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Pion charge-exchange scattering in the (3, 3)-resonance region
in nuclei with a neutron excess
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We solve the multiple-scattering problem describing one-dimensional charge-exchange scattering in

nuclear matter with a neutron excess, and use the solution to formulate models for lepton- and
proton-induced production of pions in the (3, 3)-resonance region.

I. INTRODUCTION

When pions are produced in a nucleus, either by
incident protons or by incident leptons, charge-
exchange scattering of the emerging pions within
the nuclear target plays an important role in
determining the experimentally observed produc-
tion cross sections. In the particularly interest-
ing case of pions produced in the (3, 3)-resonance
region, detailed analyses of nuclear charge-ex-
change corrections have been given by Sternheim
and Silbar' (incident protons} and by Adler,
Nussinov, and Paschos' (incident leptons). Both
of these papers are based on a semiclassical pic-
ture of pion interaction within the nucleus, in
which the nucleus is regarded as a collection of
free nucleons from which the pions are multiply
scattered. In treating pion multiple scattering,
Ref. 1 makes the very simplified approximation of
regarding all scattering as forward scattering,
which then leads to the easily solved one-dimen-
sional scattering problem of pure forward multi-
component scattering. In Ref. 2 a more accurate
approximation to the multiple-scattering problem
is used, obtained by projecting all forward-hemi-
sphere scattering onto the forward direction (0'}
and all backward-hemisphere scattering onto the
backward direction (180'}, and then solving the
resulting one-dimensional forward-backward
multiple-scattering problem. The discussion of
Ref. 2 is restricted to nuclei with no neutron ex-
cess, for which the dependence of pion multiple
scattering on the pion charge is trivially diagonal-
ized, leading to a one-component multiple-scatter-
ing problem. The purpose of the present paper is
to remove this restriction by solving the orie-di-
mensional forward-backward multiple-scattering
problem in the multicomponent case. This will
permit the application of the improved scattering
approximation of Ref. 2 to heavy nuclei, where
the neutron excess cannot be neglected.

Our discussion is organized as follows: In Sec.
II we formulate the multiple-scattering problem

describing the interaction of pions in a one-di-
mensional nuclear medium, and work out the ge-
ometry needed for applying this one-dimensional
approximation to the production of pions in nuclei
by incident protons and leptons. In Sec. III we
solve the one-dimensional problem in terms of
matrix operations and briefly discuss computa-
tional aspects of the solution.

II. FORMULATION OF THE ONE-DIMENSIONAL
MULTIPLE-SCATTERING PROBLEM AND
GEOMETRY FOR PROTON- AND LEPTON-

INDUCED PRODUCTION OF PIONS

For nuclei with a neutron excess, the one-di-
mensional multiple-scattering problem which
forms the basis for the scattering approximation
of Ref. 2 may be formulated as follows: We con-
sider a uniform one-dimensional nuclear medium
extending from x =0 to & =L, and assume that a
pion in charge state i (i =+, 0, -}is initially pro-
duced, moving to the left, with 5-function density
distribution p =5(x —L,}. In the medium pions can
scatter either forward or backward, or be ab-
sorbed. The total inverse interaction length for a
pion in charge state j is wj,. on interacting this
pion scatters forward (backward) into a pion in
charge state k with probability p, ~~,

"
(g~~, '). These

parameters will of course be functions of the
pion kinetic energy T, which we assume to be
fixed throughout the one-dimensional scattering. '
Given our initial left-moving pion in charge state
i, we wish to find the expected numbers

M~~(~(L, L„T), M~~( ~(L, L„T)

of pions in charge state f emerging from the me-
dium respectively without and with a net over-all
change in direction (i.e., respectively emerging
to the left and to the right).

To identify the parameters appearing in this
statement of the problem with physical param-
eters of the pion-nucleus interaction, we begin by
noting that M&' can depend on Kj L, and L, only
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through the dimensionless combinations a&L, L,/
Hence the scale of the ~, can be readjusted by

changing the scale of L; it is convenient to fix the

w& by taking as the density of the one-dimensional
medium the nucleon density' p(5) at the geometric
center of the nucleus. Letting the numbers of neu-
trons and protons in the target nucleus be, re-
spectively, N and Z, we define f„~,

2N 2Zf = —f = — A. =N+Z
A ' A

as measures of the neutron and proton fractions.
(In this notation, the results of Ref. 2 for isotopi-
cally neutral nuclei are recovered by setting f„
=f, =1.) We denote the pion absorption cross sec-
tion in nuclear matter (assumed to be charge-in-
dependent) by o,b, (T}, and assume that pion charge
exchange proceeds entirely through the I= & chan-
nel, so that the relevant pion-nucleon cross sec-
tions can all be expressed in terms of the m'P

cross section &,+~(T). Following Ref. 2, we in-
clude effects of the Pauli principle on forward- and
backward-hemisphere charge-exchange scattering
through reduction factors h, (T) and h (T). (When
Pauli-principle effects on pion scattering are ne-
glected we have h, =h =1.) Putting all these in-
gredients together, we then find the following ex-
pressions' for the interaction parameters ~&,
&(~) .

k)

z) =Ap(0)8, ,

8+ (Tutu(T ) +~ [h+(T) +h (T}](Sf +f&)o +& (T)

8O =a,y, (T)+~[h~'(T)+h (T)]—', (f„+fp)o + (T),

8 =op& ~ (T) +~[h~(T)+h (T)](f„+~fq)o +q(T),

nuclei by incident protons and leptons, within the
semiclassical framework of Refs. 1 and 2.

A. Incident protons

Following Ref. 1, we assume that the incident
proton enters the nucleus along a straight-line
trajectory, with inverse interaction length [at the
standard density p(0)] given by z~. At a general
point r in the nucleus, the proton produces an out-
going pion in charge state i at polar angle 8, with
the differential production cross sections on free
proton and neutron targets given respectively by

NN v; T8} d o(+ NNv'; T
dTdQ dTdQ

Writing the nuclear density in the form

p(r) =p(5)P(r)

and taking the incident proton direction to define
the z axis [Fig. 1(a)], we see that the proton flux

P

0

,'h, (T)ri»8, '—o,+~(T),

Tl++ fp+ gfn~ ri+0--gfj, ~ n+

no+ 9 fn 7 Goo 9 (fjl +fn)& no 9fp-
n, =0, n .=af. , n =f.+~gf~.

We see that when f„=f~ the inverse interaction
lengths ~~ all become equal, which is why the iso-
Itopically neutral case can be diagonalized to give
three independent one -component scattering prob-
lems. When f„vf~ this diagonalization is no longer
possible, requiring us to solve the one-dimen-
sional multiple-scattering problem which we have
just formulated in full multicomponent form. De-
tails of the solution for Mf', are given in Sec. III
below.

Assuming now that the matrices M&&', & have been
calculated, we state the geometry needed for us-
ing them to determine the production of pions in

(b)

FIG. 1. (a) Geometry for pion production in a nucleus
by incident protons. The dot indicates the pion production
point. (b) Geometry for pion production in a nucleus by
incident leptons. The dot indicates the pion production
point.
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at the production point is reduced, relative to the
incident proton flux, by a factor dig'(r+ lcos8z+lsin8y),

40

P(L~) =exp(-)(~L~), L~ = dip(r + li) . (6)
p 00

L= dip(r+ icos&a+ lsin8y) .
oo

Taking the + plane to define the yz plane, and as-
suming that the pion scatters forward and backward
along the initial production direction, we find that
the parameters L and L, of the one-dimensional
multiple-scattering model are given by

Thus, linking together the pion-production and

pion charge-exchange-scattering steps, and inte-
grating over the general point r, we get the fol-
lowing formula for the production cross section
for pions in charge state f from the nuclear tar-
get:

d o'
(~) ~ (,)( )

d o(pp Nor';T8) d g(pn-NNn'; T8)
dTdQ ~ ~' ' d TdQ d TdA

with

d'o(PP -NNw'; T((—8) d'o(Pn-NNw'; Tw —8)
d TdQ d TdQ

I~', (T, 8) = d'. rP(L~)p(r)Mf', (I„L„T). .

(6)

(9)

B. Incident leptons

I~", (T) = Jt d'rp(r)M~, )(L, L„T) .

Assuming that the nucleon distribution p(r) is
spherically symmetric,

(10)

The geometry in the case of incident leptons is
greatly simplified by the fact that leptons are not
strongly absorbed, which implies that the nucleus
is uniformly illuminated by the incident beam. As
a result the analog of Eq. (9) for incident leptons
has the factor P(L~) replaced by 1 and is there-
fore independent of the pion production angles,
giving

[-L'(~)
=2m b db dL,M~';)(L(b), L, T)p(0) .

0 0

Introducing the L average of M&', ,

&(&)

My~'; (L(b), T)= (dL—M~~';)(L(b), Q, T),
~ 0

and eliminating p(0) through the normalization con-
dition'

p(&) =pb], 1 = d'rp(r) =2r
~lO

b db L(b)p(0), (15)

it is convenient to change to impact-parameter
variables for the r integration [Fig. 1(b)]. We
write

L, = dip(r+ll),
(,)(~ f bdb L(b)M', )(I,(b), T)

f, bdbL(b)
(16)

we get finally a simple expression for the charge-
exchange matrices,

dip(r+ ll)

dip[(b +l )~ ]

-=I.(l),
and in terms of these variables we find

(12)

The average over the distribution of optical
thickness L appearing in Eq. (16) is the same
recipe that appeared repeatedly in Ref. 2. The
matrices I" are related to the matrices [MJ of
Eq. (51) of Ref. 2 by the formula

[MJ =gI"),
with g a factor which was introduced in Ref. 2 to
account for Pauli-principle effects on the cross
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section for leptonic pion production which are
present when the target nucleon is bound in a nu-
cleus.

III. EXPLICIT SOLUTION AND COMPUTATIONAL
ASPECTS OF THE ONE-DIMENSIONAL PROBLEM

P(kxr)j y r) = p»+, x~e "~ ' "8(x -y),
P(kxlj~yr) =l»», x,e "&" "8(x y), -
P(kxl~jyl) =l»»', '&&, e "&". '. 8(y —x),

P(kxrj&yl) =g»~x, e "& " '8(y —x) .

(18)

Introducing a Dirac-state notation for conditional
probabilities,

(kxd»P'j~yd~& =P(kxd»~j yd&),

L

&»&, I&"IA&, &
= I ~QQ&&t«, l&l~«. & &&9&

0 m d

&& (mzd ~P"-')j yd, ),
(kxd»~1 ~j yd~& = 5»~5q q 6(x-y),

we see that the density at x of particles of type f
moving in direction d& which have suffered exactly
n collisions in evolving from an initial 6- function
distribution, localized at y, of left-moving par-
ticles of type i, is

(fxd, lP"Iiyl& . (20)

The integrated number of these particles which
subsequently escape to the left or right without
further interaction is given by

To solve the one-dimensional multicomponent
scattering problem formulated in Sec. II we follow
closely the method used in Appendix A of Ref. 2 to
treat the one-component case. Although the pion
charge-exchange problem specifically involves
three components, no formal complexity is added
if we treat the general case in which D compo-
nents are present. We let P(kxd»~j yd~)dxbe the
probability that component j, which emerged from
a scattering at y moving in direction d&, has its
next scattering in dx at x and is transformed into
component k moving in direction d, . In terms of
the parameters defined in Sec. II, we find'

Summing over all values of n gives the total num-
ber of left- and right-emerging particles of type

f, and thus we get

L
Mz', (I„y, T)= dxe "x*(fxl~(1 P) '-(iyl&,

0

(22)
L

Mz, (I„y, T)= dxe "x '&(fxr~(1 P) '~-iyl&,
0

with the Tdependence arising, of course, from
the energy dependence implicit in the parameters
p, ~~ and ]c).(a)

To evaluate the inverse operator appearing in
Eq. (22) we write

(kxd, ~(1-P)-'~jyd, & =5»5, , 5(x- y) +F(k«»~ jyd, )

(23)

and take the (kxd»~ ~
~j yd~& matrix element of the

formal relation (1-P) '(1-P) =1, giving the inte-
gral equation

F(kxd»jlydia) =P(k«»jlydia)
pL

+ dzg F(kxd»)&mzd )P(mzd j~yd„).
"0 ss

(24}

Because of the reflection symmetry of the one-di-
mensional medium through the point x=-,'I„ the
kernel P(kxd»j~yd„) has the symmetry

P(kxd»~j yd&) =P(k I —xd»~j L -y d~),

r=l, l =r, (25)

and hence it follows from the integral equation that
+ has the same symmetry,

E(kxd, j~yd~)=F(kL —xd, ~j L yd~) . -(26)

Using this symmetry, writing out direction depen-
dences explicitly, and substituting Eq. (18}for the
kernel P, we find that the content of Eq. (24) may
be written as

L
left-emerging number = dxe "~*(fxl)P"~&iyl&,

0

(21)
L

right-emerging number = dxe "~~ *&(fxrP"~iyl).
0

F(kxlj~yl) = p~~bc~e "~" *8(y —x)+ dzg[F(k L-xrjmL-z l)l&&& ~&+F(kxl)mzl)l» ')]x~e "f&"

F(kxr~jyl) =l»,, x~e "t " *&8(y —x}+ dzg [E(k L —xl)m L-z l)l»„~ +F(kxr(mzl)l» j]z~e "i " '
0 m

(2'1)



2148 STEPHEN L. ADLER

Substituting Eq. (23) into Eq. (22), we get the fol-
lowing expressions for p, z',. in terms of +:

Mz", (L, y, T) =(&&,e "~"+ dxe "x'F(fxlIiyl),
Jo

(28)

Mz~, )(L, y, T)= dxe "t~ ")F(fxrIiyl) .
0

Since these do not involve the detailed x dependence
of E but only definite integrals over x, it is natural
to eliminate the variable x from the problem by
taking the same definite integrals of the integral
equations in Eq. (27). To do this most convenient-

ly we define

L
h«('J (y ) = dx e "«*F(kxl Ijy l)

0

L
+& dxe "k'[ " kxr jyl, & =+1

~o

in terms of which Eq. (28) becomes

M&~';)(L, y, T) = 6&; e "t«+ 2[h&~+, )(y)+hi(, )(y)].,
(30)

M(-, )(L, y, T) =-.'[h,'".'(y) -h(-, '(y)],
and the integral equation of Eq. (27) takes the form

h" ( y) =g"( y)+ !t dzQ [eh,"(L-z))), ',.'+h') (z)(), ',']((,e'.~" . '),
~0 m

L
g('.)(y)= dx[e "«")), +e e "« *p, ](( e "i" *)e(y -x) .

0

(31)

Finally, we convert Eq. (31) to a differential equation by multiplying by exp(((, y) and differentiating with
respect to y, giving

d—h'(( )y) +&x h'(( )y)=[e "«'y, „+ee "« ')««)]((~++[eh' (L-y)p. )+h,' (y)p",]((~, ,

with the associated boundary condition

h(«',.'(0) = 0 . (32b)

u(ke) =A('

u(ke)v„=eB«(««)
I

Equations (30) and (32) form our final statement of
the one-dimensional, multicomponent scattering
problem.

To solve Eq. (32) we make the ansatz

v(k). = g («.)((.
a=1, . . . , D

(36)

h(«)(y) ~(«)e-K«w+~(«)e K«(L-Y) +-p(«)(y) (33)

with p(',.'(y) s. solution of the homogeneous equation

d
p(;)(y)+((,p",J(y)

d

T(k)v+«v+«=6««(x«+x«) )««o((-() I

the two equations of Eq. (35) can be written as a
single matrix equation

=g [eP«m(L y))) mi +P«um(y))«m)]((J (34)

Substituting Eq. (33) into Eq. (32a) and equating
coefficients of exp(-((«y) and exp[-&(«(L-y)] gives
the equations

7(k)u(ke ) = v(k),

with the (e -independent) solution

u(ke) = T '(k) v(k) =- u(k) .
Thus we have found that

(37a)

(37b)

(((g —((«)&«g —)««g S+Q +[m«)m«S+ ff«am)«mA ) ~

(35)

( i+ «) «i —
) «J f g+[ «m) mj+ «m) mi]

Introducing two 2D-component column vectors and
a 2Dx2D matrix

jh( «)=yu(k), e " ' «u(+ke) , ev")«' "&+p'&(y) .
(38)

To find the solution p«(~ (y) of the homogeneous equa-
tion we make the exponential ansatz

(39)

with the number of terms appearing in the sum to

p («)( y) Y [C(«) «e -o«p + D (e) z e —a+(L y)]-
kg ~ kj kj
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be determined. Substituting Eq. (39}into Eq. (34}
and equating the coefficients of like exponentials
we get, for each value of q, the pair of equations

k(ke),.= u(k), + eu(k)~„.e "2

t(o,), =z((x,),+ez(o,)~„e 'a (46)

(K o }g(g)a- Q[g(g)gti(+) + D(a)a ~(-)]K

(40)

To solve Eq. (4"t) for Z(ke), we multiply by t(o, ,),
and sum over j, giving

a(k~), , =- g z(k~), R„, ,
&0

with
Introducing a 2D-component column vector and a2' 2D matrix

20(kzq). = C a(g.) g

g 1
y g g a p D

H(kz), , =Q t(o, ,},.k(ke)~,

R„,=Q t(o, ,),t(o,)„o,, )0 .
(5o)

S D+b= I be Ka
(-)

(-)
SD+ab l ba ~a

Si)+a D+(«[5g() t I(a ]Ka

a, 5=1j a a a p D

(41)

we can rewrite Eq. (40) as (1 denotes the 2Dx2D
11111't IIla't1'1x)

(8 —v, 1)2((keq) = 0, (42)

which has a nonvanishing solution se if and only if

det[S —o, 1]= 0 . (43)

The eigenvalue condition of Eq. (43) determines
2D values of v„which in general will be distinct.
Writing S in the compound matrix form

Seb SD+a b

Sa D+b SD

In terms of the inverse matrix R ' we get, finally,

Z(ke), = —g If(ke), ,R;,', , (51)
t&0

completing our solution of the one-dimensional,
multicomponent scattering problem. '

In the form which we have just developed, the
solution involves inversion of a Dx D matrix [the
matrix R of Eq. (50)], inversion of a 2D x 2D
matrix [the matrix T of Eq. (36)], and calculation
of the eigenvalues and eigenvectors of a non-
symmetric 2Dx 2D matrix [the matrix 3 of Eq.
(41)]. Obviously, a great saving in computation
time will result if we can reduce the matrix oper-
ations involving 2Dx2D matrices to corresponding
operations on D~D matrices. We will now show
that the special form of the matrices T and S
makes such a reduction possible. We consider
first the inversion problem for the matrix T,
which we write in the compound form

= (6ga —P ag )KgI2 —P ag KgIT2 «

with 7, and v, Pauli matrices, we see that

Svq = -T~S .

(44)
(T,

—«, ( 1',

)
Tia() = (6g()

)lag�

}Ka«T2aa= tl2 K ga«)k =1« ~ ~ ~ y D

I()(keq) =Z(ke), z(o,), a, )0

p(,',)(y)= Q Z(ke), [z(o,),e "" (46)

+Kz(o,) „e "' "'],
with the constants Z(ke },to be determined by im-
posing the boundary condition of Eq. (32b). Setting

y =0, the boundary condition gives the relations

k(kz), . = —P Z(kz), t(o,), , (47)
Oa &0

Thus, the eigenvalues of S occur in pairs +O„with
D positive and D negative eigenvalues. ' Since Eq.
(39) already contains both positive and negative ex-
ponential terms exp(+o, y), only the D positive
eigenvalues need be included in the sum. Denoting
the eigenvector corresponding to the eigenvalue

o, by z((z,), we have

,(„) («„«„)

tii = [ Ti —Ka 1 —T2(Ti+ Ka 1) T2]

t21 (Ti + Ka 1) T2tll «

t22=[Ti+Ka 1 T2(Ti Ka 1) T2]

ti. = -(Ti —Ka 1) 'Tat22

(53)

which involves only the inverses of DXD matri-
ces. Next we consider the eigenvalue problem for
8, which we write in compound form [cf. Eq. (44)]
as

with 1 now the DxD unit matrix. A straightforward
calculation then shows that the inverse matrix
T '(k) is given by
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S = S,T3+ Sei7'~ =

Sl- &i

From Eq. (45), we know that if

,(, ) (*,(~,))

is an eigenvector of S with eigenvalue r„ then

(54)

(55)

=[z,(v,)-~,(a,)] ( ))
satisfy the relations

Sz, (o,)=c,z (o,),
Sz (&r,)=o,z, {o,}, (58)

and hence both z, (o,) are eigenvectors of S' with
eigenvalue &r,

' Given. either z, (o,) or z (o,), we
can recover z(o,) by using the relations

z(o,) =-,'[z, (o,)+z (o,)]
= -,'(1+o, 'S)z, (o,)
=-,'(1+o, 'S)z {o,) . (59)

Multiplying out S' in terms of Eq. (54) we find

S,' —S2 S,Se —S,S,
S,S2- S~S, Sl - S2

and substituting Eq. (60) into the relations S'z, (o,)
=&r, 'z, (o,) yields the equations

(60}

is an eigenvector of S with eigenvalue -o, . Thus

z,(o,) =z((z,)+r,z(v, )

1
Zl (7 +Z2 0'

S,[z,(o,)+ z,(o,)]=o, '[z, (o,)+ z,(o,)],
S~= St —S2*+ {StS2—SISt) . (61)

Thus, the D eigenvalues o, ' can be obtained by
determining the eigenvalues of either of the two
DxD matrices S, or S . From ei@erof the cor-
responding eigenvectors z, (cr,)+z,(o,) and z, (o,}
-z, (o,), one can determine z, (a,) or z (o,) by the
direct-product recipe of Eq. (5'1) and finally get
z(o,) by application of Eq. (59). Hence we have
completely reduced the eigenvalue problem for S
to a smaQer problem involving only D xD matrices.
Substituting Eq. (54) into Eq. (61), we get the fol-
lowing explicit expression for the matrices S,:

(Sy )I()
= 6N()»))»() —[((t [)) + p ()() ]»))

—[p, (~&+ tt ',-.&]».»,

+g[i l +~l.)]»lt "+I ', 'J».

In the particular case of pion charge exchange, we
have D= 3 and the eigenvalue problem associated
with Eq. (62) leads to a cubic equation which can
be solved explicitly; once the eigenvalues are
known the corresponding eigenvectors are easily
found by solving a pair of coupled linear equations.
Thus in this case the computational aspects of the
solution are entirely straightforward. s For larger
values of D, the eigenvalue problem can be solved
numerically by use of a computer program' which
determines the eigenvalues and eigenvectors of a
general real matrix.
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