging to the vector
representation of O(N). The corresponding clas-
sical potential V(Q) is given by

V(f) = —2P Q»Q»+ 4X(f»Q»}, X &0

TABLE III. Values of S3(R) of various groups and representations.

Representation S3(R) for O(N) S& (R ) for SU (N)

Vector

Adjoint

Antisymmetric 2nd-rank tensor

Symmetric 2nd-rank tensor

Totally symmetric 3rd-rank
tensor

Totally symmetric k th-rank
tensor

2(N -2)
2 (N —2)

—,'(N + 2)

4 (N + 1)(N +4)

(N+1)(N+2) ' ' (N+0 —2)
2(A' —1) 1

N

%(N —2)

2(N+2)

4(N +2) (N+3)

(N +2) (N +3) ~ ~ ~ (N +4 )
2 (A' —1)!
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and the coupling between gauge particles and

scalars is given by

Z, =-,'(s„4, g—A„„K)(a P, -gA„A, ), (C2)

where A„;,=-A», (i, j= 1, . . . , s) are the gauge
fields in 0(N). The vacuum expectation value of

&P,), is chosen to be that which gives the ab-
solute minimum for the potential V(P). To get
this minimum we can calculate its first deriva-
tives,

&V
=(-p'+X/&Q, )Q;=0, i=1, 2, .. . , N.

(C3}

The solution corresponding to the spontaneously
broken symmetry is given by

I yl'= e, y; = I"/». (G4)

Notice that the requirement of the minimum only
determines the length of the vector Q. This is
because the potential only depends on the length
of the vector Q. We can choose it to be of the form

4=(0, 0, "., o, V'/~). (G5)

All the other solutions are equivalent to this one
because they can be reached by 0(N) rotation.
The gauge particles obtain their masses through
the coupling given in (C2),

ag 'A „-(& &4 g}A,"a&Pa&

With the solution given in (C5), it is clear that

A„~„(f= 1, . . . , N —1) become massive, while

A„;q (i, j=1, . .. , N —1) remain massless, corre-
sponding to the generators of 0(N-1). The sym-
metry is broken from 0(N) to 0(N —1). An easy
way to understand this result is the observation
that the vacu" m expectation value &Q&) given in

(C5) is invariant under all the rotations leaving

the & axis unchanged, which is the subgroup
0(N —1). With this picture in mind, it is very
easy to get the results in the cases where there
are more than one vector representations. Con-

sider the case with two such vector representa-
tions, say P, and Q,. The 0(N)-invariant potential

can depend only on the length of each vector and

the angle between them, ( Q, [, ( P, (, and ) Q, .Q, [.
The solutions for the minimum fix up the magni-
tudes for these three variables. We can choose
the first vector with only the first component non-

zero, and the second vector with the first two

components nonzero in order to satisfy these con-
ditions. The symmetry is then reduced from 0(N)
to 0(N —2). We can generalize this argument to
any number of vector representations with the
results that 0(N) -0(N -m) for m sets of vector
representations. In particular, it takes (N —1)
sets of vectors to break the 0(N} symmetry com-
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We generalize the classical action-at-a-distance theory between point particles to include

one-dimensionally extended objects (strings) in space-time. We build parametrization-invariant couplings
which lead to equations of motion for strings in each others' influence. The direct coupling of the area
elements of the world sheets of the strings is considered in detail, from which we define an
antisymmetric adjunct field. We find that, for a given interaction, the nature of the forces depends on
the type of strings involved, that is, open- vs closed-ended. Our coupling can be understood in terms of
states appearing in the Veneziano and Shapiro-Virasoro models in 26 dimensions. However, we find an
additional massive pseudovector field which arises from the interaction between the "Reggeon" and
"Pomeron" sectors of this dual model.

I. INTRODUCTION

The dual resonance models, ' whose aim is a
self-contained description of the strong interac-
tions, have of late been understood in terms of a
strikingly simple and beautiful picture. On the
one hand, the states of motion of a one-dimension-
ally extended object (stringP with open ends are
identified with the mesonic resonances which me-
diate the strong interactions, ' while the "back-
ground" (Pomeron) is to be related to the states
of motion of strings which close on themselves.
On the other hand, Mandelstam has shown that
the Veneziano amplitudes can be obtained by break-
ing and joining open strings, thus completing the
description. It is therefore rather unfortunate
that such conceptual simplicity is spoiled by the
presence of tachyons, and long-range forces, all
in a 26-dimensional space-time. ' Still, these
problems appear only in the quantization proce-
dure, and do not subtract from the appeal of the

classical description. A difficulty in overcoming
these defects is that the strings have so far been
described in terms of their world sheets rather
than by the fields~associated with them. One may
hope therefore that the development of a more
powerful formalism might alleviate and perhaps
solve the aforesaid problems.

Nevertheless, at the classical level this remains
a very beautiful theory which does not make use
of a field description. In this light, it seems nat-
ural to try to understand Mandelstam's interaction
as being generated by direct interstring forces.
One already knows that Maxwell's theory can be
described in terms of such forces, as shown by
Feynman and Wheeler. ~ It is our aim in this paper
to generalize action-at-a-distance theories to in-
clude direct interstring interactions. As a first
step, we limit ourselves to a specific type of in-
teraction obtained by analogy to their work. Thus
we concern ourselves, in what follows, with a tiny
subset of all the possible direct interstring inter-


