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We consider the solutions of the scattering of scalar, electromagnetic, and gravitational waves by the
gravitational field of a single particle, for the case of small wave amplitudes and weak gravitational
fields. Scatterings are considered for both incident plane waves and incident spherical waves. For plane
waves incident on a thin sheet of matter composed of free particles, the superimposed wave solutions
give rise to a phase change arising from the coordinate dependence of the speed of light on the
gravitational potential, focusing of the incident wave by the sheet, and, in some cases, a phase change
due to dispersion of the wave by the matter. For gravitational waves, the index of refraction n is
given by n —1=27G p/w’ assuming n —1 is small, and for electromagnetic waves n =1 to the same
order. The index of refraction for scalar waves depends on the form of the scalar-wave equation used.
The generation of back-scattered waves is also treated. Calculations are repeated for spherical waves
incident on a thin spherical shell of matter. The propagation of §-function wave packets is then treated
in order to show that the solutions are consistent with causality, even though, in some cases, the group

velocity exceeds the velocity of light.

I. INTRODUCTION

In flat space-time, solutions of wave equations
describing fields mediated by massless particles
are propagated sharply along null rays. The most
familiar example of this is the case of electro-
magnetic waves.! When electromagnetic waves in-
teract with charged particles, scattered waves are
produced which interfere with the incident waves.
If the density of scatterers is sufficiently uniform,
the resultant wave propagation through the matter
is described by an index of refraction, which in
general is frequency-dependent. One effect of
such dispersion is that electromagnetic signals
are, in effect, no longer propagated sharply on
the light cone, but rather are smeared out inside
the light cone.

In curved space-time even the source-free solu-
tions of massless wave equations are, in general,
no longer sharply propagated along the light cone.?
In addition to the direct, sharply propagated sig-
nal, one finds a tail,® representing the smearing
out of the signal inside the light cone due to the
nonvanishing curvature tensor. This is the case
even if the matter, which generates the curvature
through Einstein’s field equations, does not inter-
act directly with the wave. We will assume, where
possible, that the matter which generates the cur-
vature is inert so far as the waves are concerned.

For regions of strong gravitational fields, there
is no superposition principle for the gravitational
field, and wave propagation in each such geometry
must be considered separately. An example of
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such a treatment is found in the solution of wave
equations in the Schwarzschild geometry,*'* which
exhibit such effects as smearing out of the signal
inside the light cone and back scattering of the
waves off the background curvature. In regions of
weak gravitational fields the Riemann tensor due
to a mass distribution can be approximated by the
sum of Riemann tensors due to each particle in
the mass distribution. Although not valid for
strong-field regions, such an approximation should
be useful in determining what are the dominant ef-
fects of gravitation on signal propagation in most
regions of space-time.

In this paper we will consider the solution for
scalar, electromagnetic, and gravitational waves
in the presence of a single particle. We will then
consider the wave solutions in suitable configura-
tions of matter by superposition in order to deter-
mine the gravitational field contribution to such
bulk matter properties as the index of refraction
for each kind of wave. For scalar waves such so-
lutions are of only academic interest. For elec-
tromagnetic waves one may find what corrections,
if any, are needed for the standard electromag-
netic dispersion formulas. For gravitational
waves, such calculations may have relevance for
the propagation of pulses of gravitational waves
possibly emitted near the center of our galaxy,®
which may have passed through dense regions of
matter, or for gravitational waves which travel to
us from cosmological distances.

In the recent literature there have appeared a
number of discussions which relate to the inter-
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action of gravitational waves with bulk matter,
e.g., gases or fluids. Szekeres’ has found the in-
dex of refraction of gravitational waves propaga-
ting through matter which is composed of “atoms,”
in which the incident wave induces quadrupole mo-
ments in each atom. Polnarev® and Chesters® have
discussed the interaction and dispersion of gravi-
tational waves in a hot gas, with collisions and
without collisions., Madore’® has considered grav-
itational wave propagation through a region devoid
of matter (R,,=0), influenced only by the curva-
ture tensor; similar calculations are made also
for electromagnetic wave propagation. In this pa-
per we consider waves interacting with a cold gas
of free particles, initially all at rest. The expres-
sion we derive for n -1, where 7 is the index of
refraction of gravitational waves, is much larger
than that generated by induced quadrupole mo-
ments (by the square of the ratio of the wave length
to the size of the atom) and larger than that gen-
erated by a hot gas (by the ratio of mass-energy
density to pressure).

In Sec. II we define the metric and derive the
wave equations for scalar, electromagnetic, and
gravitational waves to first order in the gravita-
tional potential ¢. In Sec. III we solve the problem
of the scattering of an incident plane wave by a
single mass for each of the three kinds of waves.
We then consider an infinite thin sheet of such
scatters and derive the index of refraction for
scalar, electromagnetic, and gravitational waves,
including the back-scattered waves for the three
cases, In Sec. IV we reexamine the same calcu-
lations from the point of view of spherical-wave
packets, first solving the single-particle scatter-
ing problem as well as the effect of a thin shell of
matter and a spherical volume of matter. In Sec.
V we describe the evolution of 6-function plane-
wave packets and 6-function spherical-wave pack-
ets. Section VI gives a discussion of the results
and conclusions,

1I. WAVE EQUATIONS
We assume a metric g,, given by*'
&oo=(1+29), £0;=0, gu=—5”(1 -2¢), (2.1)

where the potential ¢ =-GM/7 for a single point
mass, and where contributions of order ¢ are
consistently ignored. The potential for a mass
distribution is then obtained by adding the poten-
tials due to each particle in the mass distribution.
The energy densities in the scalar, electromag-
netic, and gravitational waves that will be con-
sidered are assumed to generate, through the
Einstein field equations, a negligible contribution

to the metric. Thus the wave equations will also
be linear.

A. Scalar waves

We consider scalar waves emitted by a distant
source propagating through a region in which par-
ticles interact with the wave only through gravita-
tional fields, i.e., through the geometry of space-
time. Thus the scalar waves satisfy a source-free
scalar wave equation throughout the region of in-
terest. The generalization of the source-free,
flat-space-time, scalar wave equation to a curved
space-time is not unique. One prescription® is to
replace ordinary derivatives by covariant deriva-
tives. However, one could also add terms pro-
portional to the Riemann tensor or its products
and derivatives, which vanish in flat space-time.
If one chooses not to introduce any dimensional
constants, then the form of the curved-space-
time scalar wave equation is

b M +aRry=0, (2.2)

where a is a dimensionless constant and R is the
curvature scalar. The choice a=0 corresponds to
the standard prescription and the choice a=% yields
a conformally invariant wave equation,’®

Using the metric (2.1) in (2.2) and keeping terms
up to first order in ¢ yields an approximate sca-
lar wave equation in which, since ¢ is static, we

can assume a time dependence of y of the form
Y(E, L) =p(Fle~ie* . (2.3)

Then, using the fact that in terms of order ¢, ¥
satisfies the flat—space-time equation, the scalar
wave equation can be cast in the form

(VP+w?=(Edw?d+2a0 ,, 0. (2.4)

B. Electromagnetic waves

We consider now the case of electromagnetic
waves emitted by a distant source passing through
a region of space which, for simplicity, contains
only electromagnetically inert matter. The source-
free wave equation for the electromagnetic poten-
tials is generalized to curved space-time in a
fairly unique way, if one keeps gauge invariance
and if one does not add dimensional constants.
Thus we take the covariant wave equation

ANt = Ay, =0 2.5)

as our curved—space-time wave equation. Substi-
tution of the metric (2.1) into (2.5) yields electro-
magnetic wave equations for A, and A,, to first
order in ¢, which have been discussed previous-
ly.'* We choose the gauge condition

Ago—A,, =404, , +2¢,4A, (2.6)



to simplify our expressions. We then assume a
time dependence of A, as given in (2.3) and make
use of the fact that, in terms already of order ¢,
we can assume that the unperturbed wave is space-
like and transverse, consistent with the gauge con-
dition (2.6). This results in the source-free wave
equations

(Vi+w?A, =4iwg,A,, (2.7
(VP+w?)A; =40%PA; -2¢,, A, + ¢, A, (2.8)

where A,=(1-¢)A,and A,=(1+¢)A,. The per-
turbed wave will, in general, no longer be space-
like and transverse, although one is still free to
make a new gauge choice. We will not consider
the explicit solution of (2.7) since the potential
A, can be determined from the gauge condition
(2.6), which, for an incident spacelike transverse
wave, becomes

—iwA,=A, , +2¢,A,. 2.9)

C. Gravitational waves

We consider gravitational waves emitted by a
distant source propagating through a region of
space-time described by the metric (2.1). In this
case we cannot, a priori, assume a source-free
equation, as the particles generating the potential
¢ necessarily interact with the incident wave. The
wave equation is, however, unique if one assumes
that the gravitational interaction is described fully
by Einstein’s field equations. We consider the
wave to be described by a perturbation 4, about

some background metric g(9), i.e.,

(2.10)

and we expand the field equations to first order in
h,y, introducing the perturbation in the stress-
energy tensor 67 ,,. This expansion has been dis-
cussed previously.'® Letting

) =g;(4?/) +h:.w

Euu=huy_%g(;.?3g(0)a8haﬂ (2-11)
and defining f, by
Fu=hu'y (2.12)

we arrive at the wave equation for %, '*:
h—uv;a;a_fu;u =foiu +&ufo’ = ZEaBRapuB +EuaRav
+h,oR® =y R+g,hR*®==161G5T,, .
(2.13)

We next consider the substitution of the metric
(2.1) into (2.13), keeping terms up to first order
in ¢. To simplify the resulting equations we make
the choice of gauge

fu=20,h,, (2.14)
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and make use of the fact that in terms of order ¢,
the incident gravitational wave, in accord with
(2.14), can be chosen to be spacelike, traceless,
and transverse. Further, we assume a time de-
pendence as in (2.3). This results in the wave
equation for the spatial components of %,

(V2+w?h,,; =4w?¢h,;, +167GST,, , (2.15)

where k,; =h, (1 +2¢). One can similarly write
wave equations for k,, and &, However, as in
the electromagnetic case, it is simpler to derive
these components from the spatial components
using the gauge condition (2.14). Specifically, for
the time dependence chosen and for an incident
wave which is spacelike, traceless, and trans-
verse, this yields, to order ¢,

‘iwﬁoo=i'-0k.n ’ (2.16)

(2.17)

In order to solve (2.15) it is necessary to speci-
fy the perturbation in the stress-energy tensor as
a result of the incident gravitational wave. We as-
sume that the stress-energy tensor T,, is that of
a gas of free particles, the particles being point
particles initially at rest. The equation of motion
for each particle is the geodesic equation, which
gives rise to a coordinate acceleration which van-
ishes in the gauge, or coordinate system, in which
the incident wave is spacelike and traceless. Thus
the coordinate velocity remains zero. Of course,
there will be contributions to the acceleration of
any one particles due to the Newtonian potential
of all of the other particles. For a fixed time ¢
this will give rise to velocity components of order
¢ and thus contributions to 6T, of order ¢*T,
which we are neglecting.

We see that since particles at rest remain at
rest'® in response to the incident wave, there are
no contributions to 7, from particle velocities.
Likewise, there are no contributions to §7,;; from
perturbations in the metric itself since the origi-
nal 7%/=0 and the wave has only spacelike com-
ponents, Thus the spatial components ﬁ‘ ; of the
wave, analogous to the scalar wave ¢ and electro-
magnetic wave il,. , obey a source-free wave equa-
tion:

—iwhg, =hy,, +20 1k, .

(V2+uPh, =4eP PRy, . (2.18)
If we let
hy=€,;0, (2.19)

we see that the wave equation (2.18) is solved by a
constant polarization tensor €;; and an amplitude
¢ which obeys the scalar wave -equation

(V2+P))p=4wgP. (2.20)
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This is the same as the wave equation for the sca-
lar potential (2.4) with the particular value of
a=0.

III. INDEX OF REFRACTION

A. Scattering by a single particle

We wish to solve (2.4), (2.8), and (2.20) for a
gas of particles in order to derive the index of re-
fraction. The right-hand sides of these equations
are linearly dependent on the Newtonian potential
¢, which can be decomposed into the sum of po-
tentials due to each point particle. Moreover, on
the right-hand sides of these equations, the wave
amplitudes can be taken to be those of the incident
waves. Thus if one can determine the scattered
wave due to each particle in the gas, one can then
superimpose the scattered waves from all of the
particles to obtain the scattered wave from the
gas. By comparing the phase of the scattered plus
incident wave with that of the incident wave, we
can then deduce the index of refraction of the gas.

We first focus on the simplest of the three po-
tential equations, (2.20), with ¢ =—Gm/r», and as-
sume that our incident wave is a plane wave of
wave number & in the z direction:

I~ete, (3.1)

Although (2.20) is an approximate equation in the
sense that ¢ terms are ignored, we can in fact
solve (2.20) exactly. We first notice that if we
identify

~2uZ,Z,e

W= E; 4Gmdf - = ,

then Eq. (2.20) is just Schrodinger’s equation for
scattering of two charged particles (charge Z,e
and Z,e) with center-of-mass energy E =72k*/2y,
where u is the reduced mass. For asymptotic
plane waves (ignoring logarithmic phase factors)
of the form (3.1), the solution for § is best derived
in parabolic coordinates. In terms of parameters

" of Eq. (2.20), this solution is'’

P=Ce'** F(2iGmw, 1, ik(r - 2)), 3.2)

where F(a, b, £) is the confluent hypergeometric
function and C is an arbitrary constant.

If we keep terms in the power-series expansion
of F up to those linear in Gm, we can derive a
useful approximate expression for ¥,

P =Ceir* {1 - ZGmiw[:y - i% +Ink(r - z)

.+f°° gzeiu] (3'3)
h(r-2) U ’

where v is the Euler-Mascheroni constant. The

first two terms in the square brackets of (3.3) can
be eliminated by a renormalization of the incident
wave to unity. In the exact solution (3.2) the loga-
rithmic term in k(» - z), for large k(» - z), arises
from a phase factor'” which, in (3.3) appears ex-
panded to first order in Gm. The last term in
(3.3) represents the scattered wave.

The solution to (2.20) can be used to generate,
to first order in Gm, solutions to (2.4) and (2.8).
First consider the solution to the wave equation
(2.20) with incident wave

v, ~pitle=a) 2 pike (T-T)
The solution of (2.20) appropriate to this wave is
just

J)':J)e"’“' . (3.4)
Define the symmetrized gradient ¥, to be V,
=(8/8x*)+(8/3x*’) and operate on (2.20) with V,.
Then V,J’ satisfies

(V2+ PV, ]’ =40?0, P’ (3.5)
since, to first order in ¢, ¥, y’=0 for the incident

wave. Therefore, the solution to (2.4) can be given
in terms of )’ defined in (3.4) as

- a

P=P+g AR (3.6)

The electromagnetic equation (2.8) can be similar-
ly solved. Letting €; be the polarization vector of
the incident wave (which is constant), the solution
of (2.8), to first order in ¢, is given by

~ -, 1 ===, 1 - _-

A= e =55 &V VY A5 €V V. (8.7
The solutions for A; and %, are incomplete as
they stand. One must also compute A, from (2.9)

and the components ky, and %, from (2.16) and
(2.17). However, in our application of these solu-
tions, due to the symmetry of the physical sys-
tem, there are no net contributions to A, or to
hoo and Ry, .

B. Phase shift and index of refraction

Our derivation of the index of refraction will
parallel well-known derivations'® for the case of
electromagnetic waves. We first assume that
there is an infinite sheet of scatterers at z=0
within a thickness Az. Let N be the number densi-
ty of scatterers, which for simplicity, we assume
are all of the same mass m. Then the mass den-
sity p =Nm. We initially assume that the density
p falls off exponentially with the distance x from
an axis of symmetry, i.e.,

p(x) =poe~*"%o, (3.8)
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We will let x,—~ < whenever possible. The number
density can always be chosen so large that the
granularity in the matter distribution can be ig-
nored.

Consider a wave e‘** incident on the plane (z<0)
and the total wave (incident + scattered) after leav-
ing the plane (z>0) in the form e*%+%%)  where
5 ¢ is the phase change as a result of the presence
of the plane of scatterers. The phase velocity in
the plane is the speed of light divided by the index
of refraction n, which gives the phase change
8¢ =(n-1)wAz/c. In the limit that Az is small,
5¢ is also small, so that the relation between the
final wave form and the index of refraction is

Yo =€ [1+iwn - DAz /c] . (3.9)

C. Logarithmic phase factors and focusing

We can anticipate two effects that should be
found in any wave solution. One concerns the fact
that the coordinate velocity of light deviates from
¢ by terms of order ¢. This should give rise to
terms in the phase of the original wave which de-
pend on ¢. The second effect results from the
fact that null geodesics are deflected in the pres-
ence of matter, and this should give rise to am-
plitude changes in the wave.

The coordinate speed of null rays is found from
the metric (2.1). For a null ray between two points
T/ and T, which differ only in their z components,
the elapsed time for propagation between T’ and T
differs from the coordinate separation by a line
integral involving the potential. For ¢ =-Gm/7,
this integral is proportional to

£ -
f¢dz=cm1n<,7 Z,)
) r'-z

=Gm[Ink(r -z)=-1nk(r'-2z")],

(3.10)

where the factors of 2 have been added to make the
arguments of the logarithms dimensionless. The
incident wave is therefore expected to have the
form

b, =eik(z-26mlnk(r-z))e-iwtw; , (3.11)

where §; is a phase factor that depends only on T/
and #'. If (3.11) is expanded to first order in Gm,
we reproduce the logarithmic term in (3.3), giving
the physical significance of that term.

We are now in a position to see how the logarith-
mic term in (3.3) should be handled in the sum
over all particles in the plane. Since this term
arises from the fact that the coordinate velocity of
light is not ¢, we should first compute the phase
expected by evaluating the integral [¢ dz for the
total potential due to all the masses. For an in-
finite plane of such masses, this gives an infinite

result for a constant finite mass density p.

There are two alternate ways of treating this
difficulty. First, we could cut off the mass densi-
ty for large distances using (3.8). This would
give us an expression for w/k as the coordinate
phase velocity, which would not be ¢, even in the
high-frequency limit. If we then wanted to find
the physical phase velocity, defined to be c in the
high-frequency limit, we would, to order ¢, sub-
tract from the coordinate phase velocity the dif-
ference between the high-frequency limit of the
coordinate phase velocity and c. After this sub-
traction there is no divergence in the potential
contribution as the mass dengity in (3.8) becomes
uniform, i.e., as x,—~ . The net effect of this
procedure is that logarithmic phase factors may be
ignored if one is computing the physical phase
velocity and the physically significant index of re-
fraction.

The second approach, which leads to the same
result, is to make sure that when the wave with
no matter present is compared with the wave with
the sheet of matter present, the two points z’ and
z are the same optical distance apart in the two
cases, rather than at the same coordinate separa-
tion. By the same optical distance we mean the
same number of wave lengths between z and z’
generated by a high-frequency source with the time
dependence e~¢“*,

The second geometrical effect relates to the fact
that null geodesics are deflected by a mass m.
This deflection angle is ~4Gm/bc?, where b is
the minimum distance between the mass and geo-
desic. To calculate the deflection expected in the
case of a plane of masses, let x=0 be the center
of the axis of symmetry of the density p(x), and
let x be the distance from the center to the point
in the plane at which we wish to compute the net
deflection, Only mass within the circular disk of
radius x about the center contributes to the de-
flection. Thus we may let x, in (3.8) be as large
as we wish, and we can then consider the density
within the disk to be uniform. The deflection of
the null ray at x by an angle 6(x) means that at a
height z above the plane there is a displacement
Ax=-0(x)z. Evaluating Ax/x by integrating the x
component of the deflection angle over the disk
gives the expected amount of focusing. This im-
plies an increase in the wave amplitude of an
amount

Y, =4nGpzAze** , (3.12)

D. Indices of refraction

We consider first the superposition of scattered
solutions of (2.20), which relates to the index of
refraction of gravitational waves. Using the wave
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solution (3.3) with the incident amplitude set equal
to 1 and the logarithmic term discarded as dis-
cussed in Sec. IIIC, we find the total wave, inci-
dent plus scattered, for a uniform density thin
plane, to be

17)=e“"(1 +41GpzAz + (3.13)

21eriAz>

w s

where we have set w =~k in terms of order ¢.
Comparison of the first scattered contribution with
the focusing calculation (3.12) shows that we have
reproduced via the wave solution what was ex-
pected from geometrical optics. The last term in
(3.13) is what we wish to identify with the phase
change resulting from an index of refraction n.
Comparing (3.13) with (3.9) gives the expression
for n,

n=1+27;(2;p

(gravitational waves), (3.14)
for gravitational waves passing through matter of
density p. Note that this is the same expression
as is obtained for electromagnetic waves' passing
through a gas of free-charged particles, with the
replacement of the charge density by the mass
density, the charge per unit mass by 1, and the
mks constant (1/47¢,) by -G, i.e., this is the
same substitution that takes the Coulomb force
law into the Newtonian one,

We next consider the integration over the plane
of the scattered scalar waves given by (3.6). The
logarithmic phase shift is contained in the first
term on the right-hand side of (3.6), so the full
solution (3.3) times e~***' must be used in the
second term. We find, using the definition (3.4)
and letting z’=0, k=w, that

4Gm P
7

VAR etk | (3.15)
& Ve

The total wave ¢ is then found to be

21GpiAz
w

P=ethe [1 +471GpzAz + (1—2a)]. (3.16)

As before we identify the focusing term in (3.186),
and comparing (3.16) with (3.9), we find the ex-
pression for n:
n=1+ yw%(l-mz) (scalar waves). 3.17)

For electromagnetic waves we first compute the
middle term on the right-hand side of (3.7). We
use the fact that €, is transverse to z, and note
that in the integration in the plane over all angles
(at fixed 7) the average value of €*T vanishes and
the average value of € *Tx, is 3(»* - 2%)¢;. There-
fore we only obtain a scattered polarization in the

direction of the incident polarization. This feature
allows a factorization of the wave amplitude 4,
into a constant polarization €; and a scalar func-
tion y. The middle term on the right-hand side of
(3.7) contributes to ), on the average over angles,
an amount for each mass m of

-_ thr_ irey 2 _ o (1, 2
Ap=27 l:(e e )r3 ike <r+rz)]' (3.18)
Integrating the ¢*** term in (3.18) over the plane
gives the contribution

— -TGpiAz z
¢dhect = —Z |_Z] e”" ’ (3-19)

which is important for z<0. Renormalization of
the incident wave to unity doubles the final contri-
bution in (3.19) for z>0. The integration of the
e'* terms over the plane yields a contribution to
P, which is exactly the negative of twice (3.19) for
z>0. Thus the middle term in (3.7) contributes,
on the average over the plane, nothing to the
scattered wave.

This leaves us with the first and third terms on

‘the right-hand side of (3.7). However, comparing

‘with the scalar solution (3.6), we see that § should
be the same as the scalar solution ¢, given by
(3.16), with the particular value a=3. But for
a=73 the last term in (3.16) vanishes, and we are
left only with the focusing term. Thus we con-
clude that, for electromagnetic waves,

n=1 (electromagnetic waves) (3.20)

up to order ¢.

It should be noted that a computation of A,
either from (2.7) or (2.9) gives zero for the plane
of masses, indicating that the transmitted wave
remains spacelike. In a similar manner, it can
also be shown from (2.16) and (2.17) that for the
plane of masses %y, and %,, are also zero for the
case of gravitational waves. Thus in either case,
there is no need to perform a further gauge trans-
formation on the final wave before computing the
phase shift and index of refraction.

In addition to shifting the phase of the forward
propagated incident wave, the scattering from the
plane of masses produces a back-scattered wave
with z dependence e~**, For gravitational waves
we find a back-scattered wave analogous to (3.13):

o _2nGpilz -ite |

(3.21)
w

For scalar waves {j,, analogous to (3.16), is found
to be (1 -2a) times (3.21), and for electromagnetic
waves J,, as in the calculation of the index of re-

fraction (3.20), is zero.
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IV. SPHERICAL WAVES
A. Green’s function

One can avoid the use of an infinite plane of
masses by assuming that the incident wave has
spherical wave fronts and is interacting with a
spherical shell of masses of thickness A»’ at a
distance »’ from the source of the waves., As in
Sec. ITID, the total wave (scattered +incident) is
compared with the incident wave to find the index
of refraction.

The solution, to first order in Gm, of the dif-
ferential equation

Gm ein

(V2+w2)G(f,?’, w)=—7 B

(4.1)

with R=T-T’, has been given previously.’® Ex-
plicitly,

- ;o iWR R
G(r,r',w)=%[e <rR+r )

20 | B \7R+F R

© due“"(" +r'+p)
_fo e 1 4.2)

where
- T-r\2 (T-F \TP2
p(r,r',u)=[rz—( o ) +< por +u>] . (4.3)

It can be shown that in the limit »'> 7, 4w*G re-
produces the solution we have found for incident
plane waves (3.3). In addition, one finds the 2z’
dependence of the wave that was expected from our
discussion of logarithmic phase factors, as in
Eq. (3.10), verifying that the z’ coordinate is in
fact associated with the source of the wave.

B. Spherical shells

We restrict ourselves now to a spherically sym-
metric source of scalar waves at the origin and’
consider the solution of (2.4) with a=0 for a spher-
ical shell of mass scatterers of number density
N at a distance »’ from the origin with thickness
Ar’. The wave is observed at a point R from the
origin, with R>7’. The incident wave is then
¢™R/R. The contribution of the scattering off the
masses in the shell is then seen, comparing (2.4)
with (4.1), to be 4w®GN times the volume integral
of the Green’s function (4.2) over the shell, where
T designates the radius vector of the observer’s
point from each scatterer and T’ designates the
radius vector of the origin from the scatterer.
For simplicity R=T - ¥/, which is fixed for each
element of the shell, is chosen to be the z direc-
tion. The scattered contribution can be written as
M +9@). The first scattered contribution, 3",
for R>v’, is

v =8nGpyiwr ?Ar’[1+1In(R/7r")](e**/R),
(4.4)

where p, is the constant mass density. It has been
noted in Sec. IIIC that one expects corrections due
to the fact that the coordinate speed of light is not
1. If one defines a distance measure !/ such that
the speed of light dl /d¢=1, then the phase of the
wave would be expected to be w(¢-1)., But

R
z=f0 (1-2¢)r.

Using the potential ¢ for the shell considered gives
1=R +81Gpyr'?Av'[1+In(R/7")] .

Thus we see that (4.4) is an expansion of a term
in the phase proportional to ¢ to first order in ¢.
If »'—~ o, multiplying (4.4) by R to keep the inci-
dent wave amplitude finite, we find that d)(s” di-
verges as was found in the corresponding case of
the sum of the logarithmic phase terms over the
plane of scatterers,

The second scattered contribution, %), for
R>7r', is

iwR

V@) =4nGpgr'2ar! ¢

X[}—, —1 +fw£l_).eziw(u-R)_fwd_7;eZiw] .
r" R J, ? bV

(4.5)

Note that if R=7'+2z, so that z is then the distance
from the observer to the nearest point on the shell,
and if z<7’, then 1/’ -~ 1/R~z/r'%. This gives
a correction to the wave amplitude which is just
that expected from the arguments based on focus-
ing (3.12) and also verified in the plane-wave so-
lution (3.13). Clearly, by symmetry, focusing in
the normal sense cannot be the cause of enhance-
ment in the spherical case. However, we can
understand the origin of that term for the spheri-
cal wave in the modification of the geometry due
to the potential of the spherical shell. Specifically,
we expect the wave amplitude to be proportional
to A~'2, where A is the proper surface area at
coordinate R. Since A=4rR*(1-2¢), using the
potential of the shell and normalizing the wave
amplitude to be e!“®/R at »’ reproduces the first
correction term of (4.5).

We can simplify the integrals in (4.5) greatly by
assuming that wr’ is large and by integrating by
parts. In the limit that v’ and R are large, keep-
ing R - r’=z fixed, we reproduce the plane-wave
solution found in (3.13). In addition we find a con-
tributior. from the back-scattering of the waves off
the opposite side of the spherical shell. Ignoring
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the back-scattered contribution therefore gives

the same index of refraction as was found in (3.14).
For scalar waves with a#0 we find an additional

scattered wave (for R>7'):

i WR

p© = _4miGpoadr’ e'“® (1=e2ivry.

W "R

Thus we find that the index of refraction, for a+0,
is again given by (3.17).

C. Spherical volumes

Thus far we have considered only cases in which
the source and observer were spatially separated
from the matter through which the wave propa-
gates. If the source or observer is immersed in
the scattering region, then the combination of
forward-scattered and back-scattered waves pro-
duces a change in phase of the final wave which is
not simply that given by the previously derived
indices of refraction. Specifically, we consider a
source of spherically symmetric scalar waves at
the center of a sphere of uniform density and ra-
dius ®, with the observer again located at a dis-
tance R from the center. Ignoring the coordinate
dependence of the speed of light, we obtain the
scattered wave from the volume of radius &,

b, =200 g f G+ [ dvg<v)<v-—)],

(4.6)

where

iw(R+20) _ eiW(’R-vlﬂ:) .

gv)=e

Suppose first that the observer is outside the
mass distribution, i.e., R>®. Then, in the large-

w®R limit (4.6) reduces to
{ WR
_41Gp, e [ ®? - ® LR < 6“>+O<%z'):|-
4.7

V=73 R ® T30

The first two terms represent the amplitude
change in the wave due to the dependence of the
surface area on the potential of the mass distribu-
tion. The third term is the one that arises from
the phase change due to an index of refraction.
From (4.7) one deduces an effective ir dex of re-
traction for scalar waves

) 2
“p=1 +§ T.'gu;g_ﬂ(i_'_z_ 6a) , ®R< R (4.8)

where the effects of back-scattered waves ..re in-
cluded.

Next suppose that both the source and ob- rver
are inside the mass distribution, i.e., ®>...
Then, in the large-wR limit (4.6) reduces to

b, = "G RR[R2+%(1_6¢1)+0(-$—2>], 4.9)

which implies an effective index of refraction

“n"=1+-2-”67”°(1-6a), ®>R.

3 (4.10)

Note that if a=-, then there is no phase change due
to the effective index of refraction. This is under-
standable since for a=} the scalar wave equation
is conformally invariant. A spherically symmetric
uniform distribution of free particles is described
in the interior by one of the Friedmann cosmolo-
gies, here taken to be at a stage of maximum ex-
pansion., But the Friedmann models are confor-
mally flat,'® and therefore one expects solutions

of conformally invariant wave equations to propa-
gate as in flat space-time, i.e., sharply along null
geodesics. Thus, one would not expect a phase
change, or a deviation from one of the effective
index of refraction, for the case in which both the
source and observer are immersed in a uniform
mass distribution, in agreement with our results.
However, if either the source or observer is out-
side the sperically symmetric mass distribution
then one generally expects some dispersion, as
the exterior metric is then the Schwarzschild met-
ric, which is not conformally flat,

For electromagnetic and gravitational waves the
general analysis is complicated by the spatial de-
pendence of the polarization and the lack of spheri-
cal symmetry of the waves. However, in the case
that both the source and observer are immersed in
the uniform density mass distribution, we can
make some simplifying statements. Consider the
electromagnetic wave equation (2.8). On an aver-
age over a volume of scatterers, with no preferred
direction, the average value of ¢ ,,; is %6“¢_, ;-
Alternatively, the potential of a spherically sym-
metric uniform mass density is 27Gpr?2/3, giving
¢4y =47Gpd,, /3=06,,¢,,/3. Thus within this vol-
ume A; satisfies the equation

(V2+uP)A, =4 DA, +30,, A, (4.11)

We can define a spacelike, transverse wave by
taking

Ay =(e,+V,EV/), (4.12)
where, to lowest order in ¢, y=¢'“®/R, and
where € is a constant vector. Comparing with
(2.4), we see that 3, to order ¢, satisfies the sca-
lar wave equation with the choice a=%. Thus we
have the same propagation properties as the con-
formally invariant scalar wave equation, i.e., no
deviation of the effective index of refraction from
one. This is to be expected, however, since the
electromagnetic wave equations are conformally
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invariant,?° and therefore the solutions should
propagate sharply as in flat space-time.?!

For gravitational waves we can construct poten-
tials from a scalar function J by projection as in
(4.12). It is clear from the wave equation (2.18)
that the scalar function 7 must again satisfy the
scalar wave equation (2.4) with the parameter
a=0. Thus the expected effective index of refrac-
tion for gravitational waves in the case of both
observer and source being immersed in the matter
distribution is (4.10) with ¢=0.

V. WAVE PACKETS

Up to this point we have considered only mono-
chromatic waves interacting with matter. We
next ask about the influence of the matter on the
propagation of wave packets. Ordinarily the speed
with which a wave packet propagates is the group
velocity dw/dk. For the indices of refraction we
have computed here, this leads to an immediate
difficulty. From (3.14), (3.17), and (3.20) we can
form the dispersion relations w(k) and compute the
group velocity dw/dk. For gravitational waves,
and for scalar waves with q <3, the group velocity
exceeds the speed of light. Fortunately, we can
described the propagation of a -function wave
packet in closed form. This will be sufficient to
show that causality is not violated; this also gives
a way of describing the propagation of wave pack-
ets of a finite time duration, by a superposition of
o functions.

Consider first our single-particle scattering so-
lution for plane waves. From the discussion in
Sec. III we find (by taking Fourier transforms)
that a plane-wave packet 5(¢’ - ¢+2z), satisfying
(2.20), incident on a single scatterer, gives rise
to a transmitted wave packet

a:oul_z+z)-zcn4}xw_:+znnw_z)

+f 8 (' =t+z +u)d—u],
r-z u

(5.1)
where the dependence of the wave packet on the
source variables (primed coordinates) has been
suppressed and where & indicates differentiation
with respect to the argument. The first two terms
indicate direct propagation of the wave packet
along the z direction with the velocity of light; the
last term is zero until there is time for the wave
packet to scatter off the mass m and then propa-
gate radially outward to the observer with the
speed of light. The first two terms can be com-
bined, using the arguments in Sec. IIT about the
coordinate dependence of the speed of light. This
gives a modified retarded time in the 6 function

6(t'=t+z=-2GmIn(r-2z2)),

which reproduces the first two terms of (5.1) when
“expanded” to first order in Gm. Thus we have
demonstrated that our single-particle solution is
consistent with causality, i.e., no signal is re-
ceived faster than the speed of light.

We next consider the same wave packet incident
on the plane of scatterers, and consider only the
scattered contributions, ignoring the potential de-
pendence of the directly propagated 6 function as
well as the focusing term. From (3.13), or from
the superposition of (5.1), we find

by =21GpAzH(t - t' - 2), (5.2)

where H is the step func‘i:»  » ined to be 1 if the
argument is positive :nit : argument is nega-
tive. Thus the initiai ‘n wave packet in-
cident on the plane prvuuces a O-function trans-
mitted packet plus a jump in the value of ¢ (from

0) of amount 27GpAz. Note that since
9 ~
&zps =271GpAzb(t' -t +2z),

energy propagation still takes place along the null
line t=z +¢’.

It is necessary that the plane of scatters be in-
finite in extent in order that (5.2) hold. If the
plane of masses terminates at a distance R from
the observer, then (5.2) becomes

d,=21GpAz[H(:-t'-2z)-H(t-t' - R)]

(R-2zy +2z(R—z)H

ARt (t—t'_'R)],

- ZnGpAz[

(5.3)

indicating that the step change in J is constant only
so long as there are masses in the plane to scatter
the signal to the observer at the speed of light.

If the mass density decreases gradually, as in
(3.8), then the vaiue t §, decays to zero after

the initial jump.

If we consider the other wave v .ullous in Sec,
I, we find similar behavior. For the case of the
scalar wave equation with a#0, related to (3.16),
we find a scattered contribution which is (1 -2a)
times (5.2) for an infinite plane or (1 -2a) times
the first term of (5.3) plus the second term in
(5.3) for a plane which terminates a distance R
from the observer. Note that the character of the
solutions is similar whether a< 3 or a>3, indi-
cating group velocities >c or <c, respectively.
Thus for the dispersion relations considered here,
the wave packet is so distorted that the group ve-
locity is meaningless, even if it is less than the
speed of light. So long as axial symmetry in the
plane is preserved, we find no net scattered elec-
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tromagnetic wave, as in Sec. III.

We next consider the case of spherically sym-
metric wave packets, which are solutions of the
scalar wave equation with a=0. As in the plane-

J
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wave case we start with an incident wave which is
a 6 function, i.e., an initial wave §=6(¢t'~¢+R)/R.
From (4.2) we find the final wave packet due to
scattering off a single mass m:

by =6(t'-t+R)/R +2Gm[6 (t'~t+R) 1n<7’R +T'R

R r'R+¥R

As in the plane-wave solution (5.1), the first term
in the bracket arises from the coordinate depen-
dence of the speed of light and can be combined
with the first term to give a direct propagation
contribution. The last term gives no contribution
until there is time for the -ignal to scatter off the
mass m and the scattvrd i, 51l to propagate to
the observer with the sp < of light.

For the case of a spherical § function incident
on a spherical shell, ignoring the terms arising
from the coordinate dependence of the propagation
speed and from amplitude modification due to the
geometric effects of the potential, we find from
(4.5) a scattered wave, analogous to (5.2), for
R>7r'":

- _8nGpgr'ar’ [H(t -t'-R)

H(t-t —R-27
¥s R (t-t"+R)? ~ }

(t=t'=R)?
(5.5)

The first term represents a jump in the value of
J by an amount 27Gp,A7’(r'2/R ) when the signal
has had time to scatter off the forward part of the
shell, which then decays with the typical decay
time of R. The second term represents a jump in
the value of J by an amount —27Gp,A7'/R when the

—

_871Gp, , ®3
%= 3R {H(t"t _R)[(t-t’+R)2

r_ &

_H(f--t'—R—Z(iz)Lm

_f“’b'(t’ - t+r’+u+p)du:,

> —%(l-Ga)(t—t’-R)—%a(R]} )

i PR (5.4)

r

signal has had time to back-scatter off the opposite
side of the shell, which then decays with typical
decay time 7’. Note that if R~7’, i.e., the ob-
server is close to the shell, then the two jumps
are approximately equal in magnitude, but oppo-
site in sign. Moreover, the first jump that occurs
agrees with the jump in § found in (5.2), except
that in the latter case there is no decay of the new
value of J since R, the distance to the source, is
infinite for incident plane waves.

A similar situation arises when we consider the
scalar wave equation with a#0. This gives rise
to an additional contribution to the scattered wave
from (4.5):

4 ’
P! =ic.%‘_1A_r[H(t_t/_R)_H(t—t’-R-—ZT')J .

(5.6)

When there is time for the back-scattered signal
to arrive, the value of ] jumps back to 0.
Spherical volumes are similarly treated. Start-
ing from (4.6) we find the scattered part of an in-
cident 6-function wave packet (ignoring amplitude
modifications of the incident packet) for R> ®:

-3(1-6a)t-t'-R)- %am]

(5.7)

The first bracket represents contributions which begin when the signal has had time to propagate directly
to the observer and the second bracket represents contributions which begin when the signal has back-
scattered off the far side of the spherical mass distribution. Note that the last two terms in each bracket
do not contribute when ¢>¢’+R +2®, indicating that the decay of the signal is then given by the first term

in each bracket.

If the observer and source are both immersed in the mass distribution, we find that the scattered 6-
function wave packet (ignoring amplitude modifications of the incident packet) becomes, for R< ®,

¢s=§Tr—Gp'Q{%R(1 —-6a)H(t-—t'-R)+H(t-t'+R -2(!7{)[(7—_712)2 -

3R

a.‘i

—H(l—l'—R—Z(R)[(t_t_,_R)—z—%(l— 6a)(t-t’—-R)—%a(R]}.

(RS
%(1-6a)(t—t’+R)—%a(R]

(5.8)



The first step function represents contributions
which begin when the signal has had time to di-
rectly propagate to the observer; the second step
function gives contributions which start when the
back-scattered signal off the forward surface of
the spherical distribution reaches the observer;
the third step function starts when the back-scat-
tered signal off the far side of the spherical dis-
tribution reaches the observer. As in the case for
R> ®, when enough time has elapsed so that the
observer sees all contributions, only the first
term of each of the last two brackets contributes,
and those describe the decay of the scattered con-
tribution in time.

One should note in (5.8) that if a=%, as in the
case of conformally invariant waves or as in the
case of electromagnetic waves considered as in
Sec. IVC, there are no scattered contributions un-
til the signal has had time to propagate to the
edge of the mass distribution and then propagate
back to the observer., For gravitational waves,
treated as in Sec. IVC, the appropriate value of a
is 0, giving a jump in the value of § of amount
27Gp,/3 which remains constant until a signal
scattered off the edge of the mass distribution
reaches the observer. Note that this discontinuity
in J is independent of R, the distance of the ob-
server from the source. Thus, so long as the ob-
server remains inside the uniform mass distribu-
tion, the scattered signal grows in relation to the
incident one (which falls off as 1/R) as the distance
from the source to observer increases.

VI. DISCUSSION OF THE RESULTS

We have found in this paper formulas for the in-
dex of refraction of scalar, electromagnetic, and
gravitational waves arising from the influence of
the gravitational fields of the matter on wave prop-
agation. These suffice to derive the various re-
fractive and dispersive effects that are normally
found in optics discussions. Throughout our analy-
ses we assumed weak gravitational fields, so that
the results are applicable only to situations in
which Gp/«? is small, covering most situations
one is likely to encounter. From an observational
point of view the results are not too encouraging.
For gravitational waves, the dispersive effects
would be small corrections to effects which are, if
anything, barely observable at present. For elec-

9 INDEX OF REFRACTION FOR SCALAR, ELECTROMAGNETIC,... 22117

tromagnetic waves, in which one might have hoped
to see small corrections, the analysis gives no
dispersion to the order calculated. Scalar waves,
unfortunately, do not exist except, perhaps, in
the Brans-Dicke theory of gravity and then their
interaction and corrections would be on a scale
comparable to those of gravitational waves.

In addition to computing the indices of refraction,
we have shown how the wave solutions predict a
phase change, if one is using a coordinate system
in which the speed of light is dependent on the
gravitational potential, and how the wave ampli-
tude is enhanced in passing through the matter dis-
tribution. We have taken the point of view that the
phase velocity in the limit of large frequencies
defines the speed of light, since high-frequency
waves propagate principally along null geodesics.
Thus the indices of refraction are the physical
ones which give rise to dispersive effects. The
amplitude enhancement, due to focusing, is not
considered part of index of refraction in our anal-
ysis, but must be considered in any analysis of
wave propagation through matter.

If the incident waves are not monochromatic, but
rather are finite duration wave packets, then one
cannot rely on analogies with corresponding prop-
agation characteristics of electromagnetic waves
in a gas of charged particles. To aid in such con-
siderations, we have solved for the effect of prop-
agation of 6-function wave packets in certain con-
figurations. Because of the assumption of weak
gravitational fields the results quoted are easily
extended to other configurations. In addition, the
knowledge of propagation character of §-function
wave packets is sufficient to describe the propa-
gation character of any wave packet, since any
function can be expressed as a superposition of 6
functions.

The results we have derived for gravitational
waves may be compared with previous dispersive
effects calculated using different mechanisms.”~°
For matter in states that are normally found in
astrophysical systems, the expressions we have
found give the dominant, albeit small, effects.
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