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In extending the Miller-Good modified WKB approximation to include the higher-order terms, a
divergence was introduced. Because of this divergence, the approximation was limited to energies above
the potential barrier. With this divergence removed, the modified WKB method is no longer»mtted to
energies above the potential barrier. In order to demonstrate this method, we calculate the transmission
coefficients for energies below the peak of the potential barrier and show that the higher-order terms
are essential to the approximation.

I. INTRODUCTION

The conventional WKB approximation is widely
known for its usefulness in solving simple barrier-
penetration problems. However, as Ford et al.'
pointed out, the conventional WKB method tends to
break down as the energy approaches the potential-
barrier top.

Miller and Good' proposed a modified WKB meth-
od in which the solutions of a model Schr5dinger
equation that can be solved exactly and resembles
the actual Schr5dinger equation would be used as
the basis of the approximation. The reader is re-
ferred to their paper for details. However, the
modified WKB method was only utilized to zeroth
order in 52 because of divergences in the higher-
order terms. Using the method developed by Ln
and Measures to remove the divergences in the
higher-order terms, a divergence at the maximum
point of the potential barrier was introduced. This
divergence limits the approximation to energies
above the barrier top where there are no real
classical turning points, and hence there is no
maximum point on the path of integration. Using
the modified WEB method to first order in 5', we
calculated the transmission coefficients above the
potential barrier~ and obtained agreement with the

numerical results to at least four significant fig-
ures. This indicated how essential the higher-or--
der terms are to the approximation.

For the case of penetration below the potential
barrier, there are two classical turning points
and one maximum point lying between the turning
points. In order to remove the divergence at the
maximum point, we start with the basic contour
integral representation and then derive a formula
which can be applied to the case of "penetration
through the barrier. " In Sec. II, this formula is
derived in general terms. Using the Eckart poten-
tial as an example in Sec. ID, we calculate the
transmission coefficients for energies below the
barrier, and the results are shown to be in agree-
ment with the numerical results as presented in
Table I. Thus the barrier-penetration problem
can be solved using the modified WKB method with
excellent results even for energies near the toy
of the potential barrier.

II. METHOD OF APPROXIMATION

In general, we wish to solve the Schr5dinger
equation

d~+ ', g(x)=0
d' P,'(x)
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TABLE I. Transmission coefficients T for various
energies W: (a) modified WKB approximation to zeroth
prder in I', (b) modified WKB approximation to first
order in ~, (c) exact results. As mentioned in the text,
the transmission coefficients are for W& Wz, where
Wz =3.8 is the maximum of the potential barrier.

P,ds- — ', — ', ds

2P, 3P,

2.000
2.125
2.250
2.375
2.500
2.625
2.750
2.875
3.000
3.125
3.250
3.375
3.500
3.625

(a)

0.417 31x 10~
0.28143x10 ~

0.12130x10 4

0.426 27 x 10~
0.13204x10 '
0.37411x10 3

0.99029x10 '
0.24813x 10 2

0.005 934
0.013607
0.029 928
0.062 836
0.124 384
0.227 300

0.49264x10 ~

0.33222x10 ~

0.14320x10 4

0.503 21 x 10~
0.155 86x 10 3

0.441 61x 10 3

0.11688 x 10 2

0.292 79x10 2

0.006 998
0.016 024
0.035 141
0.073 347
0.143 612
0.257 753

(c)

0.48942x10 6

0.332 27 x 10 ~

0.143 26 x 10~
0.503 44 x 10
0.000 155
0.000418
0.001 169
0.002 929
0.007 001
0.016 031
0.035 157
0.073 379
0.143 670
0.257 842

where x„x2 and s„s, are the respective turning
points. The contour of the integrals is taken in a
clockwise direction around the turning points as
shown in Fig. 1. Using

I

Qdv= — vdg

Eq. (V) can be reduced to

2 2
2 ]P tI2t 1/2 t It 1/2

$1 2 2 2 2

t "'
1 1

12 tI2t 1/2 t rt 1/2
«1 1 1 1 1

for a given potential V(x), where

P,'(x)= f, (x)=2m[W-V(x)].

The cia,ssical turning points correspond to the con-
ditionP, (x,)=0, where x, is the fth turning point.

We now construct a model potential U(s} which
is qualitatively similar to V(x} and whose Schr'od-
inger equation can be solved exactly. Thus we
have

While the divergences at the turning points have
been removed, another divergence at t'=0 has
been introduced. Converting the contour integrals
to definite integrals, we obtain

J82 @2 82 t II2 t III
2 2P,ds+24 ",/, —,, /, ds

1 81 2 2 t t22

X2 g2 X2 t II2 t III

P dx+- l 1
1 24 tI2t 1/2 t It 1/2

X 1 1 1 1

d, + ', p(s)=0,

where

(3) (10}

with the understanding that t, '10 and t2'WO through-

P (s)= t, (s)=Z -U(s)

g(x)=[s'(x)] '~' gs(x)} . (5)

Substituting Eqs. (3) and (5) into Eq. (1), we obtain
to zeroth order in li' (see Ref. 2)

and E is a parameter to be determined. The turn-
ing points of the model potential correspond to
the condition P,(s,)=0, where s, is the fth turning
point of the model problem. Both the actual and
the model potential must have the same number of
turning points.

The solution to the Schrodinger equation of the
actual potential is given by

Xmax

")

f

Xp

Re

82 X2

P,(s)ds= Pi(x)dx
$1 1

and to first order inly' (see Ref. 3) FIG. 1. The contour of integration.
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out their ranges of integration (see Ref. 3 for de-
tails). For energies above the potential barrier,
there can be no real turning points, and hence

t, 'WO and t2'WO throughout their respective ranges
of integration, so that Eq. (10) can be used. In-
tegrating Eq. (9) by parts one more time using Eq.
(8) yields

lS2 I' t (jy) 4t /It t /I 3t I/3

I'2dS +24 t2, — » +,4
1/2 2 2 2 2

$1 2

«2 g2 t (n() 4t I/It
II 3t I/3

(11)

where the Roman numerals inside the bracket in-
dicate the number of times the function has been
differentiated. Now in a complex plane, one can
always choose a contour of integration such that

x or s is enclosed by the contour. However,

0&6,&x -x, ,

0 &62&X2-X

0 y1 S -S1,
0 &y2&~2 ~max ~

(12a)

(12b)

(12c)

(12d)

By converting the contour integrals in Eq. (11) to
definite integrals and subdividing the intervals
along the path of integration, we can isolate the
divergent integral. The integrals can be inte-
grated by parts so that Eq. (11) can be rewritten
as

the path of integration of the definite integral is
always on the real axis which passes through x-
or s . Therefore extreme care must be exer-
cised in converting the contour integrals to defin-
ite integrals. We arbitrarily choose the points
5„52 and y» y, such that

h &1 t~"& 4t "'t" 3t" g, 2 t~ ~ 4t t
2 ]Q /2 t/3 /4 2 ]Q t/2 t/3 /4 2 ]2 2

S1 S1 t t' t2 2 Smax+& 2 2 2

where
- ~«max+4 ] max+

1 ~ t1/2 1 dg
2 t 't 4 t 3/2

1 1 1 1 1 «max -~1

(13)

(14a)

t ttt tt/2 ]. t ~ max+~2 1 'max'&2 t2
'

tt2 tt3 2 2 t It1/2 4 t3/2
2 2 — & max Smax-11

(14b)

It is obvious that the method employed should be
independent of the choice of D„62 and y» y, . This
is true if all orders in I' are included, but even
to first order in 52 the dependence on the choice
of 5» 52 and y» y, is so small as to be considered
negligible. This will be shown to be true in Sec.
III using the Eckart potential as an example.

While Eq. (13) is not rigorously derived here,
we will see in Sec. III, using the Eckart potential
as an example, that we can obtain excellent agree-
ment with the numerical results even for energies
near the top of the barrier. The method of remov-
ing the divergence in the higher-order terms is
confirmed by the results shown in Table I. Thus
the penetration problem can be solved by the mod-
ified WKB approximation.

Using Eq. (13), the parameter E can be deter-
mined so that an approximation of the wave func-
tion to first order in/( is given by Eq. (5). The
transmission coefficient is then given by

where

transJ, (15)

and

d d
2m2 dg dg

X ~+oo
S ~+oo

[s'(x}] '/' gs(x}},

[s'(x)] ' 'gs(x)}.

III. APPLICATION TO THE ECKART POTENTIAL

The Eckart potential as demonstrated in Refs.
2 and 4 is given as

The normalization constants for the wave func-
tions are omitted since Eq. (15) only involves the
ratio of the wave functions.
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and

A-B
y, = exp(x, }=

(1Va)

V(x)=1.922e*(1+e") '+11.2e"(1+e*) '. (16)

The turning points are obtained from the condition

P1(x1) =0 so that

s,= iIEI'/'
for E&0

and Watson' for n= 2(+iE 1-) and z=W2se" /'. The
asymptotic representation for D„(z) can be found
in the appendix of Ref. 2. The turning points of
the model potential correspond to the condition
P, (s, )= 0 and are given by

A+B
y2= exp(x, )=

where

(1'fb)
and

s,= -2IEI'/' (19)

and

A= 13.122-2W,

B= (13.122-44.8W)' 2,

C =2 (W-1.922),

P, '(x) = t, (x)= 2[W- V(x)] .
The model potential is given by U(s)= -s' such

that P,'(s)= t, (s)=E+s' and the Schr6dinger equa-
tion for the model potential is

s,=+IEI'/'
for E&0. (20)

The case when E&0 corresponds to penetration
over the barrier, and the details can be found in
Ref. 4.

The first term on the left-hand side of Eq. (13)
can be integrated to give

1~t"'
P, (s)ds= (E+o'}'/ 2de= 2il EI w,

(18)

The exact solution P(s)=D„(z) is givenby Whittaker

and the sum of the higher-order terms on the left-
hand side of Eq. (13) is zero (see Appendix}. Thus
Eq. (13) becomes

max 1 g 4g g 3g-'IE
I
z= — [-P,'(x)]' "dx ——

12 gl3 tI4 1
1 1 + 1

( t )1/2d
I X 1 1 1

2 t1~' ~ 4t1 1 1 1/2
t,3 +,. (-,)

xmax+ ~2 1 1 1
(21)

where

g 1 t max+ ~2 1 max

1 tl2 ty3 1 1& 2 t I( t)1/2 4 ( t) /
max Illax

(22)

1
6,= 2(x -x,),

1
y, = 2(s,„-s,),

6,=-,'(x, -x „),
1

r2= 2(S2-S )

or

3(X1222 XI) 1 2 3( 2 IllSX) &

r1= ,'(s s,), —-r2= 3'(s2 s)-
The integrals on the right-hand side of Eq. (21)
were evaluated numerically using both sets of ar-
bitrarily chosen points in order to determine the
parameter E.

Equations (21) and (22) are obtained by multiplying
both sides of Eq. (13) by ibringin-g i inside the
square root of the integrand on the right-hand side.
The points 51 52 and y» y2 were arbitrarily chosen
to be as follows:

The transmission coefficient, using Eq. (15), be-
comes

T—(1+el zl2)-1

for both the zeroth- and the first-order approxima-
tion. However, E in Eq. (23) satisfies Eq. (6) to
zeroth order in K2 and Eq. (13) to first order in 52.

As previously stated, the method employed in
removing the divergence to obtain Eq. (13) should
be independent of the choice of 5» 52 Qxld y» y2.
This is true if all the higher-order terms of the
approximation are included. But even to first or-
der in 5', the dependence on the choice of 51 52
and y„y2 is so small that it can be considered neg-
ligible. For W=2.000, T=0.49264296x10-' using
6,= —', (x -x,) and 5,= —', (x,-x ), while at the same
energy &=0.49264288x10 ' using 5,=2(x -x,} and
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6,= a(x, -xr }. For W= 3.625, T=0.2577528943
using 6,= —,'(x -x,}and 6,=3(s,-x ), while at the
same energy T=0.2577528509 using 6,= s(x -g, )
and 5,= —,'(g, -x ).

The transmission coefficients obtained by the
zeroth- and the first-order approximation together
with the exact numerical results' are presented in

Table I. The excellent agreement between the
first-order approximation and the numerical re-
sults tends to confirm the method and indicates
how essential the higher orders are to the approxi-
mation.

where P,'=t, =s' IE-I

Since E= -IEI and t '=2s, t "=2, and t, "=t ""=0,
2 y 2 2 2

we label

Sg~ f gll3

S~- g der(o'-IEI)'~' —.
S1

0'
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APPENDIX

S2 gll3

Sg+f 2

(IEI-gm)stm

Here, we verify that the sum of the higher-order
terms in I' is exactly zero for the model part and

g
m A@2 t II q, Sg+f j g+f

g
1/2

gl2 gl3 2 2g 'g 't 4 t
2 2 2 2 -,Sg-( S -f 2

(E om)&/s

2o' 2o(IEI-o' )' r'
&

2 t (IEI -o'}'~'

-(IEI-")" l l s (IEI-t*)"
2(IEI -e')'" e IEI 2(' 2(IEI-I')' "

Here

, , t JIEI-4' l l l, ,g, IEI-&'
r, +r+r;-r (Izi-() 1~(rr((. r(+r((g(I ((zi-r )

r(/rr(r 2q
~

rr(/@)

=0

with s and f. being arbitrary as y, and y, given in text Excep.t for a proportionality constant, we see that

I,+I,+I, corresponds to the higher-order contribution in)f' to the model side of E(l. (13).
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