
PHYSICAL REVIEW D VOLUME 9, NUMBER 8

Space-time code. IV

15 APRIL 1974

David Finkelstein~

Belfer Graduate School of'Science, Yeshiva University, ¹wYork, New York 10033

(Received 16 November 1972}

A successor to quantum mechanics is studied. It extends atomism from matter to physical process and

unites certain quantum and relativity principles with stricter finiteness, operationality, and locality. A

specific kinematics is given. In it particle processes are discrete networks of elementary quantum

processes, monads, of a binary nonunitary kind with specific laws of combination. The general dynamics

and several examples are given. The dynamical law is not differential but algebraic. The interpretation

involves a small constant time r. Familiar space-time and field-theory concepts, the Hilbert-space

metric, and the Riemamiian pseudometric emerge in the approximation v 0, and are semimicroscopic

statistical objects. Microscopic Lorentz invariance survives and implies four monads mating two by two.

Operationally nonlocal concepts such as energy-momentum, gauge fields, and coordinates are absent

from the microscopic theory. In the simplest model all elementary proces!es transfer both charge and

spin, the familiar neutrality of the long-range fields being an average one analogous to that of an

electrolyte. e, y, and v codes with correct laws of transformation and propagation are suggested.

Electromagnetic, gravitational, weak, and strong interactions are considered within this framework. A

heuristic argument estimates r - k/40 GeV. The form of the theory has been determined by internal

qualitative requirements and has not been subjected to external quantitative test. The developments

needed for this are mentioned.

I. INTRODUCTION

The central hypothesis of this study is that a
physical process is a finite network of finite ele-
mentary processes. This extension of atomism
from matter to process makes necessary the de-
velopment of a statistical geometry, in which the

classical (c) space-time continuum emerges as a
semimicroscopic statistical construct from a
deeper quantum (q) structure. A step forward in

the present study is the resolution of the contra-
diction between the noncompact Lorentz group of

relativity and the compact unitary group of any

finite q entity, and the formulation of a finite rel-
ativistic q mechanics in operational terms.

This attempt at theory making is guided by pro-
cess ideas, locality, and simplicity.

(1) The process ideas include:

(a) The primitive entities of the physical world

are not physical objects but physical operations,
processes.

(b) Observational operations we actually do

should be represented by the theoxy in their actual
relations.

(c) Intrinsically impossible operations are ex-
cluded from the deep structure of the theory (oper-
ational lty) .

(2) By locality I mean that the law of nature re-
lates each event only to those in its immediate
causal neighborhood (Einstein).

(3) An operationally defined entity determined

by operations restricted to the immediate causal
neighborhood of an event I call local; all others
nonlocal. The deep structure of present physical

theories contains many nonlocal elements, entities
whose operational determination reaches out for
lar ge distances: Energy -momeefum requires a
large periodic structure, such as a diffraction
grating. A gauge field, such as the electromag-
netic potential, requires measurements of the
effect of transport over large paths through such

instruments as flux loops or electron interferom-
eters. Space-time coordinates are gauge variables
in general relativity and indeed require large
space-time frameworks. It is the practice to per-
mit such entities in the deep structure neverthe-
less and to seek a kind of locality by means of

gauge invariance. This invariance makes the non-

invariant entities intrinsically unobservable and

violates oper ationality [paragraph 1(c)] .' The

world might be that way, but the trend of physics
inclines me to study the alternative that the law of
nature admits a simple local formulation.

(4) Operationality leads one to interpret a
state vector not as a probability amplitude, the

probability of a single event not being an opera-
tional concept, but as a description of a process
of preparation or detection (Sec. III).

(5) Operationality makes space-time geometry
emergent from an underlying dynamics. The oper-
ational dependence of geometry on dynamics was
recognized in the discovery of special relativity
but never implemented, for until now successful
theories have had an inverted or at best a sand-
wich structure, with the observed geometry aris-
ing out of a deeper dynamical structure itself rest-
ing on an unobserved still deeper geometry. Such

a deeper geometry violates operationality as well
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as making for the well-known infinities 2 Here I
take process itself as primitive entity (Sec. IV)
and space-time as statistical, emergent.

(6) This q mechanics, like c and cq before it,
consists of kinematics, the formal theory of the
general process (Sec. V); dynamics, the formal
theory of the natural process (Sec. VII}; and se-
mantics, the assignment of meanings to the formal
descriptions (Sec. VI). As in cq mechanics the
general process factors into subprocesses of crea-
tion-destruction, propagation, and interaction,
respectively described by diagrams with 2, 2, and
3 or more external lines. In cq mechanics there
are elementary processes, processes of zero
duration, with 2, 3, 4, ... lines, incorporating
the atomic hypothesis, but processes with 2 lines
are indefinitely decomposable and have continu-
ously variable duration. In q mechanics all pro-
cesses are constructed by finite quantum logical
techniques from elementary quantum processes'
of creation alone as networks4 described by plex-
ors.

(I) I have committed a violation of Lorentz in-
variance at the microscopic level until now, ' a
more serious objection to a theory than a violation
of translational invariance. The linear space of
stators for the elementary creation process was
taken to be finite-dimensional for the sake of fi-
niteness itself, and there is no finite-dimensional
unitary representation of the Lorentz group. This
clash of symmetries is like that between the Gali-
lean and Lorentz groups: the unitary of q logic
versus the Lorentz of relativity. In Sec. III the
operational meaning of a nonunitary q logic is
worked out. The elementary dynamical process
is chosen to be an entity described by a nonunitary
relativistic q logic from the start. '

(8) Increasing the symmetry group from U(2, C)
to GL(2, C) makes it easier to assign meanings to
operators, doubles the number of basic represen-
tations, and gives a natural description of electro-
magnetic and gravitational processes as aspects
of one nonintegrabl, e transport. There is also a
possibility opened by this framework that every
elementary process transfers both charge and
spin (the neutrality of the electromagnetic and
gravitational fields emerging only for distances
»7; and neutral spinor and charged vector pro-
cesses making use of a kind of composition that
exists in a network theory). This leads to a heu-
ristic estimate for the size of the quantum time
7.-h/40 GeV. The framework suggests simple
microscopic structures for e, y, and v processes.
The proper time cq Dirac equation in a statistical
geometry has been derived for the e code, and a
proper-time Maxwell equation for the y. The code
for an electrodynamic interaction suggests itself

immediately, and has to be shown to yield e quan-
tum electrodynamics for r-0.

II. PRINCIPLES OF A q MECHANICS

The mechanics developed here retains the fol-
lowing elements of relativity:

(9) a single relativistic entity, an elementary
process (event}, relativistic in that the invariance
group of its logic is the Lorentz group; and

(10) the causal or chronological connection of
such processes, represented by the incidence re-
lation of an algebraic topological complex formed
of elementary processes (locality [paragraphs (2}
and (3)) is assumed), and retains the following
elements of cq mechanics:

(11) quantum logic, using a complex linear
space to describe processes and the logical rela-
tions between them, and

(12) coherence, in the sense that this linear
space is not a reducible or incoherent direct sum.

And I add a principle of process atomism:
(13) Every physical process is a finite com-

bination of finite elementary processes, gonads. '
(14) All of relativity that depends on the con-

tinuum nature of space-time and all of quantum
logic that depends on an absolute unitary structure
is dropped.

III. RELATIVISTIC QUANTUM LOGK

(15) It has not been easy to bring relativity and
quantum principles together because there is not
a clear-eut contradiction between them. No re-
action takes place between the two world pictures
like that between Newtonian mechanics and Max-
wellian electromagnetism. Infinities are not
enough.

The reaction is catalyzed by a suitable third
principle. There is a clear contradiction [see
paragraph (7)] between the three principles (Q}
that physical processes obey unitary logic, (8)
that the elementary process is relativistically
(Lorentz-) invariant [see paragraph (9)], and (F)
finitism [see paragraph (13)]. One of these must
be given uy, usually E.

(16} I give up part of Q, the absolute metric of
the linear space of stators (state vectors) of quan-
tum mechanics, and with it unitarity, the require-
ment that invariance transformations be unitary or
antiunitary operators. The invariance group is
now the nonsingular linear or antilinear trans-
formations of the space of stators or the projec-
tive group. The generalized quantum logic I call
relativistic quantum (rq) logic, referring at first
to the relativity of the Hilbert-space metric, but
soon to the relativity of time [paragraph (42}]. I
formulate rq logic here in parallel with the usual
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unitary quantum (uq) logic, in order to apply it
to elementary processes in Secs. V-VII.

(17) In both uq and rq logic I take as primitive
the operational ideas of channel

I },a process taking
in signals from us and producing certain entities,
and cochannel ) I, a process taking in such entities
and putting out signals to us. The symbols

I 1),
)2I may be written in any direction; I1) =(1I, )2I
= I2(, etc.

(18) The duality between channel and cochannel
is represented by the familiar categorical duality
of mathematics for which we use the prefix co:
domain and codomain, vector and covector, rank
and corank of a tensor, and so forth. Channel and
cochannel together take the place of the single c
logical, self-dual concept of class.

(19) A pair I1), )2 I of a channel and a cochannel
is called a transition.

(20) The signals of relativistic channels are
binary, on or off. Those of unitary channels are
numbers called counts regarded as controlling the
number of systems put out and in. The difference
is that between a galvanometer and an ammeter: rq
channels permit only the primitive null judgment
I1) L)2 I, no system from I1) passes )2I, I1) ex-
cludes )2 I. uq channels admit also the less prim-
itive universal judgment I1) C:)2I, all systems
from

I 1}pass }2I, I1) is included in )2 I, which re-
quires comparing the counts of I1}and )2 I through
some auxiliary physical link called the counting
channel in distinction to the system channels.
Transitions [paragraph (19)] of those two kinds are
called forbidden and compulsory. Table I shows
the domains and relations I define. For example,
we can speak of a channel either excluding or in-
cluding another in uq logic, but only inclusion is
defined between channels in rq logic. In a clear
sense rq logic has half the structure of uq. Oper-
ationally it is more primitive to judge a transition
forbidden than compulsory. rq logic is the logic
of the forbidden alone. (What is not forbidden is
allotued. )

The exclusion relation & is a form of the Sheffer
stroke of c logic.

(21) The exclusion relation between dual chan-
nels defines inclusion relations between similar
channels:

11}C:I2}-=I» aII )3I, I2)&)31 unplies I1} )3I

)1IC}2I= for all I3), I3)&)2I implies I3)&)1I;

and dualities, inclusion-reversing 1-1 maps )g
and (-) transforming channels into cochannels and
back:

TABLE I. Domains and relations in rq and in uq logic.
For instance the first entry shows that rq channels obey a
logic without negation, a well-known idea of Indian logic.

Channels Transitions Cochannels

rq
uq

C
C, z

J
C

= for all )3I, I1)&)3I if and only if }3Ic)2I~
(-)2l=(ll

=- for all I3), I3)z)2I if and only if I1)&)3I.

Simply put, I l}g is the greatest cochannel ex-
cluding Il); (-)2I is the greatest channel excluded
by )21.

The axioms of rq logic are:
(22) The channels with the partial ordering by

inclusion [paragraph (21)] form an abstract finite-
dimensional projective geometry, the cochannels
its dual geometry, and the dualities are inverses:
(-}g=(1( the identity map. The coefficient rings
of these geometries are the complex numbers C.
Here the coefficient ring of a projective geometry
is its von Staudt division ring of marks. '

(23) The operational meanings of the axioms of
paragraph (22) are known. It follows' there is an
essentially unique complex linear space L whose
projective geometry is the projective geometry of
channels. I call vectors of L stators. Each non-
zero stator represents a pure or singlet channel.
General channels are subspaces in L, cochannels
are subspaces in the dual space L . A stator will
be written (g ) or I) or (I, a costator (g ) or ) I

or I (. There is no natural map between stators
and costators in rq logic. The exclusion I 1) L)2I
holds if and only if every stator

I 1) in I1) nulli-
fies ) 2 I: I 1) 2

I
= 0.

(24) All rq logical relations are invariant under
the linear group GL(L} and complex conjugation,
which generate the anti linear group AL(L).

(25} A classify''cation of an rq entity is a set of
channels whose join, in the sense of the projective
geometry, is the identity channel I and whose pair-
wise meets are all the null channel 8. A coordinate
Z is a classification with distinct complex numbers
z& assigned as labels to its channels. In rq logic
each coordinate Z has a unique linear operator
(Z( such that (Z( I

= ( I z holds just for ( I in the z
channel. The (Z('s are the diagonalizable oper-
ators. A classification assigning only the two com-
plex numbers 0, i is called a class and has a pro-

jection, a coordinate (Z( with (Z(Z(=(Z(. Co-
classes are defined dually but are naturally iso-
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FIG. 1. Creators of quanta in a sequence, a diagonal

sequence, and a set (Maxwell-Boltzmann, Bose-Einstein,
and Fermi-Dirac ensemble) demonstrating their relativ-
istic invariance. The wave indicates symmetrization,
the stroke skew-symmetrization. Each arrow designates
a unit tensor. See B. Penrose, Ref. 4. The creator is
a three-channel tensor. One channel gives the quantum

being-created, one the n quanta acted upon, one the
n + 1 quanta resulting.

morphic to classes.
In rq logic the same channel therefore occurs

with many classes differing in the choice of com-
plementary channel, while in uq logic there is a
unique class for every channel.

(26) Any linear operator that generates an al-
gebra containing no nilpotents (roots of 0) is di-
agonalizable and is hence a coordinate. Every
projection is diagonalizable and defines a class.
These are well known.

(27) Those concepts of uq logic which are purely
linear, nonmetric, are also relativistic. One re-
quiring mention is the creator-destroyer formal-
ism. For the Maxwell-Boltzmann ensemble or
sequence' seq8, the stator space segL =Q„L" is
the line~ space of Fock stators

(We let the sum over n range indefinitely, not
specifying the upper limit here. Each physical
process provides its own finite upper limit for n}.
If [) is any stator of L, there is an obvious defini-
tion of [& [s) = [5), defining thus for each [& a lin-
ear operator called the [ & creator formed from

[ & with a three-index tensor (Fig. 1}. Dually any
costator & [ defines a ) [ destroyer formed with
the three-index tensor of Fig. 2. The creators
and destroyers obey the identity of Fig. 3. Since
only unit tensors occur in these figures, they are
relativistic.

The modifications of this for the Bose-Einstein
ensemble diaS and the Fermi-Dirac ensemble set
S are routine. ' Instead of the product, the com-
mutator or anticommutator of Fig. 3 gives i.

Thus, the usual appearance of Hermitian con-
jugation in the Bose-Einstein or Fermi-Dirae com-
mutation relations is spurious and unnecessary.
One may use instead the more basic relativistic
concept of the destroyers dual to a basis of cre-
ators.

The rq logic reduces to uq in the presence of an
inclusion relation C' between channels and cochan-

FIG. 2. Destroyers corresponding to Fig. 1. The
relativistic invariance is indicated by the absence of
any metric.

1) J~

I
s

y )

I

I

I
e

~ ~le
I ~

I
I

FIG. 3. Algebraic relation between creator and

destroyer. The dashed line either blank, wavy, or
straight and the coefficient e is 0, +1, -1 for sequence,
diagonal sequence, set, respectively. Note the relativis-
tic invariance of these relations as well, which involve

only unit tensors.

nels or, equivalently, one exclusion relation & be-
tween channels and one bebveen cochannels. The

ug logic adds to paragraph (22) the axiom:
(28} An exclusion relation & between channels

is given defining an orthocomplemented projective
geometry.

It is knowne that such a ~ is always representable
by a Hermitian conjugation, ' a nonsingular anti-
linear operator from stators or costators, h:

Q"-/~=kgb|[ =(hg )„,
where P = (tj ) is the complex conjugate stator of

P = (g ). (The dot notation of van der Waerden ex-
tends from special linear tensors in two complex
dimensions to general linear tensors in e complex
dimensions in an obvious way. ) The stators g and
~c belong to different spaces L and J~. Ne may
make h&g a positive-definite Hermitian symmetric
form or metric merely by a numerical factor. One

channel p excludes another y if g~y=0. When one

metric H=(H„B) is singled out as absolute, the
linear space L becomes a Hilbert space (L, H).

(29) I designate the original stators [ & of L by

There are three other related kinds of spinor:

g» g, Pg. Of these only a g can be made from
P" naturally, as the skew tensor e» is not a
GL(2, C)-invariant. But there are natural maps
among the algebras of these four kinds of spinor.
If q"& is in the algebra of linear operators of the

(g"), then the transpose (q )„s=q~„ is in that of
the (|t„},the complex conjugate (q ) s =(q"s} is in
that of the (g ), and the Hermitian conjugate
(q")g =(q „)c is in that of the (gz}. It is some-
times convenient to call these four kinds of spinor
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I, T, C, or H spinors. Spinors of GL(2, C) can be
called general spinors to separate them from the
more familiar special spinors of SL(2, C) and uni
tary spinors of SU(2, C). The notation is summa-
rized in the first three columns of Table II.

An h has the structure )&(. There are iwo unit
operators, )-) and ) ), for the four spinors I, T,
C, H.

(30) There is a four -group consisting of the four
involutions of paragraph (29), the identity I, the
transpose T, the complex conjugate C, and the
Hermitian conjugate H, with

TC =H, CH= T, HT=C .
Since the notation tells correctly how I, C, T, H are
permuted by the four-group, TC=H, HI=H, etc. ,
separate symbols will not be needed for the four
kinds of spinor and the four group elements. These
involutions enter into the familiar discrete symme-
tries of space, time, and charge. As maps of
algebras, T and H are order-reversing.

(31} All rq logical relations among binary sys-
tems may be expressed as GL(2, C)-invariant lin-
ear relations among spinors of the four kinds I,
T, C, H. If the four skew-symmetric tensors e»,

appear in such a relation, they may
be eliminated.

(32) Each concept of uq logic that uses the ab-
solute negation operation - or the absolute Her-
mitian conjugation Iri~ also defines a concept of rq
logic relative to a metric h, the negation -~, and
the Hermitian conjugate g". In particular we may
speak of a normal or h normal clas-sification, one
whose channels not only have null meets but also
are orthogonal, and of normal or h-normal oper-
ators and projections likewise.

(33) The probability or expectation value for-
mulas of uq logic then follow from the eigenvalue
principle for large assemblies and an assumption
of continuity, just as in c logic of finite sets.

(34) In any case where a metric is added to rq
logic we must ask where it comes from. General
relativity has a conditional causal structure, its
pseudometric; rq mechanics, a conditional logical
structure as well, its metric.

(35) The general process will be a collection of
pairs of creation and destruction. %Ye may enum-
erate all possible essentially distinct kinds of pairs
formed from one relativistic quantum S:

ss, ss', ss', ss".

(36) The pair Ss is familiar from logic. Its only
intrinsic (projective-invariant) channels are the
symmetric and skew-symmetric, of multiplicity
—,'n(n+1) and —', n(n-1), and the trivial 0, 1. For

TABLE II. Four kinds of spinors and their quantum
numbers.

+].

n&2 there is no intrinsic singlet. When a group
acts on S the infinitesimal generators G of SS are
formed from those g of S by duplication:

(3'I) The dual Pair Ss has one intrinsic singlet,

) } (5A )

one intrinsic (n' —1)-piet, the subspace of trace-
less stators

and no other invariant channels but 0, 1. Its gen-
erators G are formed from those g of A by sub-
tracting the transpose, forming the direct sum

G=g& -g
A linear operator T s of S can be interpreted as
the stator of a dual pair. The dual pair is the only
one whose stators themselves form a natural al-
gebra, and is a natural choice for the concept of a
q mapping. The singlet ) -) represents the iden
tity channel of this q mapping.

(38) The conjugate pair SSo has no intrinsic
multiplet but 0, 1. For n =2 only there is a rela-
tive scalar Hermitian form

PV' = &As &oo (4 )9

of signature 1-3, with which the Hermitian sym-
metric stators g" =(gs") become a Minkowski
four -space.

(39) The Hertnitian Pair SS"has its complex
conjugate S S naturally isomorphic to its dual
S S by the exchange X of S and S":(Sosr} =Srso.
Therefore the linear space g"g has the h-invariant
Hermitian form g y=(g g) rp ~ of signature
~n(n+ 1) —~n(n —1)= n (and hence not a metric).
This pair has no invariant multiplets but 0, 1.

(40) An ensemble stator
I E) is said to link a

pair of entities S, T when an STpair stator can be
factored out of IE), but not individual S and T
stators. Only SS and SS~ pairs can be invariantly
linked.
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Relations to special relativity

(41) It has been suggested that the world process
is a discrete network of discrete processes in
much the way that the path of a checker is a se-
quence of moves, and that the dux ation of a process
measures the number of monads' in it. Then a
counting channel for monads, at least in large
numbers, must be a clock. This identification is
permitted by three well-known circumstances:

(a) The Lorentz group is isomorphic to the group
of a binary rq logic, the antiprojective group in
bvo complex homogeneous coordinates. "

(b) Metrics h~ in complex iwo-space are nat-
urally isomorphic to future vectors h" in Minkow-
ski space-time as convex linear sets.

(c) The invariance subgroup of a timelike vector,
the rotation group SO(3, E), is isomorphic to the
invariance subgroup of a metric, SU(2, C)/Z, where
Z=[1, —I}is the center of SU(2, C).

These lead me to take for the elementary quan-
tum process an rq binary entity, not a unitary one
as before.

(42) The quantity previously identified with time'
was the total number of monads. This is the
relativistic invariant g g for a Bose-Einstein
(diagonal) sequence, for example, where the P
are two creators corresponding to two basis vec-
tors g„ ij„and the i(I" are two annihilators cor-
responding to covectors in the reciprocal basis.
Now that I identify the projective group of rq logic
with the Lorentz group of relativity, I cannot iden-
tify this invariant with a coordinate time, but only
with px'opex' time. The unit fox' these times ls al-
ways the yet-to-be-determined r.

(43) Designate by 2 a projective binary quantum
and by 2~ the related one with complex conjugate
stators. Then the classical limit of dia22 as a
causal space is a Minkowski space-time. From
this projective ensembles can be made which ap-
proach the familiar unitary representations of the
Poincarb group. This suggests that e relativity
and c quantum theory study two emergent aspects
of a plexus made of one basic relativistic binary
quantum 'in which they meet.

IV. PROCESS STATORS

In rq mechanics the amplitudes for experimental
processes will be of the form (D)E(, where (D) is
a plexor embodying the dynamical law and )E( is
one expressing the experimental situation. I de-
velop these concepts next. Before giving the kine-
matics and dynamics of rq mechanics in terms of
(D)'s and )E('s I give nonrelativistic cq mechanics
in this language with space, time, and matter as
yrior concepts. I leave the reader to translate e
mechanics into these terms. There, (D)'s and

)E('s are sets in phase space.
(44) Let discrete time t= nb, t be described by

the one-parameter unitary group U" (a =. .. , -1,
0, 1, . . .) on a Hilbert space J.. Then any transi-
tion amplitude has the form

a=@ UU ~ ~ Ut(I}

Here p, g are in I.. The unitary operator U is a
vector in I. I. , the product of L, and the dual L, ,
a stator linking [see paragraph (40)] one creation
and one destruction. Since there is no interference
between different t, the case n=3 is sufficiently
typical and I drop the ellipsis. In terms of the
usual matrix elements U»,

a=@ V U~UscUcD 0
A. . . D

=Q V" 4a Us ddda UDs4g Usa 6ds 4" .

Here A labels an orthonormal basis (A} for the
Hilbert space I., A. , one for the complex conjugate
linear space L, , and 6» is the Hilbert-space
metric, a Kronecker 6.

(45) Now I unzip' this amplitude into two parts,
both process stators: )E ( characterizing the par-
ticular experimental situation, and (D) involving
only universal statements about dynamical pro-
cesses of the given duration. In nonrelativistic
mechanics the causal network is always a trivial
one, a topological line, and L, is infinite-dimen-
sional, expressing the assumed possibility of caus-
al connections between all space points.

Evidently the creator g" and annihilator P be-
long to )E(. If U~ is fixed, if ambient fields are
not varied in the processes considered, then the
factors U~ can be put in (D). [If U varies for the
processes considered, it is put in )E(. Such arbi-
trariness is common in phenomenological theories. ]
Then (D} is (the stator with components} Ug3 Uda
U~z and )E( is the costator y" 6 6asg~. (D) in-
volves 6 processes, is a stator of three conjugate
pairs of processes. )E(, likewise, involves 6
processes. The amplitude a is given by a = (D)E(.

This (D,) stator means: Evolve. Evolve. Evolve.
This )E, ( stator means: Actuate channel t(. Wait.
%ait. Actuate channel y~.

(46) The usual time parameter counts the num-
ber of linked pairs in either (D,) or }E,(. Both
(D,) and )E, ( are singlets. If we connect y and P
we can think of )E, (, too, as made of three pairs,
two of which are linked. I conventionally assign
HEI; to each process of a pair.

(47} Each such process in (D,) mates with a
unique process in )E, (. To form a we connect each
process in (D,) to its mate in )E, ( as if we were
closing a zipper. If the zipper does not close, the
amplitude is zero. For comparison, the Feynman
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amplitude is the summand in the expression for
the transition amplitude,

U~ Uac Uci)

(no summation). While each of the factors has a
simple quantum logical meaning, the above product
is not a geometric object at all because of the re-
peated but unsummed indices. This is not a prob-
lem in the usual use but only in the special context
of a q theory of processes. The dynamical stator

~
D} can be regarded merely as the Feynman ampli-

tude with the index identifications suspended.

Relativistic cq system

(48) In principle, relativistic cq mechanics is
a special case of the above. However, this for-
mulation then puts observer-dependent factors into

~D) rather than )E~. In relativity 'Wait" is am-

biguous. Two relatively moving experimenters can
both be waiting but they are doing something dif-
ferent. In the relativistic case it is more natural
to replace the 5 links in )E~ by factors defining
the special features of the process the observer
calls waiting. The only relevant feature is the
periodic tick of her laboratory clock which marks
off a space-time period n" or

AB OA& nQ

(When we assume a single n" for use throughout
the system we are turning off gravity and storing
up problems for the future. ) Indeed for a two-
component neutrino, the amplitude

» pf »='(* ) U(», —6)(((».—«.) U(». —*.)((».)

unzips naturally into

KBC(xl~ ~ ~

~ ~ ~(p*(x,)don" dan 5(t, —t, —&t}

Kt)s(x, —x,) Kpo(x, —x,)

dog'~5(t, -t, tt) .-. .

where K~~ is an invariant propagator

K,,(x) =SD(x)/Sx" .
Here

i D~) =K(8) K(3 K

and

)E, ~=q'nd'o(g) 5( }ada (8) 5( ~ ~ ~ ) ado(3 y,
much as before.

(49} Now the unitary nature of
~ D,) by itself is

lost, meaningless. The Hilbert-space metric is
first provided by the experimental stator )E, ~, and

is a product of more primitive metrics belonging
to each of the channels joining

~
D) and )E ~,

in-
volving the laboratory clock.

)D) and }E)acquire meaning only relative to a
particular mating of ~D) channels and )E

~
channels,

which can be given by a diagram, indices, etc.
The rules of connection give ) D) the additional
structure of a plexor rather than a mere tensor
product; in particular the sequential product (oK)3
=KOKOK.

(50) Now I treat a process as a physical system

I

and consider some of its coordinates. Its stators
(in the above example with n= 3 pairs) are super-
positions of products K, (3K, SK, of three dual-
pair stators [see paragraph (37)] .

(51) Every group e" that can act on the stator
~ & with generator &g&, 5~& =

~& g& 5t, also acts on

any costator & ~
with -)g):

so

=(51&) & I+I & 5& I

=(l&g&) & I5t+f& 5& f,

5& I=-&g& I5t . (4.1)

Likewise the generator acts on the six-process
stator with a six-term generator

G =g& —g2 +g3 —g4+g5 —g6,
appropriate factors of 1 (3 being always understood.
What does G mean?

The eigenvalues of G give the changes the pro-
cess can cause in the eigenvalues of the object g
with suitable assistance from the experimenter.
For example if g is a rotation 0, and the object is
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Avg = g„+ g„2N .
a= ]. f1= 1

(4 3)

(53) These definitions of Lg and Avg, the in-
crement and transfer of g, are uniquely deter-
mined by their composition properties under O

and and the familiar forms to mhieh they are
required to reduce for dynamics j D) invariant
under g.

(54) The process undergone by a system is a
more complex entity then the system itself. bg
and Avg have more complex spectra than g. eq
mechanics must put this complexity in the object
of the process because it ignores most of the
process. Is this why operationally nonlocal quan-
tities [paragraph (3)] continually appear as sys-
tem quantities in the deep structure of cq mechan-
ics'P I believe so. Let us see if we can locate this
complexity in the process where it belongs, elimi-
nate operationally nonloeal quantities from the
deep structure, and simplify the theory.

(55) The omission of this possibility from cq
mechanics mas natural for historical reasons. In
cq mechanics me usually treat systems of nearly
definite rest mass. The complementary variable,
proper time, is then highly indeterminate. For
such a system the detailed proper-time evolution
is not of operational but merely formal interest,
since the new' physical possibilities it admits are
taken away soon after they are given. Today the
rapidly growing need to understand large mass
spectra in a unified may makes developments like
the present one natural as mell.

(56) A coordinate illustrating the complexity of
the process is s, the duration of a sequential pro-
cess, the number coordinate X=8 1 (a direct sum
of unit operators over all the elementary processes
in the sequence) times the duration ,'r of the ele-—
mentary process: s =+ —,'r. Even for the singulary'

a spin &, the process can cause a change of 3 pro-
vided each time the dynamics makes a change of
1 {o,=-~-+~}the experimenter collects this, re-
setting the spin for the next dynamical evolution.
Identity links cause no change in any of the object
properties.

This coordinate 6 is a measure of nonconserva-
tion of g and mill be called the gincrement of the
process and written symbolically

(4.2)

(52) Related to an increment much as relative
momentum is to center-of-mass momentum is a
transfer given for 3 dual pairs by

G =6(gi+Ã2 +8's+Z4 +Zs+Ze) -=&vg
Z' r

and in general for N pairs by

system 1, there is no coordinate 8, conjugate to
the duration s in the sense of the commutation
relation [s s]=1, because s has non-negative
spectrum. However, there is the well-known
creator C conjugate in the different sense that sC
= C(s+1). When s/r is large and uncertain,

s»4, »q,
the shift operator 5,= C(C"C) 't' is defined and
nearly unitary and (5,- 1)/i nearly satisfies the
defining relation of 8,. Thus the simplest object
system, the singulary, undergoes a process com-
plex enough to model one pair of canonically con-
jugate coordinates. The binary models Minkowski
space-time as well.

(57) The law of dynamics is no longer to be
given by a Hamiltonian but by a class D of dynam-
ically allowed processes, a projection in the linear
space of the world plexors. But in a coherent
world [paragraph (12)], dynamics can be pure. I
assume that in q dynamics D is a singlet.

This is a natural extension of our past experi-
ence. The Feynman amplitude for a process of
given duration t is a single vector defining a sin-
glet dynamical lam D& for eq dynamics even though
the similar dynamical 1am D, of c dynamics is an
infinite multiplet, a distinct path though each initial
point of phase space. The transition eq- c is an
averaging process. I assume the transition q -cq
is of the same kind, that the infinite multiplet D
= U& D& of cq dynamics comes from a singlet D
=)D]D) of q dynamics.

(58) Therefore every physical prediction is ex-
pressible in terms of amplitudes of the form

s= /D)E/,

where )D) is the dynamic stator and )E ( is an ex-
perimental or kinematic stator. This too is a nat-
ural extension of Feynman's path-amplitude theory.
The universal stator ] D) gives the detailed descrip-
tion of the intrinsic dynamical development. A
specific )E) gives the experimental environment,
including input and output channels and ambient
fieMs, and everything else extrinsic affecting the
experiment. ( D) and )E ) are plexors, usually
sums over many plexi. The classes D, E also de-
fine costators )D), )E) [see paragraph (25)].

(59) In q mechanics kinematics is defined by
giving the plexor space of )E~'s, )D~D) defines a
dynamics, and the rule for translating operational
descriptions of a real experimental situation into
)E]E)'s defines the semantics.

(60) The Feynman path amplitude, particle prop-
agators, the Hamiltonian operator, and the Heisen-
berg 8 matrix are projections of ) D) containing
less information than jD). For instance, a prop-
agator K"s(x~) for a particle of the o. type is the
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amplitude

where )u, 1„,1,s"
~
is the )E

~
describing an a

channel of spin stator 1& and an n cochannel of
spin costator 1~ with a space-time separation x".

The model called the nuon dynamics' is not pure
but has steadily growing multiplicity and entropy.
It represents chaos exploding at the speed of light.
Vfhile it can still serve as a q picture of the future
light cone (as it did in Ref. 5), it is not a dynam-
ical process but a random walk, we now see.

V. KINEMATICS

(61) A maximal (singlet) description of a kine-
matically possible process is a plexor )E ) E) over
the four kinds of spinor I, C, T, &of paragraph (80).
This gives the causal and quantum logical elements
of the kinematics in the language set up for that
purpose in paragraph (17) and Ref. 5. We may
turn at once to interpretation.

(62} There might be several elementary pro-
cesses with stators g", p", . . . transforming alike
under SU(2, C) but differently under GL(2, C) or
other groups. For simplicity a construction based
on a single kind of elementary quantum px oeess
will be studied. This is sufficient for a quantum
electrodynamics and can be generalized if the other
interactions demand.

VI. SEMANTICS

Here I tie some familiar operational concepts of
physics to terms in the kinematics of See. V.
Meaning formation is necessarily an informal
open-ended yrocess, but translation of the suc-
cessful parts of one theory to another ean be for-
mal and analytic. I begin with the former but go
to the latter as quickly as possible.

(68) Localized parts of a process, subprocesses
such as a production process in an emulsion, cor-
respond to sxnall subnetworks of the process plex-
or. The invariant chronological order among non-
overlapping subproeesses corresponds to the par-
tia1 order of the plexor. The propex time between
localized subprocesses is a statistical description
of lines of the network joining the subprocesses.
For single lines, proper time s is proportional
to the number N of elementary processes along
the line

(64} The relation between stable physical pro-
-cesses and networks, like that between organic
moleeules and their diagrams, is not1-1. One
stable process is generally a superposition of
many networks and one network represents a

superposition of many processes, if for no other
reason than the complementarity of mass and

proper time.
(65) Further correspondences are systematized

by identifying physical symmetries with mathemat-
ical symmetries of the kinematic theory. This i.s
done for the local Lorentz and electromagnetic
groups. The effect is to identify Q of Sec. V with
electric charge, and the quotient of GL(2, C) by its
center with the proper Lorentz group.

Continuous symmetries

(66) The only GL(2, C) invariants are Kronecker
deltas 5"» 5 ~. Therefore any invariant amplitude
]D)E j is expressible in terms of products like
5"~5 ~ ~ ~ ~ 5 „defining a closed sequence of pro-
cesses (a, E', a, C', . . . , Z, x ) in

~
D) ~d )E~. This

sequence consists of links [see paragraph (40)]
alternately in ID) and )EI. Monads in ID) whose
duals in )E~ are links occur at ajunction in (D)
and are calledjoined in ~D).

(67) Thus a plexor may have two distinct dis-
crete algebraic topologies: a pure q one deter-
mined by links and junctions, and a causal one de-
termined by the chronological order. For sim-
plicity [paragraph (62)] and locality [paragraph (8)],
I assume these topologies coincide for ) D) and opt
in favor of the quantum over the chronological ele-
ment of deep structure [paragraph (5}]; Incidence
between different loops stays but now causal suc-
cession is replaced by q linkage and the over-all
causal direction, time's arrow, will be provided
by the macroscopic experimental situation. It
appears that plexor algebra, like the quantization
algorithm, will not be an element of the q theory
but a rope to be discarded after reachingq from cq.

(68) Let us designate the singlet coupling 5"s
by a link IT, showing its indices by dots. Thex e
are thus two kinds of cycles in )E(D), made of
either ET:IT ... or ~ CH:CH-. .. . While a strand
of letters without punctuation like ...ITITI. ..
would have no definable direction, these punctuated
strands have two distinguishable directions. The
direction that goes from a T to an I or H to C with-
in a link will be shown by a large arrow ~. The
distinction between IT rings and CH r ings will be
shown by a small arrow - parallel to the large
for IT and antiyarallel for CH. Both arrows form
closed loops in invax iant ylexors.

(69) Two conserved vector currents arise from
GL(2, C) invariance because of locality. Their full
discussion requires a generalization of Abelian
gauge theory from continua to networks presently
incomplete. Here the continuity of these currents
is established.

(VO) Q is the quantum number giving the law of
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transformation e+~ under the subgroup!/! -e
of GL(2, C), a subgroup U(1, C). I identify U(1, C)
with the electromagnetic gauge group, Q with elec-
tric charge. 8 gives the law of transformation
under the real Abelian subgroup!t!" -r!/!". The
quantum numbers assigned to the four chronons
are shown in the last two columns of Table II.

The small arrow is then the electric current.
The large arrow gives R current, whose meaning
is left open.

(71) It is a familiar idea that the one group
GL(2, C) thus contains both the group of the causal
order and the gauge grouy of electromagnetisrn.
Here it implies that every elementary process
transfers charge I and spin &, that all the fields
thought to be neutral have only a statistical neu-
trality, and that each spinor index on a cq field
indicates a transfer of charge shown in Table II.

(72) For example, the c electromagnetic cou-
pling j"A.„seems to involve no charge transfer
between current j" and field A&. But in spinor form
this coupling is j "A&g, and I take this to mean the

q process involves two lines, not one. If the two
lines are even one 7 apart somewhere, they form
a microscopic current loop, and the electromag-
netic field is not microscopically neutral.

(73) A similar discussion applies to the gravi-
tational field with its four spinor indices, but it
requires a generalization of non. -Abelian gauge
theory to q networks. Generally speaking, the
sources of the long-range fields correspond to
extensive coordinates of star subnetworks and
their fluxes correspond to extensive coordinates
of loop subnetworks measuring nonintegrability of

transport.
(74) If the electromagnetic vector potential

exists, then magnetic monopoles do not. The
beauty and success of electrodynamics based on
the vector potential sometimes makes magnetic
monopoles seem an ad hoc disfigurement. But in

the present framework, locality [paragraph (3)]
separately excludes vector potentials from the
deep structure and the kinematics (Sec. V) auto-
matically includes magnetic monopoles. Their
arbitrary elimination would therefore seem ad ho@,

especially in view of the possible relevance to
strong inter actions. "

ory. I have drawn on the principles F, Q, E [para-
graph (15)] to infer the alphabet of the code and

the simpler rules of syntax. Now I add what is
known about elementary particles to infer some
words

~
E( in this alphabet. Much of this is input

to the theory, not output.
Some yrovisional assignments yresent them-

selves at once:
E/ection. (76) The simplest process transferring

charge 1 and spin —,
' (diagram e of Fig. 4) is

. ..:TI:TI:.. . and its complex conjugate. In later
work" it has been shown that this process gener-
ates the proper-time Dirac equation with the prop-
er time of paragraph (63). This is satisfactory.

Photon (V7). The simplest process transferring
charge 0 and spm 1 (diagram y of Fig. 4) is the
spin-1 subsyace of

TI'IT' TI 'IT'

where the aligned colons form one tetradic junc-
tion. This generates a yroper-time Maxwell equa-
tion as 7.-0.

E/ectrodynamic znterae/ion. (V8) The simplest

Oj sy Oj p gp &~

VII. DYNAMICS

(75) We have not determined (D) yet. We now

begin to do this by assigning codes to the simpler
elementary particles. These give us )E)'s of large
amplitude in [D). Then the law I.generating j D) is
sought.

These early assignments of internal structure
are not successes of a particular q dynamical the-

FIG. 4. Simplest sequence of elementary quantum pro-
cesses with correct charge and spin for the electron,
photon, and neutrino. The two diagrams shown for e are
synonymous, and the simplification introduced in the
second is used for the succeeding diagrams. Each two-
ended arrow stands for a pair of spinor indices and the
unit tensor 6+~ or 5~&. Each circle 0 represents a cau-
sal junction. The scale of this discrete structure is pro-
posed tobe 7- 5&10 ~~ sec-5/40 GeV.
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FIG. 5. Neutrino-process model showing junctions to
external sources represented by tensors uzi, egz.

interaction connecting e and y [paragraphs (76) and

(77)] is (see Fig. 6 also}

TI'IT TI IT
:TI:TI:TI. ..

...IT:TI:IT:TI:IT:IT:IT...

(79) It is unreasonable to use a model construc-
ted for electrodynamics and geometry to describe
weak interactions, but since there are already in-
dications of how to express gravitational and strong
interactions in this simplest kinematics, I do so.
Failure does not reflect on the adequacy of the e
model for electrodynamics but refutes it as a fun-
damental theory.

Charged vector and neutral spinor processes
are problematical. Their description within the
simple kinematics [paragraph (62)] requires an

innovation whose consequences have not been seen
to be harmless:

¹utrino. (80} Either invariant process ~ TI ~

or HC. transfers spin ~ and charge +1. Can we
cancel the two charges against each other P Not in

cq mechanics: the sum has no predictable Q at
all, the product has Q=O but integer spin. In g
dynamics both of these options exist, the product
as the g product of the two plexi, and are still use-
less, but there is also the sequential 0 product.
The neutrino might be ~ IT:CH:. ..:IT:CH (diagram
v of Fig. 4).

This possibility is explicit in the expression (4.2)
for the transfer of a system property g. The
charge transfer is Avg. The empirical fact is that
the charge transfer vanishes for v processes of
macroscopic duration. In cq mechanics all the
terms in Avg must be equal, since Q has an in-
teger spectrum and is supposed to vary continu-

ously with v as 7-0. Therefore, in cq mechanics
each term in Avg must vanish separately. In q
mechanics the limit r-0 is interesting only as an

approximation, and Avg can vanish by the cancel-
lation of successive pairs of terms. Then the limit
v -0 is a bad approximation for certain physical
processes.

One law I for such a v involves noting the last
pair in the strand and appending its complex conju-

FIG. 6. Model of electrodynamic interaction process.

gate in sequence. An even simpler program that,
nevertheless, makes a time average neutral v

simply adds the two results of appending an IT
and a CII, or appends IT + ~ CB . Then the v is
a sum of binomial seciuences u =Q„o(~ IT + CH )".

Continuity of ckarge. (81) The central pair of
dots in IT:CH. represents a flow of charge @=2
from this vertex of j D) to )E (. As long as we keep
the theory local and Gl (2, C)-invariant there is,
nevertheless, continuity of charge. Since the flow
@=2 at an IT:CII vertex is compensated by a flow

Q = —2 at a CH:IT vertex onl.y r away, the en-
vironment of the neutrino need only carry the
charge briefly and can have the same kind of aver-
age neutrality as v. The charge jumps of the neu-
trino must connect to the charge fluctuations [para-
graph (72}]of the long-range fields that guide its
propagation.

'
In particular, the tensor density e"

has the charge Q = 2 and spin 0 that we need. It
and its dual c» are used as external fields in Fig.
5. The pairs e" ac~ form the invariant 5~~.

Weak interactions. (82) As r Othe neut-rino

must approach a neutral field. For finite 7. weak
short-range electromagnetic interactions remain.
In the simplest model these are the weak inter-
actions of the physical v's. Then the weak range
and strength provide two estimates of v. Aeeording
to a naive extrapolation of cq ideas at very high
energies E ~ 5/r the internal electric structure
can be resolved by photons, the range of the weak
interaction is —cv, and the weak coupling constant
made dimensionless with this length is - a, the
electromagnetic coupling constant. This gives two
preliminary estimates of r. It is well known that
these are consistent estimates. "
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There is a second indication that the weak inter-
actions set the scale of 7. The elementary quan-
tum process lacks the discrete Lorentz invari-
ances. Interactions in which a single process
figures importantly should lack the corresponding
conservation laws. Therefore, the interaction that
breaks the discrete symmetries should set the
scale of T. It is just as well for this argument
that the weak interactions have the shortest range.

VIII. RECAPITULATION

In these four papers we have formulated pure
quantum concepts of geometry, kinematics, and

dynamics of free propagation and interaction. The
development spirals. The vague outlines of each
structure are sketched in, the higher structures
are eased into place and impose their stresses on

the lower, and appropriate adjustments are made.
The present structure is now self-consistent
enough so that it will not collapse of internal
stresses, and one can go on to the next level of
structure. There is no operational difference be-
tween a variable that is continuous and one that is
an integer in an unspecified unit. To work out the
operational consequences of a 7 - 5 j40 GeV re-
quires further theoretical development: a par-
ticular ~D) and the detailed translation of scatter-
ing concepts into plexic terms begun in the next
paper. Here are listed some of the rather unex-
pected conceptual unities revealed by the present
incomplete theory. These unities are justifications
for a further study rather than evidence for a the-
ory and are presented primarily to do useful work
against the resistance that each advance of atom-
ism seems to meet.

Unity between operation and theory. Since Ein-
stein we have known that space-time geometry
arises out of underlying dynamical processes and
not conversely and so I have put geometry in the
surface structure, dynamics in the deep. There
is no space-time point in the microscopic struc-
ture. Since von Neumann we have known that quan-
tum theory implies a revised operational class
logic and so I have put this into the deep structure.
Preceding physical theories are upside down in
these respects.

Unity of the world Process. In previous theories,
processes of production, interaction, and absorp-
tion are supposed to consist of indivisible ele-
mentary parts, while propagation processes are
supposed to be infinitely divisible. Here the entire
.world process is treated in a uniform quantum

way. The hypothesis of an underlying space-time
continuum already seems to me as naive as the
caloric fluid, the homunculus, and other important
historical reifications.

Unity of quantum and relativity theories. The
problem of unification of these two parts of physics
is avoided by building the theory out of primitive
parts which are both quantum and relativistic.
That is the main point of this paper.
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~Without operationality invariance is empty. Operation-
ality is the distinction between the conventional, and

hence irrefutable, classical logic and geometry of
Poincare and the operational geometry of Einstein and

logic of Bohr.
2The polyhedral approximation to general relativity of

T. Regge [Nuovo Cimento ~19 551 (1961)] is an interest-
ing and suggestive c model without coordinates. It
would seem worthwhile to add electromagnetism to his
framework. See J. A. Wheeler, in Relativity, Groups
and Topology, edited by C. DeWitt and B. DeWitt
(Gordon and Breach, New York, 1964), p. 467, and

R. Penrose, An Analysis of the Structure of Space-
Time, Adams Prize Essay (Princeton Univ. Press,
Princeton, 1967), p. 46.

I call an ensemble of n elementary quantum processes
ann-ad, and one such process, therefore, a monad.
It is not proper to ask of the elementary process where

and when it occurs or what undergoes it, both space-
time and matter being higher level constructs.

4Network methods are urged by D. Bohm [in S. N. Bose
. 70th Birthday Commemoration (Birkbeck Inaugural
Lecture), Calcutta, Vol. II, p. 279], and used by
R. Penrose (Ref. 2); methods are also urged by R. Pen-
rose, in Combinatorial Mathematics andits Applications,
edited by D. J. A. Welch (Academic, London, 1971),
p. 221. I am indebted to Penrose for prepublication
copies of his work. To go from Penrose spin networks
to the plexors I use, replace unitary by general spinors
and add causal structure. For still earlier related
attacks on the'continuum, see C. F. v. Weizsacker
[Naturwissenschaften ~38 533 (1951)] and related work
inhis Zum WeltbildderPhysik (Hirzel, Stuttgart, 1970),
11th ed. I am indebted to Weizshcker for frequent
discussions of these ideas and much encouragement.

5D. Finkelstein, Phys. Rev. D ~5 2922 (1972) for plexor
algebra; 5, 320 (1972) for q logic.

6The steps from c to uq to rq logics look especially nat-
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ural in algebraic terms. They are the steps from
commutative * algebras to * algebras to algebras.

TA mark is an equivalence class of throws. A throw of a
line L is an ordered quadruple of points (P~P&P„P) on

L. See O. Veblen and J. W. Young [Projective Geometry
I (Ginn, Boston, Mass. , 1910), p. 157] for the opera-
tions of the ring of marks. A. N. Whitehead [Axioms
of Projective Geometry (Cambridge Tracts in Mathe-
matics and Mathematical Physics, Cambridge, 1906)]
rather anticipates q logic; for him, "Geometry is the
science of cross-classification. " And he meant pro-
jective geometry especially.

Cf. V. S. Varadarajan, Geometry of Quantum Theory
(Van Nostrand Rheinhold, New York, 1968). I have

adapted the standard term channel from J. N. Blatt and

V. F. Weisskopf [Theoretical Nuclear Physics (Wiley,
New York, 1952)], dropping purity but keeping idempo-
tence. Elsewhere channels and cochannels are called
states and tests, effectors and receptors, . . . .

A. H. Taub and J. W. Givens [Geometry of Complex

Domains (Princeton Univ. Press, Princeton, 1955)]
are a good source for projective concepts. Every pro-
jective concept is also an rq logical one.
Termed antipolarity in Ref. 9.
J. Schwinger, Particles, Sources and Fields (Addison-
Wesley, Reading, Mass. , 1970).
D. Finkelstein, G. Frye, and L. Susskind, following

paper, Phys. Rev. D 9, 2231 (1974).
~3T. D. Lee, Phys. Rev. Lett. 26, 801 (1971).
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The concept of a quantum dyn~~~cs is recapitulated. The Dirac equation is obtained from a
pure quantum dynamics as the limit of classical time. The theory is defective in projective
gauge invariance and semantic consistency, but illustrates the relation between dynamical

and experimental elements of q dynamics, and is finite, Lorentz-invariant, and local.

I. INTRODUCTION

In this work we recapitulate the present status
of pure quantum (q) mechanics' (Sec. II) and show

how the Dirac equation may be obtained as the
mixed cq theory resulting from a q mechanics in

the limit of classical time (Sec. III). The proce-
dure is marred by a certain arbitrariness dis-
cussed in Sec. IV but provides a guide toward a
fuller q dynamics with interactions.

The formulation of mechanics that emerges from
these mathematical models is stable under the
transition from classical mechanics to quantum
mechanics and provides a plausible successor for
quantum mechanics. It implies the following con-
ception of the world:

(I) Both the classical space-time continuum and

quantized fields are semimacroscopic statistical
contructs, part of the surface structure of the
world manifested in processes that are long com-
pared to an elementary time ~.

(2}The deep structure contains neither space-
time nor fields. The microscopic world is a dis-
crete complex of discrete binary entities, elemen-
tary quantum processes. Such a world is not ple-

num but plexus, obeying Mach's principle in the
strongest possible form: There is no space between
matter, no spatial relations without interaction.

(3) The dynamical law is not a differential equa-
tion but one stator ~D) constructed by finite alge-
braic operations and yielding the Feynman ampli-
tude in the appropriate limit 7 -0. The amplitude
for any process E is the inner product of ~D) with
a costator )E~.

(4} Particles are recognized by discrete chromo-
somelike patterns of elementary process. For ex-
ample a most simple ~D) involving only a line com-
plex (processes in simple series) gives rise to the
Minkowski space-time and the proper-time Dirac
equation for the electron as r-0, while a double
strand is similarly related to Maxwell's equation
and the photon.

II. q DYNAMICS

The basic entity is the q process. We start from
a primitive q process or monad X. (Here X is only

the same of a quantum, not an algebraic quantity
of some sort. ) Like any quantum, X is associated


