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ural in algebraic terms. They are the steps from
commutative * algebras to * algebras to algebras.

TA mark is an equivalence class of throws. A throw of a
line L is an ordered quadruple of points (P~P&P„P) on

L. See O. Veblen and J. W. Young [Projective Geometry
I (Ginn, Boston, Mass. , 1910), p. 157] for the opera-
tions of the ring of marks. A. N. Whitehead [Axioms
of Projective Geometry (Cambridge Tracts in Mathe-
matics and Mathematical Physics, Cambridge, 1906)]
rather anticipates q logic; for him, "Geometry is the
science of cross-classification. " And he meant pro-
jective geometry especially.

Cf. V. S. Varadarajan, Geometry of Quantum Theory
(Van Nostrand Rheinhold, New York, 1968). I have

adapted the standard term channel from J. N. Blatt and

V. F. Weisskopf [Theoretical Nuclear Physics (Wiley,
New York, 1952)], dropping purity but keeping idempo-
tence. Elsewhere channels and cochannels are called
states and tests, effectors and receptors, . . . .

A. H. Taub and J. W. Givens [Geometry of Complex

Domains (Princeton Univ. Press, Princeton, 1955)]
are a good source for projective concepts. Every pro-
jective concept is also an rq logical one.
Termed antipolarity in Ref. 9.
J. Schwinger, Particles, Sources and Fields (Addison-
Wesley, Reading, Mass. , 1970).
D. Finkelstein, G. Frye, and L. Susskind, following

paper, Phys. Rev. D 9, 2231 (1974).
~3T. D. Lee, Phys. Rev. Lett. 26, 801 (1971).
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The concept of a quantum dyn~~~cs is recapitulated. The Dirac equation is obtained from a
pure quantum dynamics as the limit of classical time. The theory is defective in projective
gauge invariance and semantic consistency, but illustrates the relation between dynamical

and experimental elements of q dynamics, and is finite, Lorentz-invariant, and local.

I. INTRODUCTION

In this work we recapitulate the present status
of pure quantum (q) mechanics' (Sec. II) and show

how the Dirac equation may be obtained as the
mixed cq theory resulting from a q mechanics in

the limit of classical time (Sec. III). The proce-
dure is marred by a certain arbitrariness dis-
cussed in Sec. IV but provides a guide toward a
fuller q dynamics with interactions.

The formulation of mechanics that emerges from
these mathematical models is stable under the
transition from classical mechanics to quantum
mechanics and provides a plausible successor for
quantum mechanics. It implies the following con-
ception of the world:

(I) Both the classical space-time continuum and

quantized fields are semimacroscopic statistical
contructs, part of the surface structure of the
world manifested in processes that are long com-
pared to an elementary time ~.

(2}The deep structure contains neither space-
time nor fields. The microscopic world is a dis-
crete complex of discrete binary entities, elemen-
tary quantum processes. Such a world is not ple-

num but plexus, obeying Mach's principle in the
strongest possible form: There is no space between
matter, no spatial relations without interaction.

(3) The dynamical law is not a differential equa-
tion but one stator ~D) constructed by finite alge-
braic operations and yielding the Feynman ampli-
tude in the appropriate limit 7 -0. The amplitude
for any process E is the inner product of ~D) with
a costator )E~.

(4} Particles are recognized by discrete chromo-
somelike patterns of elementary process. For ex-
ample a most simple ~D) involving only a line com-
plex (processes in simple series) gives rise to the
Minkowski space-time and the proper-time Dirac
equation for the electron as r-0, while a double
strand is similarly related to Maxwell's equation
and the photon.

II. q DYNAMICS

The basic entity is the q process. We start from
a primitive q process or monad X. (Here X is only

the same of a quantum, not an algebraic quantity
of some sort. ) Like any quantum, X is associated
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with a linear space L(g), subspaces of which ideally
represent g channels, ways of precontrolling a X.

y stators, vectors of L(g), are written as
~ ) or

(- ~. The interior arrows are used when it is nec-
essary to tell stators ~-) in L(y) from complex
conjugate stators [-& in the complex conjugate
space I.c(y). Costators, vectors of the dual space
L, (X) =- L,(g ), are written ) - ~

or
~
-(. Contraction

of a stator [& and a costator ) ( is written )& ). Sub-
spaces of the dual space ideally represent X co-
channels, ways of postcontrolling a g. At present
we foresee operational meaning only for highly

composite assemblages of g's, processes we ean
actually, and not merely ideally, control.

The spaces L(y) and Lr(g) represent the class
logic of the monad X. We keep the theory Lorentz-
invariant by keeping the y logic Lorentz-invariant.
Only the subspaces of L(y), the subspaces of
Lr(y), the inclusion relations within L(}j), the in-
clusion relations within I.r(X}, and the orthogonal-
ity relations

~ ) - ~

=0 between L(g) and Lr(x} are
given meaning. If the stators ~A& of a channel A

are orthogonal to the costators )B
~
of a cochannel

B, ~
A&B

~
=0, a process from channel A will never

pass cochannel B. For Lorentz invariance L(y) is
taken to be two-dimensional. The invariance group
of the logic is then the antiprojective group on two

complex homogeneous variables, AP(2, C), isomor-
phic to the Lorentz group. We write 5 for this g.

An assembly or product of ~ elementary pro-
cesses or 5's is called an n-ad: monad,
dyad y ~ . ~

The general process z is a q'assembly of 2's
with a further element of structure, a causal or
chronological order C. As a q assembly, the pro-
cess g is constructed from the monad 2 by alge-
braic procedures of quantification or second quan-
tization familiar from many-body theory. Thus g,
too, is represented in a linear space, L,(v}, whose
stators are tensors of arbitrary rank over L,(5).
The chronological order Q among the monads of
g is represented by a partial order C of the indices
of the tensors in L(v), and we suppose L,{n) pro-
vided with this structure. This partial order can
be graphically represented by a network or 1-com-
plex on whose 1-cells are placed the indices of the
g stators. Such a network of chronologically or-
dered processes we call a plexus; the ordered
tensors which are its stators we call plexors.
Plexors play the part in q mechanics that Feynman
path amplitudes do in eq.

The physical theory is given by the plexor space
L(v) (kinematics), a projection )D(D) in L(v) (dy-
namics), and rules for associating with various
experiments or environments E projections )E~E)
in I. (v) (semantics). The physical results of the
theory are all expressible in terms of amplitudes

~D)E~ whose vanishing means the experiment )E)
invariably gives a null result according to the dy-
namics ~D).

With an appropriate choice for the linear space
of stators

~ -)1 L,(r}y )D(D}, and )E
~
E) this for-

malism reproduces the Hamiltonian dynamics of
ordinary (cq) quantum mechanics. With another

choice, it reproduces the Feynman-amplitude the-
ory for relativistic particle processes. These the-
ories use a classical background space-time. We
do not.

III. THE DIRAC EQUATION

A. The Simplest Dynamics

Let ) -) designate the unit operator on L,(}j). The
simplest (D), whatever the monad X may be, is a
linearly ordered product of unit operators or ten-
sors,

ID ) = e »-»- ~ ~ »-

where the chronological order is that of the ar-
rows, the ellipsis indicates that the number of
factors o is arbitrary, and the is a direct sum
over o =0, I, 2, . . . . This ~D) can be thought of as
describing a process consisting of successive pro-
cesses y~ and g, with a perfect correlation between
each y and its chronologically following X. Each
unit tensor & -) is a singlet stator for a pry pair.
The complex of this plexor is a single line of v
segments, representing the linear chronological
order of these processes. Each term in this ~D)

can be regarded as a special product, the sequen-
tial product Q, of its factors & -):

~D.) = g Q»- '.
aM n=l

The sequential product ~A) Q~B) of two plexors
(A), ~B) is formed when )A) and [B) are linear by
(I) connecting the final segment of )A) to the initial
of ~B) to get the product complex and (2) forming
the direct product of the tensors (A) and ~B) to get
the product tensor.

If (A) and (B) are not linear but branching, there
may be more than one final segment of ~A), more
than one initial segment of (B). If a universal def-
inition of Q is desired, it seems natural to sum
over all possible connections of final segments of
(A) and initial segments of ~B). When we consider
a branching )D)„dynamics of interaction and pro-
duction processes, we shall make )D) skew-sym-
metric in its initial channels and also in its final
to ensure the spin-statistics connection, following
Feynman.
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8. Outer and Inner Products and Sums: A Lemma C. Coordinates

Let a and 5 belong to an algebra A. We distin-
guish between two familiar kinds of operations up-
on a and 5 as inner and Oute~. The inner + and x
are the ordinary operations in the algebra A. To
carry out an outer operation we create a new alge-
bra A', a replica of A, take the replica 5' in A' of
5 in A, and form a direct sum or product of a and
5'. The sequential and parallel products Q and
are outer products.

lD, ) converts outer products into inner.
Indeed let }Al be the sequential product of &r —1

factors &1», 2», . . . , o —1) and lD, ) be the sequen-
tial product of o ) -)'s:

&2& ") o-I&

ID) = »- »- ~ ~ ~

We have aligned lD, ) with )Al vertically to bring
together those dual channels or indices that are to
be mated when we form their contraction, which
we shall write tr )AlD, ). This contraction is a
plexor of the form )a) since only two channels re-
main unmated, the costator ) l

at the left end and
the stator l) at the right.

Lemma.

tr )AlD. ) =&o& =»& 2»"o- »
is the inner product of the factors ) I), . . . , )o -1)
that appear in the outer product )Al.

Since an outer product of quantities infinitesi-
mally close to 1 leads to an outer sum of infinitesi-
mals, lDO) also converts outer sums into inner.

Indeed, with lD, ) and )Al as above, let us define
algebraic operations +, x upon )Al's permitting us
to form an exponential exp)Al. For + we take the
+ of the linear space of )Al's. For x we take

() 1&0 8&&&)x(& I'& ' ' ' 0)&'&}

-=()1) I'&)0 8 ()o&o') } ~ (2)

Here ) 1) 1') is an inner product of two quantities
(operators) )1) and)1'). The product xbrings to-
gether quantities associated with the same time
and lets quantities at different times commute. It
is a kind of outer product.

Let then )Al and }al be the outer and the inner
sum of the same sequence of operators. (Some
factors of the unit operator ) -) are left implicit. )
Using the outer x and inner product we define two
exponentials expA and expa. The lemma for this
0

trlD, ) expAl =expa .
This is an immediate consequence of (1).

To form experimental stators lE) we use polyadic
plexors g )p) which are sums of many dyad plexors
&p&. Let

}g&p)I=- &p»-»" -)
+)-) )p) ''')-)+''
+)-»-»"p&

=»- &-) ~ ~ 0

where the vertical ahgnment of channels of D, and

Q )p) in this expression tells how the channels
mate in contractions like tr }g)p) lD, ). It is im-
portant that the )El factors )p) fall between and
connect different lD, }factors ) -).

Suppose that space-time coox dinates of a process
g are defined by

over a suitable region g of k„space. In this, the
exponentials are to be computed in an algebra using
the outer product x of Eq. (2).

We do not extend the 4 integral over all of A

space. The operators y& have integer spectrum.
In the c limit where the commutators of the y" are
neglected, the k translations k - k 2w+rtl/eave the
exponentials unchanged. To make an irredundant
orthonormal set of exponentials a suitable subset
K of 0 space, a kind of unit cell, is supposed to be
sufficient.

There are many problems connected with this
definition. They will be taken up in Sec. 1V.

The coordinates x" were one dyad shorter than
the dynamical stator lD, ) Their exponen. tials
have the same plexus, are also shorter than lD,).
The spin stators )al and lP& bring )El up to the
same length as lD, ). The mating lD, )El is then a
well-defined complex number. It is useful to work

using the above P operation on four Dirac y ma-
trices. Then an experimental stator describing
a process of destruction with spinor stator )al and
a process of creation with spinor stator

l p& sepa-
rated by a space-time interval y~ is

)E 8(y")l =&o. l&,(»" y')lP& -.

Since the four-coordinates x" do not commute,
there is no well-defined 5 function that can be used
in this definition; the functional calculus fails. We
define the smeared delta function 5, arbitrarily by
a Fourier integral

().(xx —X")= f xxp(Xx(xx -Xx)d'1/(Rx)'
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with Fourier-transformed )E 8(k)~ and }E(k)~ de-
fined by

position of a negative electron traveling one way
and a positive electron traveling the other way.

)E(k) ~
=exp, fk„y",

)E~~(k) (
= I )E(k)

~
I 8,

where 1 and 18 are unit spinors. '
Then the amplitude a = IDO)E(k) I may be computed

a = ~D,)exp, ik„y"

= ~D, )exp, ik„x~ .

Since x" is an outer sum (I) is applicable and

yields

a =expik„yQv,

where n, the number of y"'s in the outer sum de-.

fining x, is an operator in its own right. Here
an outer sum has become an inner in accord with

(3) and all. n terms in the inner sum are the same.
This amplitude a obeys the Dirac equation in the

proper-time form'

0 y" +i —a=0,
ds

where s = n7. This propagator can be used to
determine the space-time geometry, either as a
causal space or a Minkowski pseudometrie space.
In this way we arrive at a statistical geometry
from the q dynamics ~D,)

This dynamics comes from the electron model
of Ref. 1 as follows: The four-component Dirac
spinor g~ is the stator of an entity X related to the
processes given in Ref. 1 by

IV. MAXWELL'S EQUATION

It is well known that Maxwell's equations for the
electromagnetic field E„„eanbe written, with a
tensor-class spinor g =y""+„,and the usual dif-
ferential operator 8 =@~8„,as 8+=0.~ The tech-
niques of See. III, applied to the double-stranded
plexor, y, of Fig. 4 (Ref. I), yield a proper-time
propagator satisfying as 7 -0

8 '5'+i8 E=0,
the dot product of toro Dirac operators being half
their anticommutator when one is of vector class
and one tensor, as here. The linear space of solu-
tions of this proper-time equation contains a sub-
spaee obeying the transformation law and differ-
ential equations of the free-space electromagnetic
field, namely, the subspace of those E's of tensor
class satisfying the missing Maxwell equation Bh, g
=0 and e,/=0.

It would be good to extract the photon process
from the full dynamics before taking the limit v 0.
However, the problem of dissecting a family of pro-
cesses into its stationary parts, crucial for the
theory of elementary-particle processes, has not

yet been well posed for ~&0, where there is no
Hamiltonian to diagonalize.

V. THE PROBLEMS

This development of the Dirac equation raises
the following questions, among others.

The new element added in this paper is the for-
mula (4)for the space-time coordinates of a process.
It is easy to motivate this: (4) is the obvious spe-
cial relativistic modification of the formula

and the unit operator ) -) of the present work is
the sum of unit operators of g and H:

where vertically aligned angular brackets abutt the
same point of the plexus. The terms in this sum
agree in the direction of electric current, not the
current defined by the brackets. Then the present

)-» -&

e
~ ~ +

is the sum of the e dynamics of diagram e of Fig.
4 (Ref. I}and its Hermitian conjugate, a super-

of the SU(2, Q) theory we began from. It would be
easy to axiomatize (4) group theoretically. But
these are arguments from ignorance. Coordinates
have an operational meaning. Two objects have
the same coordinates when they interact. An ex-
pression for coordinates is meaningful in g dy-
namics as a limitation upon the interactions of the
theory, for both coordinates and interactions lead
to concepts of locality and these two concepts of
locality must be consistent with each other. (4)
must emerge only as an approximation from a
more exact theory with interactions.

The expression (4) for the coordinates is a sum
(over dyads) of stators. This sum is not a concept
of projective geometry. Only the ray of a stator
is supposed to have meaning. One ray may be
represented by any of its vectors. The choice of
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a vector to represent a ray we will call the pro-
jective gauge. Our starting point is a theory with

projective gauge invariance. What has destroyed
this invariance? Some physical entity has been
left out of our picture.

The operator y& is a geometric object under
SL(2, C) but not under GL(2, C), which splits y" in-
to a sum of two geometric objects of different
weight:

y" = 2(1+F5)y" + z(1 —fy~)y" .
This means another symmetry of the theory is
broken by the environment ~E(, another physical
entity has been left out.

Part of what we left out is gravity, space-time
curvature. In adding vectors y" from each monad

pair we establish a connection between directions
at two nearby space-time events, the job ordi-
narily filled by the affine connection of the gravi-
tational field.

The operational bases of these concepts of quan-
tum theory and general relativity are not present
in the dynamics ~D, ) we have employed. Both
space-time curvature and transition probability,
both (Riemannian) pseudometric and (Hilbert)
metric are inaccessible in a world without inter-
action. Curvature can be detected only in loops,
and there is no loop in our jD) plexus. Transition
probability cannot be measured without channels
and counters, and these require interactions for
their construction. Thus the present theory fails
the test of semantic consistency put forward by
Weizsacker: It fails to describe the means by
which we can know the entities of the theory. The
true ~D) must have more complicated topology than
the linear ~DO) we have used here. Loops and in-
teractions are both forms of nonlinear topology in
plexus dynamics. The missing concepts must be
given operational meaning in terms of such topo-
logical structure.

In such works as Snyder, ' Yang, ' and Weiz-
sacker, the c space-time continuum is the c limit
of a q system, at least insofar as abstract geo-
metry is concerned. One problem has been how

to go from geometry to dynamics when the local
action methods of cq physics are gone. It has not
been clear what should be meant by the passing of

time when time is a q coordinate.
The present work inverts the problem. We give

up the practice, common to c and cq physics, of
building a dynamics over a given space-time, and
build space-time over a given dynamics instead.
This tests a different philosophy of time and mat-
ter, taking as primary not object systems and
space-time points, but dynamical processes. The
relation

gives the increment in space-time coordinates for
a general process in terms of q coordinates of ele-
mentary processes. We find that for dynamical
calculations the differential and integral calculus
may be replaced by the plexor calculus. The c
space-time arises as the c limit of a discrete q
system for dynamics as well as for geometry. The
Feynman amplitude of cq physics and the action of
c physics are successive limiting cases of our dy-
namical stator. We show how to go from such a
discrete mechanics to the continuum laws of Dirac
and Maxwell as r-0.

The actual computation of cross sections raises
problems we have solved here. It requires ex-
pressions not so much for geometrical quantities
like Ax but for the conjugate dynamical ones like
energy-momentum. We have given suitable ex-
pressions. They are not unique or exact. Accord-
ing to q dynamics the quantities themselves are
ambiguous, approximate until the limit of c time
is taken.

Thus we are now ready for trial calculations of
cross sections connected with either phenomeno-
logical or fundamental q dynamical theories.
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