
PHYSICAL REVIE%' D VOLUM E 9, NUMB ER 7 1 APRIL 1974

Hard-photon theorems for radiative pion-proton scattering*
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Low's prescription for imposing gauge invariance is used to construct a reasonably gen-
eral form of the amplitude for ~ P mopy, excluding magnetic moment radiation from the
internal strongly interacting structure. The explicit 0 dependence of the amplitude is ex-
hibited and the breakdown of Low's result (that the first bvo terms in the expansion in k are
model-independent) is examined in the hard-photon regime. We then consider possible hard-
photon theorems and a program to determine unknown form factors in the off-shell scattering
amplitude, in the proton magnetic moment, and in the radiation of the resonant ~p system,
~e.g. , magnetic moment radiation from the A(1236).

I. INTRODUCTION

The explicit functional dependence on photon

energy k of the amplitude" and cross section'4
for nonresonant radiative scattering is restricted
by eurx ent conservation in the soft-photon limit.
Specifically, Low' has shown that when the radia-
tive amplitude is written in the form

K„e"= (a/k) b+c+k + ~ ~,

where each term (power of k) is separately ex-
plicitly gauge-invariant, the first two terms are
exactly determined by the elastic amplitude and
the static electromagnetic properties of the ex-
ternal particles. (e" is the radiated photon's
polarization). Burnett and Kroll' have obtained a
similar result for the gauge-invariant radiative
cross section of unpolarized particles in terms of
the unpolarized elastic cross section. In the limit
k- 0, only the first two terms of gg„&" contribute,
and the amplitude and cross section are model-
independent. These results are frequently re-
ferred to as soft-photon theorems. For high-ener-
gy photons (hard photons), off-shell effects in the
two-body scattering amplitude and at the electro-
magnetic vertices of the external particles which
in Low's treatment contribute to the ck+ ~ ~

terms are expected to become important. (As in
Ref. 1, "elastic" denotes no energy loss to the
electromagnetic field in the scattering process
while the off-shell amplitude is the corresponding
two-body scattering amplitude which conserves
energy and momentum but not mass. )

Resonances in the elastic amplitude present ad-
ditional problems. First, the electromagnetic
properties of the resonances' "are expected to
contribute to at least order ck+ ~ in 5K„e". Spe-
cifically, it has been proposed' ' that studies of
resonant m'P- m'Py scattering around the first xpP

resonance could lead to a determination of p, (A"),
the magnetic dipole moment of the b."(1286).

['Situations where the electromagnetic properties
of resonances contribute to order (a/k) or b in
Low's treatment have been discussed elsewhere"
but here we will assume they contribute to oxder
ck+ ~ ~ ~ .] Second, a rapid energy variation of the
elastic amplitude is expected to limit the range of
photon energies for which soft-photon theorems
may be expected to yield useful predictions. In
Low's treatment the coefficients a and b of Eg. (1)
contain the elastic amplitude T,(s, f ) and its de-
rivative, dT, (s, f)/ds, respectively, as multipli-
cative factors. Here s is the c.m. scattering en-
ergy squared, s is an average s corresponding to
emission of a photon of energy k before and after
a two-body scattering process, and t is the square
of the momentum transfer to the nonradiating col-
liding particles (taken to be without charge or
magnetic moment in Low's treatment). Now s is
a function of k, so To(s, f ) is in turn an implicit
function of k. Third, Low's result that the first
two terms of gg„~" are model-independent is fre-
quently interpreted as implying the use of on-shell
kinematics (all particles in the two-body scatter-
ing process on their mass shell) in determining
T,(s, i). In fact, the t dependence of T,(s, t) only
occurs through the c.m. scattering angle 8. But
cos L9 is a function of the virtual mass of the off-
shell particle, "which is in turn a function of k.
(This point will be further discussed tn Secs. II
and VI.) Thus a and b of Eq. (1) may also be com-
plicated implicit functions of k for k-0 due to the
choice of kinematics and in order to demonstrate
gauge invariance in each order of k of the ampli-
tude. This implicit dependence will be minimal
for nonresonant s-wave radiative scattering, but
for resonant mp-, spy scattering the rapid energy
variation of the elastic amplitude and the assump-
tion of on-shell kinematics will induce corrections
to the (a/k)+ b terms in Low's treatment which are
of order ck+ ~ ~ ~

Fischer and Minkowskio have argued that ck cor-
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rections in Low's treatment due to a rapid energy
variation of the elastic amplitude may be of the
same size as those due to internal-structure radi-
ation of the vP system [in particular 6"(1236}
magnetic-moment radiation, which is also ex-
pected to contribute to order ck]. They have
shown how to treat this problem for resonant zpP

—wPy scattering by replacing the derivatives of
Low's treatment with finite-difference ratios.
However, after considering possible off-shell ef-
fects, they start with the elastic amplitude and on-
shell kinematics; hence, their result is only ex-
pected to agree with data in the soft-photon limit.

The purpose of this paper is to consider contri-
butions to the ck+ ~ ~ ~ terms of 9g„e" except those
from the internal structure of the mp system.
Therefore, we generalize the results of Refs. 1
and 9 by applying Low's procedure to the off-shell
xpP amplitude to find the form imposed by current
conservation on the unknowns in the charge part of
gg„~". The proton's magnetic-moment terms are
then added at the end.

Our result is rewritten to exhibit its model de-
pendence. The model-independent part is of the
form (a/k)+P as obtained in Ref. 9. The coef-
ficients n and P contain the elastic amplitude and
the finite-difference ratio analog of its derivative
with respect to s, respectively. But the elastic
amplitude is evaluated at the exact c.m. scattering
energy. Thus, while the form (a/k)+P satisfies
over-all gauge invariance, (o./k)+ P are not in-
dividually gauge-invariant. When this form is
compared with Low's result, it is found to contain
Low's result plus all higher order (in k) correc
tions to it. Thus, this form yields the model-
independent part of SR„&" for all k. The model-
dependent part is of the form yk, where y is an
implicit function of k.

We call the result of these considerations a hard-
photon theorem, in the spirit that, given a model-
independent theoretical calculation or an experi-
mental evaluation of the unknowns in the off-shell
amplitude and electromagnetic vertices of the ex-
ternal particles, a difference between the predic-
tions of the hard-photon theorem and data for
k» 0 would be evidence for internal-structure
radiation. In Sec. V the functional dependence of
the unknowns on the external variables is extracted
so that later a program for experimentally deter-
mining the unknowns from studies of np- +y scat-
tering may be considered. In Sec. VI we consider
the theoretical status of the unknowns in the off-
shell amplitude and conclude that for a range of
k» 0 a kinematically corrected hard-photon theo-
rem exists which is nearly model-independent as
far as the necessary s-dependent corrections to
the off-shell amplitude are concerned. A program

to test these considerations is also suggested,
based on the expected properties of the internal-
structure radiation.

II. KINEMATICS, NOTATION, AND LOW'S
PROCEDURE

In this section the steps of Low's procedure are
reviewed in a general way. The specific notation
for np- spy scattering is introduced, and most of
the notation which will be used in later sections
is collected together. As noted in Ref. 1, the ex-
tension to other radiative-scattering problems is
straightforward.

Four-vectors for radiative wP scattering are de-
fined as

11(q&)+P(P&)- II(qt)+P(P&)+y(k),

where q, =(E, , q, }, etc. The four-vectors for the
corresponding off-shell two-body scattering pro-
cess are defined as

II (6,)+P(M,.)- II (h&) +P(M&) .
The virtual masses are

n, ' = (q, —k)' = It' —2q, k,

at'=(qt+k)'=p, ' 2+q.t,k
M, '=(P, —k) =m' —2P k,
Mt' = (Pt+k) =m'+2P k,

with on-shell values of & and M of p. and m
(see Fig. 1). The off-shell scattering amplitude is
to be evaluated at

2s;=Q,

-(p, +q, )'

2+ p2+2p q

2
sy =Q

tt, =(p,. -pt)'
= 2m —2p,. 'pf,

=2M —29']'Cy2

where ~s, (Mst ) is the total c.m. energy when a
final (initial) particle is off shell, and t~ (t, ) is the
momentum-transfer squared when the pion (pro-
ton) is off shell. Now s=&(s, +st), so that s, —s
=s-s~=2Q~ k=2Q, k. A slashed variable, e.g.,
g, is defined by Q=y @=yoga —y Q, etc.

When the initial (final) pion is off shell,
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co«=(2Ep, E, +ip-2m')/2I pal i peal, (»)

b«P; (Pz) clearly [Fig. 1(f)] depends on the ini-
tial (final) virtual-pion four-momentum, n,. (h~ )
which in turn depends on k. When the proton is
off shell a similar expression is obtained from

In the case of elastic scattering (p, ~

=
~ p~j

J
and

cosa„=1+&,/2
~ p,

In general, the mP amplitude Y is a function of

g, , q&, I;„,t~ and the virtual masses 6, , 6& and

M, , Mz. On one hand, when the variables are
specified we suppress all but the virtual mass
actually off shell and t is understood according to
the preceding paragraph when no confusion can
result. The symbol T(s, t, . . . ) is used for this
case. Thus, the elastic amplitude and its constit-
uents are To{s)=-A{s)+QB{s). On the other hand,
symbolically the off-shell amplitude is T(6, M),
T(b, ), and T(M) when any of the particles, pions
only, and protons only, respectively, can be off
shell; g and t are to be understood according to
the above discussion. In general, 6 and M repre-
sent 6, , A~ and M„Mf, respectively; otherwise
the virtual masses are explicitly specified.

Low's result rests on the fact that contributions
to &e" may be divided into two types of terms:
first, terms [Fig. 1(a)-1(d)] in which the photon
is radiated from the charge or magnetic moment
of an external particle (we use E„ for these
terms), and second, terms in which the photon is
radiated from the charge or magnetic moment of
the internal structure of the colliding system. %'e

use I„ for these terms. %e use the following no-
tation in this and later sections to describe specif-
ic pieces of the total radiative amplitude gg„e".
The contributions from the charge radiation of the
pion, proton, and total magnetic moment radiation
are M„', M'„, and M„", respectively. According
to the preceding discussion M„=E„+I„,where
a=m, q, or A.. So ~ =Mp+M'„+M~=M„+Ip~,
where M„=M„"+M~ +E~~ is the contribution ob-
tained from Low's prescription. %e also use the
symbol E„ for the total proto contribution, i.e.,
E~ =M'„+E~~. Here I„"contains, e.g., the as-yet-
unmeasured magnetic-moment contribution from
the g [Ls(1236)] [ Fig. 1(e)] as well as other gauge-
invariant unknowns.

In these terms Low's prescription involves the
following steps:

(1) The sum of terms contributing to E„ is writ-
ten down. The most general form of T(s, i, b, , M)
is used to describe the following (or preceding)
two-body scattering process. But s depends on
whether photon emission occurs before or after
scattering. So Y is taken to be a function of s,

q))

-&Es

(f)
FIG. 1. (a)-(d) indicate the 1dnematic variables intro-

duced to evaluate the bremsstrahlung from the colliding
particles E&. The initial (final) four-momenta of the
pion andproton are q& (q&) and p& (p&), respectively.
The n'p off-shell amplitudes 'F~ and Tg~) are defined
in the text, and are evaluated at sf (s&), vrhen one of the
initial (final) particles radiates, and at t& (t~) vrhen a
pion (proton) radiates. (e) is the Feynman diagram
corresponding to photon radiation from the 6++ (1236)
formed as an intermediate state in the reaction x+p

x+py. The magnetic-moment radiation from such
diagrams contributes to I &~. (f} indicates the variables
of the off-shell two-body scattering process vrhen the
initial pion is off shell. Because p~ =-4~

~ E&&
= g f +

+ m2}~~2 in the c.m. system of the colliding particles.
These are the quantities used in Eq. (2a) of the text for
this case.

the t to the pair of nonradiating particles, and the
virtual masses of the radiating particles.

(2) The quantities multiplying T are rewritten to
explicitly exhibit their 1/k dependence in each
term of E„. However, Y itself depends implicitly
on k.

(3) Gauge invariance is imposed to determine
the form of I„" and I~» i.e.,

or 0"M„"=0, 0"M'„=0 separately. This follows
since M„ is separately gauge-invariant. The Dirac
equation is used when nucleons are involved in
this step, and the derivatives of k"E„', k"E'„are
evaluated at k =0.

(4) I„',I'„or I„"e",P„s" are recognized from step
(3)

(5) E„",E'„ is expanded in an explicit power se-
ries in k with derivatives evaluated at k =0 and
added to I„",P„ to yield the explicit 0 dependence of
(M p

+M'„)z" .
The separately gauge-invariant E„"terms may

either be carried through the above steps along
with the charge terms or added at the end after
being developed in an explicit power series in k.
Dirac's equation may be used when nucleons are
involved in this step. Derivatives of T(a, M) with
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respect to b, , M (evaluated at k =0) generated in
step (3) are exactly canceled from the k term in
step (5), and M„ is then determined solely by the
static values of the electromagnetic vertices,
T,(s) and dT,(s)lds, as k-0. This is Low's re-
sult.

In Secs. III and IV the derivatives in Low's pro-
cedure are replaced by finite-difference ratios
defined as follows: Let F be a scalar function of

the independent variables and let

F(s, x) —F( s, x)
DgF($ x) = $-$

F(s, x) —F(s, x,)
2 FL$2 &)

+0

(3)

where x is 6 or M, and xo is p, or m. Then, e.g.,
when the pion is off shell,

F(s, , &, ')-F(s~, &, ') -=[F(s,&, '}-F(s,&&')]+[F(s,&&')-F(s, u')]

-([F(sz, & ) —F(s, & )]+[F(s,& ) —F(s, g')])
= (s( —s )D, F(s;, 4y )+ (s —s~)D, F(sy & 6( )+(h~ —p )D2F(s& h~ )

—(a, ' —p'}D, F(s, a, ')

=k'Q;[D, F(s(, 4z'}+D,F(sz, b(')] +2' kD, F(s, bz')+2q( kD, F(s, 4('), (4)

where the last part of E(l. (4) results when s, —s,
etc. are expressed in terms of the four-vector de-
fined early in this section. A similar expression
with 4- M, p. - m, q&-P&, and q,.—P,. holds when
a nucleon is off shell.

Finally, since the finite-difference ratios are
in turn scalars, this procedure can be extended to
include the equivalent of second derivatives, i.e.,
D, F or D, D2F.

III. PION BREMSSTRAHLUNG

When one of the pions is off shell T(b } contains
no new invariants, and when the final pj.on is off
shell

T (s( (t(, &&hy ) =-A(s(, tp &4y )

+2(f[ +4.„,)B(s ~( &y')

= -A(s, , r&q') +(Q'+ —,'}f}B(s(
&

r&~')

=T,(s, , &~')+ ,'IfB(s(, S~'), (5-a}

where To=-A+gB Then. , (2q, —k) ~ s
+T (sq &b( ) —p.

(6)

=If+)~, fc} =-,'(g(+)~}, and so g. +4'.„,=2i(}+/.
Equations (5) exhibit the explicit k dependence
of T(b, ). The invariant scalar amplitudes A(s, f, bP)

and B(s, t, &') are the extrapolation off shell of
the elastic amplitudes and hence are implicit func-
tions of k.

The product of the vertex function and the pion
propagator at the s-y-(( vertex (k' =0, e k =0) has
been shown (page 975 of Ref. l) to introduce no
unknown form factors as a result of the Ward"-
Takahashi'~ identity. (An equivalent proof is given
on page 526 of Ref. 9.) This point will be further
discussed in the Appendix. We suppress the pion's
charge e„until the final result. The Dirac equa-
tion is not used, so the nucleon spinors are ig-
nored here. We now follow the steps of Low's
procedure.

Step (l):

(2' + k) eE„"s"= » T, (s;,hz')

T (s&, 6(') = To(s&, b, , ') —~1fB(s&,6,. '), (5b) Step (2):

for the initial pion off shell. This follows since,
e.g. , when the final pion is off shell, fI „,=gz

Z„"e"= T, (s(, b.I') T(sq, a( ) '-. (7)

Step (3):

I „'k~ = - I ~E„'

= —[ T(s S(~ ') - T(s~, e(')]

=-[To(s(&r(f ) To(sf &6( )] 2ff[B(s(,s&~)+B(s&&6( )]

= —k Q( [D,T,(s, , r&z')+D, T,(s&, b ('}]—2' kD, T,(s, r z ')- 2q, kD,T,(s, 6(')- -,'}(([B(s(,b&*) +B(sz, b(')].
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Step (4):

I"s('=-s ~ Q([D,T(s(, A~') +D,T,(s~, A(*)]-2q~ sD,T,(s, &~') -2q, sD,T,(s, A(')

2ff[B—(s(, Ay'}+B(s~, b, (')J .

Step (5): Expanding Eq. (7) with Eqs. (3) and (4) and adding Eq. (8) yields

M„'s" e, =T (s I — ' 'T (s, )I~ e (',(lftB(s, )+sf B(st)) — t), (D T Ist, tst')+DT( ,st'e)}t
P %

q k 0 'l

q k 0

+2q& s[D,TO(s(, AI') -D,TD(s)A&')]

+2q, s[D,T,(s~ p
A(') D,T,(-s, b,(')J)

+ egqq kg&D, B(s(,A~') —q, ~ kg(D, B(sz, b(')j,

(8)

with

qy' sg —qy
' k(f q( ' sg —q( ' k(p

q kQ
~

the initial proton is off shell,

T((syt „,M() =TD(s(, f„,M()A (M()

Due to the simplicity of T(A}, no approximation
or expansion was necessa'ry other than that re-
quired in step (3). In its most compact form,
Mp" is the sum of Eqs. (7) and (8). Then, M„'s"
is explicitly of the form (a/k) +P, where a and

P contain T(b, ), but are not explicitly gauge-in-
variant. Given a knowledge of T(A) and using
off-shell two-body kinematics, this expression
gives the exact form of M„'E" for all k. When
T(A) in Eq. (7) is expanded by Eqs. (3) and (4),
then a term of order yk is naturally generated, as
may be seen in the last term in curly braces of Eq.
(8)

IV. PROTON BREMSSTRAHLUNG

When one of the protons is off shell T(M) be-
comes more complicated and takes the form

T, (s„f „,~)=A, (M, )T,(s„f.,~)
+A (M~)T,'(s, , t „MI), (10a)

with A, (M&) =(M&~z)/2M( when the final proton
is off shell, +~P&+lt, andMq=(M~')' '. When

with

+To(s(, t B p M( }A (M(), (10b)

M( =P( —jtp M( =+(M( )i

and

A, (M() =(M(+&, }/2M, .

TD(st t p M ) = -A(s, t
p M) +QB(s p t p M) is the off-

shell extrapolation of To(s, t ), while To (s, t, M)
=-A'(s, t, M}+IAMB'(s, t, M) and To(M)=T,( M).(4-
The projection operators A, (M) satisfy the rela-
tions A, '(M)=A, (M), A, (M}Av(M) =0. The free
nucleon propagator can be written as 1/(M-m)
=A+ (M)/(M-m) —A (M)/(M+m), to reduce alge-
braic steps. The explicit k dependence of T&, T&

is contained in the projection operators while, as
before, A(s, t, M} and B(s,t, M) are implicit func-
tions of k.

The H-y-N vertex with one proton off shell also
takes a more complicated form. The charge cou-
pling is still exactly known'' " (see Appendix), but
E„"s" now contains unknown form factors, F,'(M).
The total amplitude for external proton brems-
strahlung is then

Esse =p(Pt ) t(e(l! Tt (s, , t „,M }+Tt (st, t „,Mt', tts !fan) s(Pt),F,(Mg } 1 F,(M, )

where F,(m) = ((,p
—1 is the static value of the proton's anomalous magnetic moment. We consider M'„s"

and E„"&"separately.
The first step of Low's procedure is to write down the amplitude for the charge radiation from the ex-

ternal proton lines. We obtain, using 1/(M -m}= A, (M)/(M —m} —A (M)/(M+m) and the properties of the
projection operators,

Bess= (Pt) St + T (s, ,}let) — " 'T'(s, , Mt} ~ T (st, }lf', +" ' —T (st, ,M )
' '' (Is"(t»}.

(11)
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Step (2} is implemented by inserting in E»&e the ex-
pansions

A, (M~) 1 (M~ am) (g» +m)
Mf + m 2Mf 2Mf 2Pf k

A, (M;) 1 (M» am} (g(+m)
Mj + m 2Mj 2Mj 2P; 'k

1 s+2 1 3(p»'k)
+ +— +'''

2M j Qpj' k 4m2 8 m4

2Mf .2Pf .k 4m2 8 m
X(4f(+m) . (12b)

and

x(gq +m) (12a)
With the use of the Dirac equation to evaluate
u(P&)g(Q+m) =u(P&)2P& k and (g(+m}gu(P()
=2P, ku(P, }, step (3) of Low's procedure becomes

k&I~ — ku E
P P

= —D(&s)I[T(&, , M&) —T (s&, M, )]
2

—,+—, '' ' [T ( M ) —T, ( M&)]
1 k P~ k 3 (Pg k)'
2 Mf m 2

1 )f P('k 3 (P( ~ k)
~ [ T,(s„M, ) —T,' (s&,M, )] ——— ' , —— ' , ~ . . .)}s (&& ) .

2 j m 2 m

Expanding the first term in square brackets by use of Eqs. (3) and (4), step (4) becomes

2'„ss = —si(&s)I& Qs [D, T (&, , M&) +D T (s&, M )I ~ 2&s ' &D T (&M&)+2&, &D T (2 M, )

+——— +— + [ T (s(, Mi )-T' (s( M )]
1 ]f P~ e 3(Pq s)(P~ k)

Mf Pyg2 2 2 m& p p y f

+IT ( , s(s) M— (T&Ms/)]'2 — ', —
2 ( ', )(', ) ~ . }s(&;).

Step (5) follows immediately after using the Dirac equation to evaluate

u0)q)(f(+q+m) =u([[&~)[2P» +s(]»lf

and

Qf, +m)gu(p( ) = (2p;. a+g)f)u(P(),

and when the expansion [Eq. (12)] is inserted in Eq. (11) and multiplied by the corresponding 2p k, then all
but the first four terms in I„'c"cancel. This leaves

APAC
E" =u(p»&) TD(s( &My) —TD(sy &M( )

' +s ' Q( [D(TD(s( &My ) s&D(TD(sf &M( )] 2p& ' EDBTD(s&M» )
-Pf Pj

—2p~ ~ eD,T, (s&M~)+ TD(s(&M~)+(fg — ~+ — ~ + ~ ~ [Z' (s(,M~) T (s, , M )]

—[T,(,M, ) —T,(*,M, )],~ . . .) &2 T ( M )
&2

}„(P)
1 3Pj ~ k

4m' 8 ~ p f p j 2
— Q j ~

Now expanding the first term in square brackets by means of Eqs. (3) and (4) and comparing the series in
the last two terms to the expansion [Eq. (12)], we obtain

Mqe" =u(pq) T,(s, ) —T,(s~)

+ —6 ' Qj DjTp sj y Mf +DyTp sf, Mj +2pj e D2Tp sf pMj D2Tp $y

+2P~ F[D,TD(s( &M~ ) DDTD(s&M~ }]+ -T (s(,M,.) —T (s~, M, )
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[T' (s, , Mz) —T,' (s, ,+ )] —[7',(sj, M, ) —T,' (sz, M, )] ' ju ()), ) .
~ ~

~

(13)

Each of the curly braces represents a term in the
expression (a/k) + P+yk.

When, say, the final proton is off shell, the
magnetic moment term E„e"becomes

u(Py) [A+(Mq)FR (Mq) +A (Mq)F2 (Mq }]

1x T& (s&, Mz ) u(P; ),
f m

and a similar expression results when the initial
proton is off shell. The unknown form factors
F,'(M) have been discussed by several authors. " "
Clearly F,'(m) = }],~

—1, the anomalous magnetic
moment, while F, (m) is uncertain, "but F, (M)
=F',(-M)." Using the properties of the projection
operators, we write, for E&&",

u~ ) F+(+)T (s, ,+)— F ) ~~(s, ,M

+ F,"(M, )T,(s„M,)
' ' E;(M) -)To(s, , M, )

'
2

u(p, ),A, (M,), A (M, ) S'g f (15)

where

(p )~~
A, (My)

(p )
[(M~ ™)S')i+2m/~]

u(p ) (1+1)m(ek+(II)
Mza(-m} f [+s (-m)]M& ~

4P& k 2m

A, (M, )]fg [(M; am)S'1}+2m(j}, ] m(((](, —&it)

and m(jtz =pf ~ k]t —
p&

~ eI]I and m(j(,. =p,. ~ ks'- p,. c}t[. Using the indicated approximations to the operations in
Eq. (15) and using Eqs. (3) and (4) to project out the b term of Eq. (1), then Eq. (15) may be rewritten as

E„a =()~)I "~ (p —1)T,(s, ) —T(sl ) (w~ —,)) '
Iu(), )

+u(py) (@+fg)D~~(My)To(s(, My) — s[F~(M~)To(s(, M~) -F2(M~)Z"(sq M )]

+DsFI (M, )T~(s~, M() (A' —(p', ) +[Em (Mq ) To(s~, Mg) E~ (M, )T—o (s~, M( )] '
u(pq)4m~

(16)

T(M) is more complicated, and it was necessary
to expand explicitly in k at step (2) the factors
multiplying T,(s, M) and T,'(s, M) in M'„a". The
expansion was carried out to terms of order k',
and the terms were carried through to step (4),
where the corresponding counterterms were
recognized. This procedure indicated the form of
the counterterm tor au orders of k. At step (5)
the higher-order counterterms were canceled,
but a power series multiplied by the gauge-in-
variant quantity y'g appeared. The leading terms
in the series are the Dirac magnetic moment
terms, i.e. , (]fi(/2P. k)TO(s) The Dirac magn. etic-
moment terms were extracted and the remainder
recognized as generators of power series with
leading terms of order yk. If the expansion [Eq.

(12)] had been terminated after terms leading to
the Dirac magnetic-moment terms, as is usually
done, then 1IP„e" would be explicitly of the form
(n/k) +P, where n and P contain T(M) but are not
explicitly gauge-invariant. When T(M) is ex-
panded by Eqs. (3}and (4), terms of order yk
are naturally generated from the Dirac magnetic-
moomnt term itself. So there are two sources of
yk and higher terms in M'„e&. One source, which
is basically due to the spin of the proton, arises
when gauge invariance is imposed on all orders
of k. The other source arises in the same way
as for the spinless pion. E&c" may either be added
to AP„e" in the form of Eq. (15) or after manipula-
tion to extract the terms of order k in the form of
Eq. (16) to yield M„s". Now, given a knowledge
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of T(M) and E,'(M) and using off-shell two-body
kinematics, Eqs. (13}plus (15) give the exact form
of M&f", the total proton contribution in Low's
treatment, for all k.

V. DISCUSSION

We now consider the result of this treatment.
First, we compare this result to those of oth-
ers."' Second, we look at it with the goal of dis-
covering the form imposed by current conserva-
tion on the unknowns in M„c".

The total np radiative amplitude, except for in-
ternal magnetic-moment radiationM&e", is the
sum of Eqs. (9), (13), and (16). In order to com-
pare our results with others, we collect together
all the terms from these equations which are not
explicitly of order ck or higher, i.e.,

M„e~=(a/n)+P=s„{a]+{a)-~ q,.{C]+2{D],
(1V)

where

+ —,'[tt, a(s„ t,) + it,a(s„ t,)],

2''E'+iiplNT
( t ) T ( t )2p('&+Ape

2p eP 0 ks Vr 0 f$ 0'
2Pf f

,( )
gg T,(s„t„) r,(sg, t, )4t,

C = e„[D,T,(s„d~')+D,r, (s~, n, ')]
+ [D,r,(s„M,)+D,r,(s„M,)],

D=e„q~ e[D, T,(s„t„w~')—D, T,(s, t~, a~')]

+ e,q, e[D,T,(s~, t„a,') —D,r,(s, t~, n, ')]
+py

~ e[D~To(s q, t, M~ ) —D2 To(s, t „,My )]
+p,. e[D,T,(s„t„M,)-D,r,(s, t„M,}].

When Ta(s) is substituted into Eq. (1V) for T(a, M),
it reduces to the same expression (in an expanded
form} as that obtained by Fischer and Minkowski
[Ref. 9, Eq. (40}] except for the D term. This
term contains the differences of the analogs of
derivatives of T(n, ,M) with respect to A and M
evaluated at different s. Since Fiseher and Min-
kowski use the recipe of Adler and Dothan, ' which
drops the derivatives with respect to the virtual
masses at the second step of the recipe, they nat-
urally do not obtain it; in fact, finite-difference
ratios equivalent to the D, TO's used in this paper
are not defined in Ref. 9. Clearly, D, TO vanishes
if (1) T(b„M} is independent of 6 and M, or (2) the
extrapolation off she11 is independent of s. The

latter follows if the only 6 and M dependence of
T(A, M) occurs in form factors like E,(M). How-
ever, the d, and M dependence of T(h, M) is ex-
pected to occur both in kinematic corrections to
T,(s) and in unknown form factors. Regardless of
this complication, the difference of these terms
cancels in the soft-photon limit, and it is this can-
cellation that leads to Low's result. Using Eqs.
(3) and (4), this term can be rewritten as

2k Q( {e [q~ eD~D2TO(s(, t~, ny )

&DgDqTO(sg, tp, 6( )]

+[pz M,D, TO(s, , t„,M&)

—p; eD,D, To(s~, t„Mi)1

where D,D,T, is the analog of the second deriva-
tives with respect to s and 4 or M. In this form
it is clear that for nonzero D,D,T,'s the term van-
ishes only at A =0.

Now consider the C term of Eq. (17): It is the
sum of finite-difference ratios with respect to s.
If there is a resonance in the elastic amplitude,
i.e., T, ~I/(s-M'), where M=M„- ,'ii', -then it
is this term which leads to a double-resonance-
pole contribution to the b term of Eq. (1), i.e.,
b~1/(s-M')'. Such a term is expected if charge
radiation from the resonance contributes tong„&"
[see Ref. 9, Eq. (42)]. Fischer and Minkowski
have pointed out that it is important not to double-
count possible charge radiation from the resonating
wp system when models are introduced to calculate
the contribution of J„"s"from resonances. We note
that this term cannot contribute to ~e" because it
is multiplied by the Lorentz-invariant product of
four-vectors, z Q„and in the radiation gauge c
=(O, X), e k=0, k =0, while Q, =q, +p;=(Ws, , 0);
so e Q, =0. We also note that e @~=0 in Eq. (42)
of Ref. 9. This result is also justified as follows.
Consider the situation in which the m and p interact
to form a a(M) at rest in the Q, system Then.
spontaneously h(M) y+h(M-k). Electric dipole
(E,) radiation is forbidden, since h(M) and
h(M —k) are presumed to have the same parity.
Of course, magnetic dipole (M,) and electric quad-
rupole (E,) radiation are permitted. Thus, to low-
est order, charge (E,) radiation from a stegte sp
resonant state cannot contribute to the radiative
amplitude. E, radiation will arise from parity-
charging transitions but without a double-reso-
nance-pole form.

The A and B terms of Eq. (17}must reduce to
Low's result Low con.sidered two cases: (a) a
charged spin-zero boson scattering from a neutral
spin-zero boson [the A term in Eq. (1V}corre-
sponds to a charged spin-zero boson scattering
from a neutral spin-~ fermion; the difference be-
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tween the two situations accounts for the second part of this term]; and (b) a neutral spin-zero boson scat-
tering from a spin- —,

' fermion of charge e and anomalous magnetic moment p, ~-1. This accounts for the
B term of Eq. (17). To obtain Law's result for case (a), expand T,(s, t,) in the (1/k) terms about s using
Eqs. (3) and (4). Then

q&k ' q,. k q&k q, k

qs s+ Ps k D,T,(s, )+ q; s+ '
P,. k) DT(ss), (19)

Equation (19) is in the same form as Low's result.
The correspondence with Ref. 1 [Eq. (2.16)] be-
comes exact if D,T,(s,) and D,T,(sz) are replaced
by dT,(s)/ds and e Q, =e Q&=0 are used to replace
q,.~&&

~ c by -p, ~&~
~ e.

Now we invoke the argument of Fischer and Min-
kowski that the differences of D,T,(s,.), D,T,(s&) in
Eq. (19) and D,T (Ds) or dTD(s)/ds (as in Ref. 1)
may be significant for resonant radiative scatter-
ing. These differences induce corrections of order
ck which may be of the same size as the b terms
in Eq. (1). By expanding the D,T,'s in Eq. (19)
using Eqs. (3) and (4), we find this correction to be

q~k ' ' ' q,. k

+k Q;()~D~B(s;) —it(D~B(s~)], (20)

where, to be precise, the obvious correction from
the second term of the A term of Eq. (17) has been
added. Here D,'T(s) is the analog of the second
derivative with respect to s. A similar result ob-
tains for the terms in the B term of Eq. (17}. The
above result illustrates an advantage of introducing
finite-difference ratios, since they replace an in-
finite Taylor-series expansion of a function. Also,
when they are used in expanding a function, the
full precision of all remaining terms is retained
if the last term is evaluated at the correct s. So,

in the above example, starting from (1/k) terms
evaluated at the correct s and expanding about s,
both the finite-difference ratio and Low's result
agree in form. But the finite-difference ratio re-
sult is accurate to all orders of k in the differen-
tial form of Low's result. As a result, gauge in-
variance is imposed to all orders of k. Thus, the
most compact expression for the model-indepen-
dent part of the radiative amplitude has an explicit
k dependence of the form (a/k}+P as obtained in
Ref. 9. Here, a and P are not explicitly gauge-
invariant. But after further expansion a result of
the form of Eq. (1) is obtained [i.e. , 3g))e"= (s/k)
+b+ck, where a, b, and c are explicitly gauge-
invar iant].

The model-dependent part is explicitly of order
k for small k. Specifically, we collect together
all the terms from Eqs. (9), (13), and (16) which
are explicitly of the form ck or higher to which
Eq. (18) is to be added, to obtain

ck+ ~ ~ =e,(E}-(F}+(G}+ Eq. (18), (21)

where

E=[q~ kgqD, B(s„t„&z')-q; 'kit(D2B(&fq tps +i }]p

(~™[TD(s;, t„,M~)- TD(s&p t„M&)]2' k, 2M'

Mg -mi—[T()(s» t„M,) —T(')(sy, t„,M, )]

and

G= ()tk+ Qy)D2F~ (M~)TD(s;, t„M~}+D2F2 (M;)TD(s~, t„pM;)(ttIt —$;)

2[FD(My)TD(s(, t„,M~) —F 2(Mq)TD(s, p t„,Mq)]+[F2(Af()TD(sy, t,M, ) —F2 (M, )TD(sq, t„M;)]

where

Mz —m/Mz=p~ k/m', M, -m/M, . = —p, k/m'.

The terms E, E, and G represent contributions
from M„"~", M'„~~, and E"„~~, respectively,
and Eq. (18) contains terms from E„"e" and E'„e".
Equation (21) explicitly exhibits the form imposed
by current conservation (excepting the G term) on

the unknown inM„e". Each of the terms E, E,
and Q is multiplied by a gauge-invariant combina-
tion of the four-vectors of the external particles
p„pz, q, , qz, k, e (q kg = q e ft qkg and m-$=p kt('

—p ei((). Thus, depending on the kinematical con-
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ditions of a particular experimental result, Eq.
(21}indicates the way in which the unknowns affect
the result.

VI. HARD -PHOTON THEOREMS
AND CONCLUSIONS

If we define a soft-photon theorem (SPT) as a
mathematical description of the consequenc es of
current conservation applied to a given system as
k -0, to mhich me add the separately gauge- in-
variant E„"c", then Lom has shown that SPT' s give
the functional dependence of eg& e" on T,(s), dT, (s)/
ds, the static values of the external elee tr om ag-
netic vertices, and external variables as k -0.
The term "model-independent part of 5g„e""mas
introduced to describe this dependence of gg&c" on
independently mea. surable or determined quan-
tities. On one hand, SPT's are often considered to
be useful in the sense that a statistically signifi-
cant discrepancy betmeen data and the predictions
of an SPT is presumed to be due to off-shell ef-

fectss

or I„e". Thus, the predictions of an SPT
permit an experimental evaluation of the onset of
contributions due to these unknowns. The term
"model-dependent part of 9g„r""mas introduced
to describe the dependence of 3g „e" on such un-
knowns. On the other hand, I ~~ ~" contributes to
ck + ~ ~ ~ terms and hence is only expected to be
large at photon energies mhich may exceed the
range of validity of an SPT due to off- shell effects
which contribute to ck + ~ ~ ~ terms also.

In preceding sections, finite-difference ratios
were incorporated into Lom's prescription to ob-
tain M„e" for the case of resonant radiative mp

scattering. These conelus ions seem significant.
First, the functional form of the 8PT obtained by
Fischer and Minkowski [Ref. 9, Eq. (40), or Eq.
(17) of this paper when the elastic amplitude is
substitutedj holds for all orders of k and hence
for all k. Second, the off- shell effects appear only
in additional terms [Eq. (21)j which are of order
k as k -0. These terms have a more complicated
k dependence for k» 0 due to the implicit k de-
pendence of T(a, M) and E,'(M). Last, the func-
tional dependence of M„z" on the off- shell effects
and the four -vectors of the colliding particles is
established as a result of current conservation to
all orders of k and hence for all k.

By analogy mith an SPT, a hard-photon theorem
would be a mathematical description of the con-
sequences of charge conservation for all k to which
the separately conserved E~~e" is added. If T(d, ,M)
and E,'(M) were known, then a discrepancy be-
tween data and the predictions of a hard-photon
theorem mould be due to I~~ ~". Also, if all other
possible unknowns in E„"e" were small or corn-

yutable, then, e.g., an experimental evaluation of
g(d,")could result. ' ' This goal has not yet been
shown to be possible.

These considerations suggest (a) a program for
obtaining an experimental evaluation of the un-
knowns as a function of the four-vectors of the
colliding particles, and/or (b) a parametriza-
tion of the unknowns in 8R„~" which aQoms a
convenient theo retic al interpretation of a data-
fitting procedure. The first objective is satisfied
if we modify the result of Fischer and Minkowski
to the hard- photon regime . The necessary modif i-
cation is of a strictly kinematical nature, aggra-
vated by the fact that p, «m. For example, for
E,, = 440 MeV, 8, = 50, mith photon emission op-
posite to the pion direction (all quantities in the
lab}, then r~' =2y. and a,' =0 when k„b reaches-15 MeV, while the M' 's are within about a per-
cent of m'. The point here is that if cos8 is cal-
culated from Eq. (2b) as is done in Ref. 9 and in
nucleon-nucleon bremsstrahlung, then ( cos8

~
may

become & 1 for not-too-large k; and when it is
inserted into T,{s)an even more unrealistic am-
plitude results. This problem has been dealt with
by using the virtual masses in evaluating eos 6)

from Eq. (2a) {see Ref. 11, p. 1031). In this case
cos 8 always remains bounded between -1 and 1.
For the above example with the initial pion off
shell, when k& 100 MeV, cos8,~

&-I [Eq. (2b)j
(a,'=-Gi»'), while cos8=0.415 [Eq. (2a)j. When
these values are inserted into 1 + 3 eos' 8 the ap-
proximate ratio of elastic cross section for the
two values of cos 8 is =2.6, thereby inducing large
corrections to the (o,/0)+p terms of 5g„e" We.
propose that the result of Ref . 9 modified in this
way is a "model- independent hard- photon theorem"
for resonant radiative wp scattering.

The form of T (s, M) has been discussed in con-
nection with quasi-(virtual)-two-body scattering
yrocesses such as those encountered in one-parti-
cle-exchange reactions. " Pion-proton brems-
strahlung may be viewed as involving four such
processes, since each of the four particles par-
ticipating in the tmo -body scattering process may
be virtual, as in Eqs. (5a), (5b), (10a), and (10b).
In each case, by treating ~ or M as a, parameter,
T(S,M) is analyzed in a way similar to the elastic
case, i .e ., by decomposing the amplitude into
partial waves . It has been shown that the phases
of the off -shell partial -wave amplitudes are the
same as the elastic ones when elastic unitar ity is
valid. "'» That is, if ff,(s, x) is the off-shell am-
plitude for the partial wave of orbital angular mo-
mentum /, total angular momentum j
isotopic spin I, for virtual masses x =z or M, and

f~»(s, xo) = (I/g ( )exp[i5', (s)jsin5~1, (s)
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is the corresponding elastic partial-wave ampli-
tude with x=x0, for on-shell masses p, orm, then
the above result suggests that

f,', (s, x) K(x)[G„(s,x)/G„(s, x0)]f~,(s) . (22)

The kinematical quantities [q'"~ (c.m. three mo
menta) and s are calculated in the system where
both particles are on shell and 5~»(s) is the phys-
ical phase shift. The ratio in square brackets is
sometimes called a kinematical form factor
(KFF}and depends on s, f,j, and parity of the s
state, as well as on x. Because of the smallness
of the pion's mass, fI,(s, s) is expected to differ
considerably from ff,(s) except in phase. The
KFF term is written as a ratio to indicate that
G„(s,x) is a theoretical or phenomenological
prescription for extrapolating f~„(s) off shell at
each s, e.g., a Born approximation extrapolation.
The denominator is the same prescription evalu-
ated on shell to give the correct normalization.
The term "kinematical" refers to the s and x de-
pendence of this ratio. Several approximate" ""
and one "exact""dispersion-relation calculations
of the kinematical form factor for f, + (1236', 6}
agree for )n'~&5-10'' to =10%. For larger z',
phenomenological models" "based on an analogy
to potential scattering give a good account of a
number of one-pion-exchange reactions. Dis-
persion-relation calculations of kinematical form
factors for the smaller partial waves with the
pion off shell" and for f, + (s, M) (Ref. 14) have
been performed assuming j'» dominance of the
dispersive integral. When ff,(s, x) is obtained in
the form of Eq. (22), K(x) is called the vertex or
dynamical form factor. K(a') is the pionic form
factor of the nucleon 'x'8 There are two form
factors K,(M) when the nucleon is off shell, re-
lated as usual through I.orentz invariance, " i.e.,
K (M) =K+(-M). K,(M} have been calculated"
assuming unsubtracted dispersion relations
dominated by the lowest mass states, and K,(m)
=1. E,'(M) have been calculated" under similar
assumptions. Comparison with proton-proton
bremsstrahlung data was good when the assump-
tion of threshold dominance was relaxed. " We
conclude:

(1) One-dimensional dispersion-relation calcu-
lations offer a means of parametrizing and inter-
preting low-energy (elastic unitarity regime) wp

radiative scattering data for ~2&IOp, ' or ks I'z,
[I'z is the width of the a(1236) in the case of the
above example. ] For other conditions the phe-
nomonology of potential scattering appears suc-
cessful.

(2} The form of the kinematical form factors
appears to be nearly model-independent, since
both approaches agree that as x'- p,

' the kinematic

form factor reduces to a Born approximation,
which in turn goes as (lp'" I/Ip-I}' ~here Ip'"I ts
the magnitude of the momentum of the virtual pion
in its c.m. system. A Born approximation is also
indicated for f„(s,M)

(3) The s and M dependence of the K(z'), K,(M),
and E,'(M) is least well established. We take the
point of view that a hard-photon theorem based on
Eq. (22) with kinematical form factors given by
either of the above approaches and using off-shell
kinematics provides a better measure of the re-
maining unknowns, and have chosen to call it a
"kinematically corrected hard-photon theorem. "
A test of this approach is to determine the range
of k over which data can be fitted by functions
which deyend solely on ~ and M in kinematic re-
gions where I ~a~ is negligible. If the ealeulations
of K,(M) and E,'(M) prove reasonably accurate. '4'"
then only K(z') remains to be determined by a fit-
ting process.

The purpose of this paper is to consider a procedure
for quantitatively establishing the existence of
I„~~ in resonant radiative mp scattering. Since
such radiation is expected to contribute to terms
of order ck + ~ ~ in%„e", it is necessary to con-
sider all contributions to these terms, as was
done in preceding sections. Parametrization of
I „"c~ is irrelevant in this context. There are, how-
ever, three results which have been argued on gen-
eral grounds and confirmed by model-dependent
calculations. First, I ~e" is only expected to be an
appreciable part of 9R„&"under very special kine-
matic conditions, namely, when the external
bremsstrahlung is minimized. This occurs for
m'p bremsstrahlung with photon emission backward
to the direction of the scattered pion and proton
and the initial pion direction. Second, a para-
metrizationof I ~a~ depends on s and I;, but not to
first order on ~ or M. Third, I ~e& will depend on
the charge of the internal structure. For example,
SU(6) symmetry predictions" yield g(b,")=2g~
and p(a') =0.

In summary, we have argued that imposition of
gauge invariance on M containing T (n„M) and

E,'(M} yields the functional dependence of these
unknowns on the external variables and charge
states of the mp system. Using this formalism
under kinematic conditions where the off-shell
effects predominate provides a means of confirm-
ing and/or improving existing theoretical models
of off-shell effects in the hard-photon regime. A
significant discrepancy between data" ' and the
predictions of such a hard-photon theorem under
kinematical conditions sensitive to I ~a~ would
establish quantitatively the existence of I ~a~ in the
hard-photon regime where it is expected to con-
tribute. We shall describe the expected sensitivity
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for this proposal in a future paper.
In the derivation of our result, some of the as-

sumptions deserve further comment. First, we
used the free propagator form for the pion and
nucleon. These proyagators are. closely related
to the electromagnetic vertex function through the
Ward-Takahashi identity, which is based on dif-
ferential current conservation. As shown in the
Appendix, in the absence of the %'ard identity
three products of vertex and propagator form fac-
tor would appear: one for the product of the com-
plete renormalized pion propagator and the pion's
electromagnetic vertex function f (A' )s(s'), and
two for the proton G,(M)E,'(M). The sole change
in our result is that T,(s, ~') would be multiplied
by f (A' )s(s'), while T, (s, M) and T,'(s, M) would be
multiplied by G,(M)E,'(M) and G (M)E, (M), re-
spectively. So, in the final result they would show
up as modifications of K(d, ') and K,(M}. However,
the Wai.d identity requires that the product of these
form factors be unity in M„' and M'„. The product
of the proton complete renormalized propagator of
the proton's magnetic-moment form factors,
G,(M)E,'(M}, is not so constrained, and this prod-
uct should appear in our expression for E1e" [Eqs.
(14) and (16)]. Second, we have not considered
possible limitations on a hard-photon theorem due
to the analytic properties of the off-shell ampli-
tudes. It was assumed that one can extrapolate
smoothly off shell without the appearance of new
singularities.

APPENDIX

Consider the electromagnetic vertex when the
final pion radiates [Fig. 1(c)]. The contribution to
E„' was taken to be the product of the electromag-
netic vertex function e"I' (a&, qz), the pion propa-
gator S(S&'), and the off-shell vp amplitude
T,(s„n~'), i.e.,
~"I"p(af, q~)S(n~')T, (s„gq')

=&' (&g+qy)T+(&1, &y')/(&, '- V')

=(q~ e/q~ k)T,(s„s~'), (Al)
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without form factors due to higher-order diagrams
as a result of the %'ard identity, which for this
case is

4y —qg~„I'"(&g, qg) = [S '(&g*) —S '(qI')] (A2)

For completeness we re-px ove this statement here.
The most general form of I'„(~z, q~) is

T~4y. qy }= [(ey +&y)„f(&g')+ (qg —&g)„g(&g')],

(AS)

and the complete renormalized pion propagator is

S(~,') =s(~;}/(~; u') —.

e" I'„(aq, qq) = a "[(qq + a~)„ f (dI')

+ (qg —&g)„g(&g'}]

= & '
(qy +&g)f (&g') (A5)

Because (zz -qz)„=k„, e k =0 =k', the second
term of Eq. (A5) does not contribute to M„"e~ or Eq.
(A2) and is hereafter neglected. Now, multiply Eq.
(AS) by (A~ —q~)„S(aq'); then

=f (~,')s(~, '), (A6)

and multiplying Eq. (A2) by S(gz') one obtains

(&g -qg)„ I' (&g, qg)S(&g') =I- (~,
" .. .' ..

=j. . (A V}

Thus, equating Eqs. (A6) and (AV}, one gets

f (&,')s(d.,') =1,
as stated.

When the final proton is off shell [Fig. 1(d)] the
situation is similar, e.g., Eq. (Al} becomes
N(pz}$S(M&)T&(s, , M&) without form factors. The
equivalent of Eq. (AS) is much more complicated.
In general, when a proton is off shell and the pho-
'toll is vll'tllal (k 40, e 'k 40), iilel'e al'e six fornl
factors E,', E,', and E,', where, by Lorentz in-
variance, E,"(-M) =E, (M). By the same argument
used after Eq. (A5), only four terms survive in
e"I'„or @~I."& when the photon is real. So the
equivalent of Eq. (AS) is

I'„(Q,p~) = [y„E,'(Q) +o„„k'E,'(M )/2 m']A~(M )

+[y„E,(Q)+o„„k"E,(Mq)/2m]A (+).
(A9)

The complete renormalized proton propagator be-
comes
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S(M&) =A+(M&)G+(M&)/(Mz m-)

-A (Q)G (M~)/(Q+m), (A10)

where G,(-M ) =G (M&). (See Ref. 14 for a discus-
sion of these form factors. ) Then Eq. (A6) be-
comes

u(p, )(M, p, )—„r&(m„p,)S(m, )

= u (Pz)[ka r"(M~, P~)S(~)]
= u (pq)$[F,'(M )G, (M )A, (M )/(M -m)

—F, (M~)G (Q)A (My)/(My + m)] .

(A11}

As expected, the gauge-invariant magnetic-mom-

ent terms do not contribute. Using Eq. (12) of the
text and the application of Dirac's equation follow-
ing it, Eq. (A11) becomes

u(pz)((lf+ m)[F,'(Mz)G, (M&) F,-(Mz)G (Mz}]/2M&

+ a [F,'(M~)G~(My) +F, (Q)G (Nj}]}. (A12)

After replacing qz(A&) by pI(Q) in Eq. (A2), and

multiplying it from the right by S(M ), one obtains

u(pq)k„r" (M~, pq)S(My) = u (p~)[1 -S '(py)S(Q)]
= u(p~), (A12)

because u(p&)S '(p~) = u (p~) (p'~ -m) =0 is Dirac's
equation. Equations (A12) and (A12) are satisfied
if F'(My)G, (My }=F,( My)G (M)=1.

*Work done under the auspices of the U. S. Atomic En-
ergy Commission.
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