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Using the rigorous bounds of Li and Pagels and Okubo and the broken SU(3) X SU(3) model of
Glashow and Weinberg and Gell-Mann, Oakes, and Renner, we derive bounds on the

symmetry-breaking parameters which measure the invariance of the Hamiltonian and the vacuum under

SU(3). We also obtain bounds on the slope of the spin-0 form factor in K» decay. Our bounds on

Ao, though inconsistent with the experimental value obtained by a quadratic fit to the K» form

factors, are consistent with the value obtained by a linear fit. Some theoretical implications of our

results are discussed.

Li and Pagels' and Okubo' have derived some
rigorous bounds on the K» decay parameters:

A, = -0.11+ 0.03 . (4)

On the other hand, a previously reported value4

obtained by assuming that the form factors depend
linearly on momentum transfer is given by

m
'+ "'+ m

Ao = -0.024+ 0.02 . (5)

where

A(0) 1/2

Nj', 2(0)
(2)

N=
258 (mx -m„)'(mx+ m„)[(mr)'~'+(m„)'~']'3

(3)

Here f, (0) is the usual spin-1 form factor, A(0) is
the propagator function for the divergence of the
strangeness-changing vector current, and A, is
the slope of the spin-0 form factor for the diver-
gence of the current, all quantities evaluated at
the zero momentum transfer. Apart from the
standard assumptions of analyticity, unitarity,
and crossing symmetry, the most crucial assump-
tion under which these bounds are derived is that
the spin-0 form factor satisfies an unsubtracted
dispersion relation. " The parameter A, has been
measured experimentally, and for a quadratic fit
to the form factors the world average value' is

In order to compute the bounds, one needs to
know A(0) or an upper bound to A(0) in (1) and (2).
An estimate has been made for A(0) using the
broken-SU(3) x SU(3) model of Glashow and Wein-
berg' and Gell-Mann, Oakes, and Renner'
(GWGMOR} where the symmetry-breaking terms
transform as the (3,3*)+(3*,3) representation.
One gets A(0) = 2.04 m „'F,', where F„ is the pion
decay constant, E =94 MeV. From (1) and (2),
one then obtains f, (0)s 1.01 and 0.011 & A, c 0.024

[for f, (0) =0.85], the bounds for A, being in contra-
diction with the experimental results (5) and (4).
Although the experimental situation at the present
time is quite uncertain, ' it is desirable from the
theoretical point of view to reexamine the evalua-
tion of A(0). Among various assumptions, the
estimate of A(0} mentioned above is based on the
pole-dominance approximation. A priori, it is
hard to see how a refinemant in the value of A(0),
which we do not expect to be drastic, can lead to
bounds for A consistent with the experimental re-
sult (4}. This is confirmed by the work of Okubo'
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and others' who have made estimates of 6(0) under
different approximations. Thus, if relatively
large negative values bke (4) are confirmed by
further experiments, one may have to give up one
or more fundamental premises underlying the
derivation of (1) and (2) or conclude that the
QVfQMOR model is incorrect.

The purpose of the present note is twofold.
First, using (1) in conjunction with the GWGMOR
model we derive rigorous bounds on the symmetry-
breaking parameters. It turns out that these
bounds allow both the QMOR-type solution' as well
as the type advocated by Brandt and Preparata
(BP).' We find, however, that in the case of the
BP-type solution where the Hamiltonian is approxi-
mately SU(3)-invariant the vacuum cannot be ap-
proximately SU(3)-invariant. Secondly, on the
basis of the QWQMOR model we obtain an upper
bound for a(0) by taking into consideration the de-
partures from the pole-dominance approximation,
to see if small negative values such as (6) are
consistent with the theoretical bounds in (1) and

(2)
We start with the Hamiltonian density for the

GWGMOR model

H(x) = H, (x) + e,u'(x) +»,u'(x),

where H, (x) is invariant under SU(3}x SU(3) and
u'(x) (i =0, 1, . . ., 8) are the scalar densities which

belong to the (3, 3~)+ (3*,3) representation of
SU(3) x SU(3}. We define the following two-point
functions:

d'x&O~ r(S „A"„(x)S„A'„(0))~0&,

Z, = i ', d'x&O( Z'(S„V„(x}5„Vp(0))(0&,

where A „(x) and V"„(x) (n = 1, 2, . . . , 8) are the
usual octet of axial-vector and vector currents.
As noted elsewhere, ' from Eqs. (6) and (7}the
following exact relations can be derived:

Separating out the single pion and kaon contribu-
tions to I33 and I~, respectively, we write

I~ =F„'m„'(1+5„),

I~=F» m» (1+5»},

(ll)
(12)

i~g ~0 1~g o0 (13)

We now proceed to derive bounds on the sym-
metry-breaking parameters a and b. Eliminating
y and 5 from the relations for I», I~, and d, (0),
we get

sa(s u„) (14)

Now for the physical solution we expect -1 & a ~ 0.
Equations (14) and (1) then give the following rela-
tion:

a' [3(2I„+I„)-2Nf, '(O)]

+2a[3(I -I„)+Hf,'(0)]+4Nf, '(0) «0. (18)

Using Eqs. (11) and (12) we obtain from (15) the
following exact bounds for a:

where 5„and 5~ are related to the multiparticle
intermediate-state contributions, and EE is the
kaon decay constant. Since the contribution of any
intermediate state to I» and I~ is positive-definite,
we conclude that 5, & 0, 5~& 0. Now from well-
known arguments suggesting dominance by nearby
singularities, and the success of the hypothesis of
partially conserved axial-vector currents (PCAC),
we believe, especially for I„, that pole dominance
is perhaps a reasonable assumption. To be gener-
ous, however, we shaD adopt in the following the
weaker assumption that the continuum contribution
does not overwhelm the contribution from the sin-
gle-particle states. In particular, we assume that
5, & 1, 6~ + 1. We emphasize that this is a rather
weak assumption, and in practice one does not ex-
pect 5„and 5» to be much more than 10-20%. With
considerable reasonableness, we then expect

I„=y(1+a)(l+ 5),
I =y(1--,' )(ia- ,'5), -
I88 =y(l —a —5 +3ab),

H =- ~(0) = ~ya5,

(8)

D+6 D- B
2A 2A

where

A = —,'[2m~n'f, '(0)(1+5»)+ 1+5,] -Itf, '(0),

B= [ 3nmf, '(0)(1+5 )-1-5„]+Rf,(0),

S 2
reer j Y 3~0~0 yye, go

with t, =&0(u'(0) (0& and $, = &O~u'(0) (0&. We also
note that the GMOR solution for the symmetry-
breaking parameter a is given by with

D= 3{[menzf, ~(0)(l + 5»)+ 1+5„-Rf (0)]

4(1+5 )(i+5 )m'n2f 2(0)P"

2(m„' —m»')
+ 2m~

m Nm=~m„' Z, 'm„' ' (18)
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Using the experimental value n =1.28, m =3.659
and the fact that the Ademollo-Gatto theorem" re-
quires f, (0) to be close to unity, in the exact pole-
dominance approximation (6» = 5„=0)we get the
following bounds for a:

1.0. -

-0.925 & a & -0.071, (19}

where we have taken f, (0) =1.0. However, if we
use instead the weaker assumption (13) for 6, and

5», we get the absolute bounds

-0.964 & a & -0.034 . (20)

Note that both the GMOR and BP solutions, where
a=-0.89 and a=-0.1V, respectively, are consis-
tent with (19) and (20).

To obtain bounds on b we eliminate y between
I» and A(0) and use (1) and (11); we get

FIG. 1. The physically allowed values of a and b are
indicated by the shaded region. The allowed region in-
creases as we increase 6„ from 0 to 0.1.

9a5 Rf, (0)
4(1+a)(1+5) 1+6, (21)

The physical solution for 5 is expected to lie be-
tween 0 and -1; we can therefore write (21) as

b & -0.104, O„=O

b & -0.095, 5„=0.1 (23)

4(1+s)Rf, '(0)
9a(1+5 ) -4(1+a)Rf (0}

(22)

Given 6„f, (0), and a the bounds on 5 can be cal-
culated from (22). We have calculated the bounds
on 5 by taking f+(0) = 1.0, taking two different val-
ues for 6, (0 and 0.1, respectively), and varying
a between 0 and -1. The allowed values for 5 are
given by the shaded area in Fig. 1. The shaded
area increases as we increase 5„ from 0 to 0.1.
In particular, for the GMOR model (a= -0.89) we

get

and for the BP model (a = -0.17) we get

b& -0.823, 5, =0

-0.809, 5„=0.1 .
(24)

We note that in the BP model where the Hamilton-
ian is approximately SU(3)-invariant the vacuum
cannot be approximately SU(3)-invariant.

We next turn to the derivation of bounds for Ap,

the slope of the spin-0 form factor. For this pur-
pose we need an upper bound for A(0) in (2). Using
Eqs. (11}, (12), and (14) we get

P,~m„m[3a(2- a)(I+6„)—6a(1+a)m cd+ (0)(1+6»)]
2(1+a}(2 —a} (25)

Now for the physical solution, since a&0, the
maximum value of A(0} is obtained when 6» is
maximum and 5, is minimum. Using the bounds
from (13)with 6» = 1 and 6„=0, we get

~m -
A (0)4(m+1} A, +2 (~ 1)

-1
Nf 2(0)

1

(29)

The relation (29} implies the following bounds

2(1+a)(2 —a)

(26)
(0)

Nf+ (0)
~ 4(m+1)'A, +2 ~ -1~m+1

Numerically for the GMOR solution (a= -0.89) we
obtain Am~(0}

Nf, (0) (30)

(0) = 26.051'„'m „', f (0) = 1.0

(0}= 18.749E.'m„', f, (0) =0.9 .

(27)

(28}

Using the estimates of g (0) from (27} and (28},
we get from (30) the following bounds for A, :

In order to obtain the bounds on A, we note that
we can write (2) as

0.058~ A, & -0.022, f, (0) =1.0

0.057~ Ao~ -0.020, f, (0)=0.9 .
(31)

(32)
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Both the bounds (31) and (32) are inconsistent with
the experimental value for h, in (4) and are barely
consistent with that in (5). We could have obtained
bounds for Ap by choosing the BP value of a in-
stead of the GMOR value. It can be readily
checked that the BP estimate of a gives bounds on

Ap which are in even wo rse agreement with the ex-
perimental results in (4) and (5). Therefore, with-
in our framework the only possibility for a rela-
tively large and negative value for Ap is when

(0) is about an order of magnitude larger than
in Eqs. (27) and (28). This is very unlikely be-
cause this requires the kaon pole dominance of I44
to be very badly violated and 5~ to be much larger
than 1. We can understand '.his by putting the ex-
perimental values of A, in (29) and then calculating
hmax(0) which via (25) gives bounds on 5». We

find

6 1.12,", , A = -0.024+ 0.02 (33)

~rc +6'.85 Ap =

Such large violations of kaon pole dominance as in
(34) are unwarranted. Therefore, if future experi-
ments confirm a relatively large and negative val-
ue for A, as in (4), we believe that we will have to
give up either one or more of the assumptions used
in the derivation of the bound on A, in (2), or the
GWGMOR model on which our estimate of 6(0) is
based.

I am thankful to Professor V. S. Mathur for sev-
eral discussions and a critical reading of the manu-
script.
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