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The problem of predicting the m -3 decay rate in terms of the K +.K° mass difference is discussed
in the framework of a renormalizable SU(3) o model. Order-of-magnitude agreement for the process is
finally achieved. In addition, some connections with unified weak-electromagnetic gauge schemes are

explored.

I. INTRODUCTION

Although the current-algebra or phenomenolog-
ical Lagrangian technique adequately predicts the
energy spectrum of n—#* 7 7° to linear order, it
has generally given a rate which is an order of
magnitude too small. This result follows from
relating the #°-n mixing angle to the “tadpole”
part of the K*-K° mass shift. In a ratker general
form® of the SU(3) 0 model it was previously
shown? that the energy spectrum comes out right
but that the over-all magnitude involves some
constants which cannot be fixed merely by requir
ing chiral symmetry for the Lagrangian. Thus,
although the correct rate could in principle be
obtained, more information is needed.

In the present note it is shown that requiring
the general SU(3) o0 model to be renormalizable
fixes these previously unknown constants and, in
fact, leads to the correct order of magnitude for
the decay rate. What is essentially happening is
that in addition to the 7°-n mixing term there is
another term resulting from the electromagnetic
mixing of the analogous scalar mesons which
enter the process virtually. This latter term
actually dominates the former, and together they
build up the rate.

We shall continue to use the same notation and
formalism as in Refs. (1) and (2), but shall briefly
define some relevant quantities again for the sake
of coherence. The Lagrangian of the general o
model is

L£=3Tr(8,¢9,¢) -3 Tr(3,59,5) = Vo— Vs .
(1.1)

In (1.1) ¢ and S are the 3 X3 matrices of pseudo-
scalar and scalar fields. The members of the
scalar nonet are denoted as

{(K+’ Ko), (€+’ Eo’ €-)1 ('F, EO)’ o’ UI} .
V, is the most general function of the following
chiral [SU(3) XSU(3)]-invariants:
L =Tr[(S+ip)(S-i¢)],
L=Tr{[(S+igp)S-i9)]%}, (1.2)
L=Tr{[(S+ip)(S -i9)]%},
I, =6[det(S +i¢p) +det(S —ig)].

It is convenient to use the abbreviations

vV, 92 VQ '
3 = —n s =
Vi < al; >o’ Vis <3Ii 8If>o (1.3)

The symmetry-breaking term Vg will be taken
to have the following [(3, 3*) +(3*, 3)] form:

Vep == 2(A,S1 +A4,52 +A,S3) , (1.4)

where the A; are three constants analogous to the
three quark masses. A possible origin for these
terms will be discussed later. It is crucial to
remark that there is not only ordinary symmetry
breaking in £, but also “spontaneous” breaking in
the ground state. This is described by the three
quantities

C!(=<S::>o . (1-5)

Thus, in addition to the V;, V;; etc., the system
is described by the six parameters {4;, o;}. In
the isospin-invariant limit, which we shall take as
a first approximation,
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y=m=a, A=A,

(isospin limit) (1.6)
a =wa

A remarkable feature of the dynamics, discussed
in Ref. 1, is that a large number of interesting
results can be found without specifying the explicit
form of V, (i.e., the V;, V;,...). This follows
because one can derive two generating equations
[(2.18) and (2.21) of Ref. 1] which on differentiation
yield a chain of Ward-type identities® between »n- and
(n - 1)-point functions of the theory. In addition,
one uses the extremum equations

<%’n>o+ <3£1>0=0 . (1.7)

These take the explicit form
[V, +2Vy(ay ) +3V,(ay)t] +6 0,05V, =A, ,
@[ Vy +2V,(@,)? +3V4(a,)* ] +60y 0V, =4, , (1.8)
[V, +2V ()2 +3V,(ay)?] +6y 0, V, =4, .

From (1.8) we see that if o, = 0, = @, [SU(3)-invari-
ant vacuum), we must have A, =4, =A, [ SU(3)-in-
variant Lagrangian], and similarly if o, = o,
(isospin-invariant vacuum), we must have A, =A,
(isospin-invariant Lagrangian). Thus the sym-
metry properties of the vacuum and the Lagran-
gian are linked in this model. Besides the ex-
tremum conditions (1.7) there are stability con-
ditions on the second derivatives of V, which lead
to certain allowed ranges for the parameters A;
and «; (see footnote 15 of Ref. 1).

As explained in Ref. 1, it is possible to deter-
mine the fundamental parameters of the system
in terms of a limited set of input quantities. We
initially work in the isospin-invariant limit and
choose as input

m%=1, K*?®=13.67%, n*=16.57%,

1.9)
n'?=50.37%, F,=1.017, (

where the particle symbol denotes its mass (7°
mass equals unity) and F, is the pion decay con-
stant. This choice then enables us to find the
basic parameters:

3(A; +4,)=0.257%, A,=9.057°, «=0.57,

w=1.11, V,=-1.857. (1.10)
One then has the predictions

0p=0.48° Fyx=1.3Tn

P ’ K ’ (1.11)

k%=50,5m2=(959.2 MeV)? ,

where 6, is the n-n’ mixing angle and Fy is the
kaon decay constant. In addition there are many
predictions on the (3-, 4-, ...)-point vertices of
the theory given in Ref. 1. An interesting feature

is that the scalar meson masses (except for the k)
are free parameters in the general o0 model. Plac-
ing restrictions other than chiral SU(3) xSU(3)
invariance on V, will then relate some of these
scalar masses. The additional restriction of scale
invariance was investigated in Ref. 1. Here we
shall impose the requirement of renormalizability.

II. THE RENORMALIZABLE SU(3) c MODEL

The renormalizability criterion is that V, con-
tain no terms of order higher than 4 in ¢ and S.
This gives, in the notation used in Sec. I,

V0=[V1 - Vll a2(2 +w2)]ll +% Vu(ll)z
+ Vol + VI, . (2.1)

[In (2.1) the quantities o and w are considered to
be fixed at the values given in (1.10).] Thus V,

is described by the four constants V,, V,,, V,, and
V,. While the motivation for requiring a phenom-
enological Lagrangian to be renormalizable is
certainly not as strong as the corresponding mo-
tivation for a “fundamental” Lagrangian, it is,
nevertheless, an attractive idea. It is interesting
to note that Chan and Haymaker* have calculated
the one-loop corrections to the tree approximation
for the one- and two-point functions in such a mod-
el and found them to be only of the order of 5%.

We must now specify the four constants appear-
ing in V,. These will be determined in the iso-
spin-invariant limit. V, occupies a somewhat
special position in that it has already been deter-
mined from the general ¢ model [Eq. (1.10)]. V,
and V, can be found from the extremum conditions
(1.8). Noting that ¥, =0 here and that we are work-
ing in the isospin-invariant limit gives

Aol Ve s,
2a3w?=1) aw

v, A 2V,a? -6V,aw=8.1T12% .,
a

V2
(2.2)

Knowing only V,, V,, and V, is sufficient to give
the squared mass of the scalar-isovector particle:

asps;},szI +12V,a% - 12V, 0w

=46.9872 (2.3)
=(925 MeV)? .

This result might tempt one to identify the € with
the 6(960).

The remaining constant V;, may be determined
if the mass of the o0 meson is specified. This,
however, involves one in the intricacies of the
0-0’ mixing problem. A painless way to proceed
is as follows. First define the objects
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9. = 0V, (2.4)
o= (557557, - :

One then notes that the 9IT,, can either be ex -
pressed in terms of the squared masses and the
scalar mixing angle, 65 or in terms of the pa-
rameters in V,. Explicitly, in the isospin-invari-
ant limit,

mu =_;_€2 +b'202 +a;20.12

=2V, +12V, 0% +402V,, , (2.5a)
M,,=—73 € +b'20% +a’%c"’?

=12V, 0w +402V,, , (2.5b)
M,,=V2a’d' (0’2 -0?)

=12V,a+4awVy, , (2.5¢)
My, =2a'%0% +2b'%0"2

=2V, +12V,u® +4Pw?Vy, , (2.5d)

J

_12(V,)* - (40)* (2V, +12V, 0 +12V, ow - 0?) (2V, +12V, o*w® - 0?)

where a’ and b’ are certain useful combinations
of 6

o1
a =76—(sm65+\/7coses) ,

b'=%(cos€s-ﬁsmes) s (2.6)

’2 12 _ 1
a’?+b =2 .

We will also need the analogous combinations
of the pseudoscalar mixing angle 6p:

a =% (sinbp +V2 cosbp) ,

) ' (2.7)
=75 (cosbp - V2sinép) .

From the set of Eqgs. (2.5a)-(2.5d) we may solve
for V,, in terms of 02 and known quantities:

(2.8)

Vl 1

Thus, choosing o2 gives us V,, from (2.8) and
completes the specification of V,. From (2.4) we
may then find the ¢’ squared mass,

02 =9My, +IMyp +Myy -0 %, (2.9)
and the 0-0’ mixing angle,

—2V2 (M, +IM,, =M, -maal
Emaa "mu 'mlz -8,

tan26= (2.10)
In solving (2.10) for 65 a spurious solution will be
found in addition to the correct one. The spurious
solution may be eliminated by checking to see if
it satisfies (2.5¢c). The actual choice of 02 used to
be considered controversial, but now 7-7 phase-

TABLE I. Values for the 0 -dependent parameters of
the renormalizable ¢ model for various choices of o
(o in MeV; V4, X1, X3 unitless; 6g in degrees; a’?,
Sfonns foren in T=1 units).

o 0s
(MeV) Va g’? (deg) X1 Xs

favrn fc’wn
600 5.50 66.42 -57.54 —0.0194 0.0211 -0.0434 0.292
650 7.16 71.32 -52.57 -0.0226 0.0212 -0.0327 0.241
700 9.49 79.31 -46.36 -—0.0267 0.0206 -—0.0123 0.189
750 13.29 94.43 -38.63 -0.0318 0.0189 0.0271 0.135
800 21.89 133.4 -29.26 -0.0388 0.0158 0.108 0.0812
825 33.69 190.4 —-23.98 -0.0434 0.0136 0.182 0.0553
845 64.72 344.4 -19.52 -0.0484 0.0116 0.276 0.0357

850 86.21 451.9 -18.38 —0.0499 0.0110 0.307 0.0310
855 131.6 679.4 -17.23 -0.0516 0.0105 0.343  0.0263
860 2914 1482.0 -16.07 -—0.0536 0.0099 0.384  0.0218
863 1186.0 5978.0 -15.37 -—0.0548 0.0096 0.412 0.0191

(4 +2w?) V, +362w?V, +12aww?® - 4)V,— (2 +w?)o?

r

shift analyses® give an extremely broad object
centered around 850 MeV. To be on the safe side
we shall investigate this system for a range of ¢
masses in the correct region. A listing of V,,
0’2, and 6 for various values of 02 is given in
Table I.

We note that the positivity of the o, 0’ masses
does not allow all choices of ¢2 in Eq. (2.9). For
m, lying between 0 and 863 MeV, m,- lies between
993 MeV and »; choosing m, between 863 and 993
MeV gives an imaginary m,, therefore ruling out
this region. Choosing m, between 993 MeV and «,
my lies between 0 and 863 MeV.

III. ISOSPIN VIOLATIONS

Setting A, #A, will introduce a violation of iso-
spin invariance into our Lagrangian. By the ex-
tremum equations (1.8) this will induce an isospin
violation into the vacuum, i.e., @, #®,. Infact,
subtracting the first of Eqs. (1.8) from the second
and combining with (2.3) gives

ehg%‘l{aﬁ) . (3.1
1 2

Since €2 has already been fixed in terms of the
system parameters this means that the two new
isospin-violating quantities (4, —A4,) and (¢, - @,)
are linked. It is thus sufficient to find (o, — @)
to specify the system in the presence of a small
isospin violation. In Ref. 2 it was shown that this
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quantity is related to the K*-K° mass difference.
From (3.5) and (3.6) of Ref. 2, we find

2 02 _ a = 2 2
(P = (K =dg + 2B =K, (3.2)

where d, is the contribution from the electromag-
netic self-energy diagrams. Conventionally® this
is taken to be

de=~0.1572 . (3.3)

€| |(A/V2)+ x b +xa’ = (1/V2)+x,b" +x,a’
o |=| ~-(1/V2)x, +b’ (1/V2)x, +b’
o' | | =(A/V2)x,+a’ AN x5 +a’

In (3.5) x, is the €°-0 mixing angle and y, is
the €°-0’ mixing angle.® A similar formula [Eq.
(3.1) of Ref. 2] holds for mixing in the 7n°-5-7’
complex. There, y, is the 7°-n mixing angle and
¥, is the 7°-n’ mixing angle. The pseudoscalar-

meson mixing angles have already been determined

in the general SU(3) 0 model. Taking over (3.13)
of Ref. 2 gives

by = C )
1 ‘/7&(7]2—112)

X[n? - +2a(V2bw -a)(n'? - n?)]
=0.0166
=-1.109(o, - o) ,
sl @) (3.6)
X[72 - € +2b(V2Zaw +b) (n'2 = 71?)]
=-8x107*
=0.0537 (o - @) -

[V,
forn=\30am%7),

- iﬂ%ﬁa<__al’o__
=2 an an° 3o \dSiaglagi/,

i,i0k
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Adopting (3.3) and using (3.1) and (3.2) then gives’
@ - a,=-0.01497, A, -A,=-0.3527%. (3.4)

Now that the system is completely specified we
can go on to make predictions about n -~ 37 without
introducing any arbitrary parameters. Because
of the isospin violation there will be 0-€° and
0’-€° mixing in addition to the 0-0’ mixing which
results from SU(3) violation. The physical €°,

o, and o’ are related to the mathematical quan-
tities S}, SZ, and S3 by

V2(=x,a"+xgb") | | St

-V2a’ szl . (3.5)
V2o’ s3
—

A computation analogous to the one leading to
(3.6) gives for the €°-0 and €°-0’ mixing angles

Yo -a)

X1 €2 g2

X[VZ ab’ (3V, + V) +a’ 3V, - awVy,)] ,

My -a) (3.7)
Xs e2 _012

X[(VZaa’(3V,+ V) =b'(3V, = awVy,)].

Owing to the presence of V;; in (3.7), x, and y,
depend on our choice of 02. Thus, their numerical
values are listed in Table I. Besides the isospin-
violating two-point functions (mixing angles) we
will also need certain isospin-violating three-point
vertices for computing 7 - 37 decay. A straight-
forward differentiation of V, [Eq. (2.1)] gives us
the needed objects:

= 7%— Vb0 (o = @) + %(San— V2 abV,) +8b' {2y,(- aa®V, +3V2abV,) +y,[2aabV, - 3V2 (v* - a®)V,] }

- 4V2a'{y,[4awa?V, - 3(1 +2b%) V,] - 2aby,[2awV, +3V,]} , (3.8a)
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foran =7-82- V,ba’ (o, - @) +73- Xs(3aV, = V2 abV,) +8a’{2¢ (- aa®V, +3V2abV,) +y,[20abV, - 3V2(¥* - a®)V,]}

+4V2 0" {y,[4owa® V, - 3(1 +2b%)V,] - 2aby,[2aw V, +3V,]} .

(3.8b)

The numerical values of f;,, and f,/,, are also listed in Table I for various choices of ¢ mass.

IV. n=>37 DECAY

The details of the calculation of this process
for the general 0 model are explained in Sec. IV
of Ref. 2, the final formula being Eq. (4.6). In its
derivation, nontrivial use was made of the Ward-
type identities referred to after (1.6). This for-
mula involves the quantities x;, Xs, forns forxns
0’2, and 65, which were not fixed in the general

! a

2

?
T(n—=a"n"n° m%(l - 2—:;)9> {M-ﬁ—'iw—f,g.‘,iﬂ +

g ag

L[}

A3

where w, is the energy of the #° in the 7 rest
frame. The spectrum shape® represented by the
(1 - 2w,/n) factor has also been obtained by the
current-algebra technique and is very close to the
experimental one. For our present purposes we
note that the “experimental” amplitude to linear
order looks like®

Tow = £(0.994 £0.112) (1 - 2% (4.2)
P n

The early work using the current-algebra approach
essentially neglected all terms in (4.1) except for
the ¢, term (7°-n mixing term). Using (3.4) would
give in this current-algebra limit

Teas 0.163(1 -Z—n“iﬂ> . (4.3)

Thus the predicted width would be about 3 of the
experimental one.® Now, if all the terms of (4.1)
are taken into account we get a much more satis-
factory result. For the experimentally plausible
value m, =850 MeV, the quantity X in Eq. (4.1) is
about 0.64. Since the experimental value may be
as low as X~ 0.89, the agreement is reasonable,
considering the simplicity of our model. Reference
to Table I shows that the dominant contribution to
(4.1) comes from the y, (€°~0 mixing angle) term.
This term is about three times larger than the

¢, (7°-n mixing angle) term, which represents
the contribution which originally had been thought
to be the most important one. Actually, a similar

2 [0 +a'xe) = bty +ay)] |

I

o model, but which are given in Secs. II and III.
For simplicity we write this formula in the (fairly
reasonable) approximation where the relevant
pseudoscalar squared masses are considered
small compared with the scalar squared masses.
The approximation is, of course, less good for
the first term [o-pole term], but it turns out that
this term is numerically small compared to the
others in the interesting range of 0 masses. Then

$

(4.1)

situation to the present one had already been con-
jectured in Ref. 2. We furthermore note that X as
computed from Eq. (4.1) turns out to be essentially
constant in the range 600<m,<860 MeV. However,
for much lower values of m, (which do not seem

so reasonable experimentally® any more) it is
better to use Eq. (4.6) of Ref. 2, rather than its
linearized form given by Eq. (4.1). Because of

the o pole, there would, of course, be an enhance-
ment for very low m,.

How can the agreement with experiment be im-
proved further? One possibility is that the con-
ventional electromagnetic self-energy contribution
to the K*-K ° mass shift (dy) should be modified
from the value given in (3.3). In fact, a value

dy =(0.35£0.07) 72 (4.4)

is sufficient to give experimental agreement for
my =850 MeV. Equation (4.4) is easily found by
first noting that each term in (4.1) is proportional
to (@, — a,) and then substituting the required value
of (@, — a,) into (3.2). Another possibility for im-
proving the agreement is to take more particles
into account in our model; including vector and
axial-vector mesons!® would seem to be a logical
though complicated first step in this direction.

V. POSSIBLE ORIGIN FOR ISOSPIN VIOLATION

In this section we will make some remarks about
the connection of the -~ 37 problem with unified
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weak-electromagnetic gauge schemes.

We have correlated the “tadpole” part of the
K*-K ° mass shift with the n—=37 decay rate by
using the [SU(3) xSU(3)]-symmetry-breaking inter-
action (1.4). The chiral SU(3) is broken because
not all of the A; are zero, the ordinary SU(3) is
broken because the three A; are not equal, and,
finally, the isospin symmetry is broken because
A, #A,. This type of situation is entirely analogous
to the type of symmetry breaking in the quark
model. There, one expects the symmetry-breaking
term to be

Lsp==m §14, ~Mm, 3,9, ~m3T59; , (5.1)

where ¢,,4,,9; are the three quarks and m,,m,,m,
are their “masses.” Equation (5.1) has the same
SU(3) XSU(3) transformation properties as (1.4),
so we may identify A, A,, A, as being analogous to
my,m,,m,. In fact (see footnote 15 of Ref. 1), if
we take A; proportional to m; and «; proportional
to (7;9:),, then the allowed domains for A,/A, and
a,/a, are the same as the allowed domains for
my/m, and (Fyq5)0/(T, q1),-

What is the origin of this symmetry breaking ?
One possibility'!*!? is to consider that the strong
interaction is exactly [SU(3) xSU(3)]-invariant and
that the symmetry-breaking “masses” arise from
a unified weak-electromagnetic gauge theory in
much the same way that the electron and muon
masses would arise in such a theory. Then the
total Lagrangian of the strong, electromagnetic,
and weak interactions would be invariant with
respect to the weak-electromagnetic symmetry
group. However, this symmetry would be spon-
taneously broken, giving rise to (5.1) (or a similar
expression) in the process. The precise imple-
mentation of such a mechanism depends on a par-
ticular choice of a theory of weak-electromagnetic
interactions including the hadrons. Probably all
the present theories are, at best, steps in the
right direction. Thus we shall content ourselves
with illustrating this mechanism in two simple
models. Similar approaches can of course be
carried out for other models. In a simple theory'?
which contains only three quarks the transforma-
tion properties of the quarks with respect to the
weak-electromagnetic SU(2) are

doublet:

Qr\_1 g
(Q;>_2 (1+75) <q2cose+lqssin6> ;

singlets: (5.2)

@R =3(1 -4,
@r =3 (1= v;) (g,c0806 +g,sinb),

J. SCHECHTER

|©

@z, 2 =3 (1£%;) (- g,5in0 +g,cos6) .
In (5.2) 6 is the Cabbibo angle. Then an [SU(2)
xU(1)]-invariant form" involving a scalar doublet
(g;) is

— - i+, —_

(@2 @) (9) (F1Qr +/2Qsr) +F5 @519z

+f4Qsr@r +if5(Q 1) T, (%;) Qe +H.c., (5.3)
where the f; are some real constants. Equation
(5.3) can be identified with (5.1) having arbitrary

Y
m,, m,, and m; when we replace ($) by its vacuum
expectation value (§) and impose'!

Mo =fs =z (fy = M;) tan26 .

In such a three-quark model the unwanted semi-
leptonic decays can be eliminated by introducing'?
another U(1) gauge field, thereby extending the
weak-electromagnetic group from SU(2) xU(1) to
SU(2) XU(1) XU(1). The unwanted nonleptonic
processes can be disregarded if we are willing'?
to postulate an exact dynamical suppression of
nonoctet components in the effective Hamiltonian.

Another way to eliminate unwanted weak pro-
cesses is to introduce'* a fourth quark, gq,. (g,
has the same charge as ¢, but is distinguished
from the other three by having a different “charm”
quantum number.) The transformation properties
with respect to the weak electromagnetic SU(2)
are then

doublets:

Qr)_1 ( 4 )

(ta_ ._2(1+Y5) ¢,c086 +¢,sinfd / »
Q{L>-L < q, )
(Qz’;. =z(1+%) - ¢,sinf+q,cos6/°’

singlets:
@iz =3 (1- 7’5) 9
Qor =% (1 - 7,) (4,086 + g,sin6) ,
QUr=3(1-%)q,, (5.4)

Qir =z (1 - %) (- g,8inf + g;cos6) .
An SU(2)-invariant form is similarly

(R02@0) ($0) (1, @ +10,Qsr)
+(Qf Q1) (%) (hyQar +1,Q)
+(@1@0) (7,) (%) (5Qur +16 Q1)
HQ L) 61 (L) (R, Quz +1aQR) ,  (5.5)

where the z; are some real constants. Equation
(5.5) will become identical to

=M1 4y ~M,qpq, =M 3qsqs —M4q,44,, (5.6)
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with arbitrary m, if we replace (%) by (3) and in
addition impose

-1
hy =K[(m2 +mg) +(m, =m,) cos26],
1 .
hy=hy= §X(m2 -m,) sin20 ,
1
hy=- ﬂ[(mz +mg) — (m, —m,) cos26] , (5.7)

b

m
he= =

Although both the above models apparently do
not give us any information on the values of the
m;, they do suggest a heuristic ansatz. Noting
that the electron doublet is 3 (1 +v;) (%°) we are
tempted to imagine a similarity between the neu-
trino and ¢, and to therefore postulate'! m, =0.
In the case of the o model this would be A, =0.
Using (1.10) and (3.4) shows that [with the choice
(3.3)] we have, from fitting the spin-zero mass
spectrum to experiment,

A\ {o.08
A, )=\ 0.43 ) 73 (5.8)
A,) \9.05

Thus, A, =0 does not seem too unreasonable.
What would happen if we were to impose this to
determine ¢, - @, instead of relying on (3.2) and
(3.3)? Then we would have,'* from the 72 and €
mass formulas of the general ¢ model and using
the value for € given in (2.3),

(al-a2)=—2a<g>2=-o.0215n. (5.9)

This is 1.44 times larger than the value given in
(3.4), precisely large enough to bring (4.1) into
numerical agreement with experiment [remember
that (4.1) is proportional to (@, — o,)]. Perhaps
this is more than a coincidence.

Note that in the preceding discussion in this
section, we have not specified the nature of the
strong interaction apart from requiring it to be
[SU(3) xSU(3)]-invariant. We emphasize that the
“strong” symmetry-breaking terms in (5.1) are
actually considered to arise from a weak-elec-
tromagnetic gauge theory of some sort. For the
strong interaction itself, it is important that it
not possess the higher symmetry U(3) XU(3), i.e.,
the so-called axial-vector baryon current must

not be conserved. This is a reflection of the
necessity of the invariant I,, which breaks U(3)
X U(3) down to SU(3) XSU(3) in the interaction (2.1).
The attempt to construct chiral models of the type
given in Secs. I and II without such a term has
been found'® to lead to an unsatisfactory pseudo-
scalar mass spectrum, namely a 7 (n-type iso-
scalar) degeneracy, which would make an attempt
to calculate i — 37 highly ambiguous.

Another question!® arises in connection with
1 =37 in the presence of a unified weak-electro-
magnetic gauge scheme. When we calculated
n— 37 above, we neglected the contribution from
the emission and absorption of a virtual photon.
Some justification for doing this is provided by
Sutherland’s theorem!” which states that in the
current-algebra approximation this contribution
vanishes. However, in a unified weak-electro-
magnetic scheme one should treat the contribution
from virtual intermediate vector-meson exchange
on the same footing as the virtual-photon contri-
bution. In addition, there may be contributions
of various kinds from the auxiliary scalar mesons
of the theory. Nevertheless, we will neglect these
terms because it is expected'® that they are of
weak rather than electromagnetic order. Actually
we may prove a generalization of Sutherland’s
theorem for the weak current-current terms, but
we shall not give details.

After this paper was submitted, we received an
interesting report by Weinberg'® which presents
a detailed analysis of second-order corrections to
unified weak-electromagnetic gauge schemes. In
his language,!® the models described in this sec-
tion already break isospin symmetry in zeroth
order. This means that the electromagnetic quan-
tity (m, —m,) is not calculable but must be con-
sidered as a parameter. It also may be possible
to arrange the theory in such a way that isospin
is a good zeroth-order symmetry which gets broken
in a calculable way in second order. In such an
event, he shows that the second-order correction
consists of a photon-exchange part plus a term?°
of the form (5.1) with m, # m,. However, (m, -m,)
can then in principle be computed from semilep- '
tonic scattering data. Setting (4, - A,) =(m,
—m,)A;/m, would enable us to use the calculation
of the first part of this paper for -3, since it
was conducted without prejudice as to the origin
of (4, -A4,).
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