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In the context of various models for production processes, we examine what can be learned
from data on the number of charged particles per event in the left and right c.m. hemispheres,
left-right multiplicity distributions. The appropriate generating-functional formalism is
developed. We make explicit calculations of the generating function in both the multiperiph-
eral and Nueller-Regge approaches. We explain how left-right multiplicity distributions
are used to separate the components of a hybrid (diffraction plus short-range-order) model.
Questions concerning the factorization of the leading Regge singularity are also discussed.

I. INTRODUCTION

Recent data from the National Accelerator Labo-
ratory (NAL), from the CERN Intersecting Storage
Rings (ISR), and from the Serpukhov machine have
stimulated an active interest in building models
for charged-particle multiplicity distributions as
well as for one- and two-particle inclusive distri-
butions. ' The inclusive distributions are of inter-
est theoretically because, as shown by Mueller, 4

they give direct information about Regge singular-
ities through a generalized optical theorem. More-
over, the constraints

d p(n) = p, (j5, s) E (1.1a)

(n(n-1)) -(n)'= C (p„p„s)
1 2

(1.1b)
etc., relate the moments of the multiplicity distri-
bution to the inclusive distributions and correlation
functions.

Multiplicity distributions have proved useful in
testing general theoretical pictures of hadron scat-
tering, but since several diffexent shapes of corre-
lation function ean have the same integral it is im-
portant to move toward more finely grained dis-
tributions. At the same time, for data of limited
statistics there is an obvious advantage to studying
integrated quantities. An interesting compromise
between completely integxated and completely dif-
ferential measurements consists of determining
the number of particles (which in practice are
charged) going left ("backward") and going right
("forward" ) in the center-of-mass system. Data
of this type will be referred to as left-right multi-
plicity (LRM) distributions, o(n~, n„). From these
data, more refined information about inclusive dis-
tributions is obtained than in Eg. (1.1):

(n ) = I @ p, ))l s)
d p
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J PL2&0 2

(1.2b)
ete.

Left-right multiplicity distributions are extremely
easy to obtain in bubble chamber experiments and
many types of counter experiments. What we would
li.ke to show here is that LRM distributions already
contain enough information to answer some crucial
questions about the dynamics of production proces-
ses." In particular, they provide a series of
quantitative tests for the factorization of the lead-
ing Regge singularity. ' These tests will be re-
viewed in Sec. II along with a discussion of the
meaning and content of factorization. For com-
pleteness, an intx'oduetion to the generating-func-
tion formalism is included. ' This formalism is
convenient for the discussion of these multiplicity
distributions and the closely related question of
charge transfer across c.m. hemispheres. Dif-
ferences between charged multiplicities and total
multiplicities are discussed in this section as well.

To supply concrete examples of what can be
learned from LRM, we turn in Sec. III to model
calculations. Two main classes of models are
distinguished: those constructed directly for in-
clusive distributions and those constructed direct-
ly for exclusive distributions. Inclusive models
use the Mueller-Regge ideas; exclusive models
ax'e constructed, for the most part, using the
multiperipheral picture, although adaptations of
the multiperipheral picture to include diffraction
are discussed as well. In addition, the Bjorken-
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Feynman-Wilson Quid analogy is here considered
as a simple reformulation and extension of the
multiperipheral picture. In discussions we shall
loosely include all three of these exclusive classes
of models in the "multiperipheral picture. " Sep-
arate from this multiperipheral picture is the
fragmentation picture. We discuss some simple
predictions of this approach, but since recent data
seem to discredit it as an explanation for data in
the central region' we will not present detailed
calculations.

The model of Frazer, Peceei, Pinsky, and
Tan'~~& (FPPT) is chosen as a representative ex-
ample of a model formulated directly in terms of
inclusive multiplicity moments. The one-dimen-
sional version of the multiperipheral model due to
DeTar, "the "nearest-neighbor multiperipheral
model" (NNMM), gives an easily understandable
introduction to the multiperipheral picture. We
give a summary of the relevant details of this mod-
el, as weB as generalizations. These generaliza-
tions include (1) the extension to two-pole multi-
peripheral models which give, in certain approxi-
mations, a nonfactorizing hybrid or "two-compo-
nent'"' model; and (2) an exactly calculable model
of Kac, Uhlenbeck, and Hemmer" (KUH) which

may have some relevance to the problem of under-
standing the effects of final-state interactions in
high-energy data. This latter model is only one of
a large class of fluid mode1. s which can be treated
in a "mean-field approximation. " The conse-
quences of such an approximation are also pre-
sented. "

In Sec. IV, we apply what we have learned to the
available data on left-right multiplicities and to
the related quantity charge transfer. The claim'
thatdata on o(n~, tot) at 205 GeV/c provide direct
evidence for a diffractive or fragmentation mech-
anism is examined in more detail, and the pos-
sibility of separating out the fraction of events
which correspond to diffractive fragmentation is
discussed. Data on (nz&s vs ns a, t current energies
are shown to favor a situation in which the left-
right cross sections do not factorize, although the
situation is not clear-cut. Finally, we show that
data on charge transfer in pp collisions ean give
some information on the size of the corrections
to faetorization.

II. GENERAL CONSIDERATIONS AND

GENERATING-FUNCTION TECHNIQUES

The generating-function formalism has proved to
be an exceptionally valuable tool for dealing with
multiplicity distributions in hadronic production
processes. ' In this section we introduce the nota-
tion that we will use for the generating function,

A. Notation

It may make our later definitions clearer if we
give first a simple example of a generating func-
tion in terms of the cross section o(n, s) for pro-
ducing g particles. Given the complete set
{o(n, s)) at a given c.m. energy Ws, the function of
the parameter z,

Q(z, s) -=Q o(n, s)z", (2.1a)

is formed. Clearly all the information contained
in {o(n, s)) is contained in the function Q(z, s). In
fact, o(n, s) can be recovered using

(2.1b)

where Q "~(z, s) =(8"/Bz")Q(z, s). The advantage of
the generating function is that inclusive moments
can also be simply obtained:

(2.lc)

where it is easy to check that

f,(s) =(n&,

f,(s) = (n(n —1)& —(n&',

ete. The definition we will use for exclusive quan-
tities will correspond to the situation (2.1b), where
Q and its derivatives are evaluated at z =0; jg-
clusive quantities arise from (2.1c), where Q and
its derivatives are evaluated at z =1. If we dis-
tinguish between pax ticles either by quantum num-
ber or by binning events in different kinematic re-
gions so that more than one type of z will be pres-
ent in Q, then the possibility of "mixed" quantities
exists, where some z's are unity and the remain-
der are zero.

A typical example of a mixed quantity is the cross
section o(nd„s), where n, & represents the number
of charged particles and a sum is taken over the
unseen neutrals. Such mixed quantities are also
frequently called semi-inclusive.

These expressions for the integrated quantities
o(n, s) and f (s) correspond to the usual definitions.
The o(n, s) are integrals over the exclusive differ-
ential cross section

and define in terms of this function what we mean

by inclusive, exclusive, or "mixed" quantities.
Many of the results in this section are contained in
a previous paper. ' The treatment here is made
more general so that in addition to left-right multi-
plicities, the related question of charge transfex
can be discussed. The various experimental quan-
tities we discuss are indicated in Table I.
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etc.
It is an interesting exercise to take one step

from completely integrated quantities toward dif-
ferential cross sections by imagining an experi-
ment with exactly two momentum bins. In this
case we will assume that each bin consists of an
entire hemisphere in the c.m. system centered
around the beam or target directions. To discuss
the production of charged particles in the left and
right c.m. hemispheres, we form the generating
function

the summation here, and in what follows, goes
over all values of those n's appearing in the sum-
mand. The notation is self-evident; n, ~ is the
number of "+"particles in the left ("backward" )
and n» the number in the right ("forward") hemi-
sphere. We assume a sum over the unseen neutral
particles: They can be explicitly included, if
needed, by introducing the extra factors
z,~ z,„"'Rwith the completely exclusive cross
sections

o(n, L, n L, nL; n~z, n ~ naL)

inside the summation (2.2).
Because of charge conservation, the four n's in

(2.2) are not independent. A smaller set is

Sg = tl+g+ S

R +R -R

u= 2[(n z —n z) —(n L —n L)] ——,'(q, —qa),

(2.3a)

(2.3b)

(2.3c)

where n~ is the number of charged particles in the
left hemisphere, nR the number in the right hemi-
sphere, and u the net charge transfer from the

Q(ZEAL&

Z -L& Z+R& Z L& S)-
+(++L& 21 L& S& B& 8 L& S)

xz, "' z
" z,„"'"z„"; (2.2)
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right to the left. Here q, and q, are the charges
of the initia1. particles. Charge conservation elim-
inates one n,. from the original set through the con-
straint

to consider explicitly the power of s with which
the generating function (2.2) grows for z, 's not
unity:

q(z+~~ z i~ z+z~ z z~ s)
q, +q, =(n, i, +n, „)—(n ~+n „).

Thus (2.3c) can be written equivalently as

(2.3d)
=-exp[p(z, ~, z ~, z,„,z ~ s)I'], (2.10a)

Q =SR+g —g r —= ln(s/so), (2.10b)

= S g —K+I +gg (2.3c ')

The set (2.3) suggests introducing a new set of
variables into the generating function:

zs-(z.W-z)z ~ = (z, ~z ~)
X/2

(2.4)

(g ~ )'f'

Note that xx' =z,„/z „depends only on "right"
quantities and x'/x= z, ~ /z ~ depends only on "left"
quantities. In terms of Eq. (2.4), (2.2) becomes

Q{z+i,z i z+z&z z~ s)

=- (xx')""(x'/x)'~" q(z z x)

= (xx')'o~'(x'/x)'&~'Qo(n~, s„,u)z~"&z„"sx",

(2.5)
mhere u ranges over both positive and negative
values. The charge constraint implicit here has
been discussed by Webber. ' Certain simple sym-
metry properties of Q follow immediately. If the
incident charge q, +q, is even (odd), then n~+ms is
even (odd), and hence

q(-z~, -z„, x) = (-)""&Q(z~,z~ x) . (2.5)

We mill return later to this symmetry and its im-
plications for the factorization of the generating
function. Another simple property is obtained if

o(s~, n„, —u) = o{n~, n„, u), (2.7)

as mould be the ease, for example, inpp reactions.
Consequently the generating function mould then
satisfy

(z,„-1)'(z „-I)'
k! (2.11)

are related directly to integrals of inclusive cor-
relation functions [recall Eqs. {2.1) and the as-
sociated discussion]. A few simple examples are
as follows:

I'AD~ =&s,i(e)) =
~

dy p, (&),
-r/2

I'Aoio = &s.is.s) —&n.g)&n„)
0 y/2

dy. ~ (yi y.)
-r/2 0

(2.12)

(2.13)

etc. Within the context of the short-range-order
correlation picture, in which, for example,
C,(y„y,)-e ~'& "2~~ as )y, -y, ~-~, a sharp dis-
tinction exists between the coefficients p,», which
involve particles all in one hemisphere and those
involving particles in both hemispheres. If the
correlation functions become integrable in the
rapidity differences at high energy, then it is true
that for n~ x0, n„x0 (see Ref. 7)

01 Odg
-r/2

where p will in general be a function of s. Asymp-
totically in s, me expect p to have a limiting value
for each choice of its arguments z, . The expansion
coefficients of p for z, ~, z» around unity, p„.»,
defined in

(z,~-l)' (z ~ —1)'
~Pi 0 f f

q(z„z„,1/x) =q(z„z„,x) . (2.8)
r/2

dye ' ' ' dy „&z+ z( yi ' ' 'y ~i yx ' ' 'y „)
In what folloms we will often specialize to the case
where a summation has been made over charge
transfer

q(z„z )=q(z„z„,1) . (2.9)

We want to nom examine the consequences for
the generating function (2.5) of certain general
theoretical notions. In paxticular, we will assume
that the cross sections are power bounded and that
there exists an exclusive cluster decomposition in
the rapidities of the produced particles. '4 When
we adopt these assumptions, it becomes convenient

-constant (2.14)

as s (or equivalently I') -~. The implication is
that whenever j+j &2 and k+E&1,

p'g»-0
as s-~. In contrast

p4 ~00 and p oo»

in general are nonzero, and finite as s-~. There-
fore, if the short-range-order hypothesis is cor-
rect, we can obtain a meamngful separation of p,
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PL(Z+L~ Z L~ S) PL(ZL),

PR( +R& R& -} PR(ZR}
(2.16)

The separation (2.15) can also be written, there-
fore, as

P(z, I,, Z L z+R, Z-R s)=a+PL(ZL)+PR(ZR)

+p, (ZL, z„, x, z') (2.15')

(suppressing the s dependence), where again p,
= O(l/Y) asymptotically.

To see that (2.15') is indeed what we would have
expected for short-range models, but is not ex-
pected in general, we remind the reader of the en-
ergy behavior, for pp reactions, of the mean
square fluctuation of the net charge transfer,

((II')) = F,p8x (2.1'I)

(This notation and the results below come from
' Itef. 6.) In models with short-range order ((u'))
is expected to be constant, as implied by (2.15'),
whereas in fragmentation models ((u'}) - v s . This
can be interpreted as implying that fragmentation
models have nonfactorizable singularities which
will show up as strong energy dependence of mo-
ments of left-going particles as a function of right-
going particles. %'e will discuss this point further
in Sec. IV D, whex e data on mean squared charge
transfer are presented.

To help understand the way in which (2.15'}de-
pends on the short-range-order hypothesis, ause-
ful exercise is to compare the predictions for the
two-particle correlation function Q,(y„y,) in
short-range-order, fragmentation, and hybrid
models. In the c.m. system there are four regions
of interest to us: (1) quadrant I, where both par-
ticles are in the right hemisphere (y, &0, y, &0)
[the integral over this region is P~F (we are here
sllppresslIlg lllforlllatloll collcerlllllg chal'ges }]' (2)
quadrant II (y, &0, y, & 0), whose integral is p„F;
(3) quadrant III (y, &0, y, &0}, whose integral is
P»F; and (4) quadrant IV (y, &0, y, &0), whose in-
tegral is p„F [F= ln(s/s, )].

p(z, L, z L, z,~ z R, s) = a+PL(Z, L, z L, s)

+PR(z+R& z -B& R)

+P. (Z+ItZ L)zqR&z R&8) &

(2.15}
and we are guaranteed that p, -o asymptotically.
Charge conservation implies further that as s- ~,

exp[FPL(Z, L, z L)]- (x'/x)'I ~'S(z L),

exp[FP„(, z „)]-( ')"~'V( „)
(read ' 6'" as "function of"), and so asymptotically

Short-range Order'. In short-range-order models,
C,(y„y,) depends only on y, -y, . The maximum
height of C, becomes constant asymptotically, with
the growing part of the integral coming mainly
from quadrants I and III. Ignoring energy-momen-
tum conservation, as these effects do not change
the logarithmic term, we obtain for quadrant II {or
IV)

0

Plj.~ 2 d3 1
-r/2 ~O

dy, C,(y„y,}

= constant,

and for quadrant I (or Ill)

(2.18)

P11F (2.20)

and so we predict p, (ZL, z~ z) [Eq. (2.15')) to be ex-
tremely large asymptotically, contrary to the
short-range-order prediction. In fragmentation
models we definitely do not expect factorization of
the generating function.

The hybrid model. A hybridization of the above
two models is that there remains a smal/ fraction
of events in the inelastic cross section cr which
are due to diffractive fragmentation, the exact
fraction depending upon the energy. ' If these
events could be removed by subtraction, then the
remainder would be of short-range ordex. The
correlation function, usually defined as

dPX&3'2 O'I dSX F2
(2.21)

mill behave differently than in short-range-order
models due to 0" having two components:

0'III = 0'g) +0'g ] O'D && Qg ~ (2.22)

In the central region, we assume doR/dy» and
d' oR/dy, dy, =0 so that

0 p0

PmF= dy"dym&. (yl y.} -' F (2.1(})
-r/2 ~-y/2

These results coincide with (2.14), which leads to
factorization of the generating function.

~agmeniation. Contrast this with the fragmen-
tation-model" predictions for Q,: The only non-
zero contributions to C, are in quadrants I and III,
and the maximum height (which is at y, =y, =0) in-
creases like ~s as s-~. The behavior in quad-
rants II and IV is less dramatic, and results pri-
marily from fragmentation events created in one
hemisphere yielding products which end up in the
opposite hemisphere. As noted by Chou and Yang, ~

these events can account for a nonzero amount of
charge transfer which grows like ~s asymptotical-
ly. If the size (area) of this region is denoted by
e', we expect
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Another set of tests of (2.26) involves the set of
averages

g~ 1 dg~ dang (2.23)
(n„)~ vs n~,

(nz(n„—1))z vs nz, ,
(2.29)

to first order in vn/o„. For large values of
~y, -y, (, the first bracket tends to zero whereas
the second bracket is constant (in the plateau re-
gion}. The integrals over this plateau region then
give asymptotically the results

P„Y, (tY)'.
(2.24)

B. Factorization and factorization tests

From the above results we recall that a short-
range-order picture implies certain asymptotic
properties (2.15') for the generating function.
These can be written in the form

Q(z z, z„, x) -g(z I,, z„,z) exp[pz(z I )Y]

xexp[p„(z„)Y] .
Specifically, this means that

(2.26)

o(n~, n„)=
( „}„q(z~,z„, )

L L +R ~R +L~R

-az(nz)as(nz)[l+ O(1/Y)], (2.27)

the left-right cross section factorizes to leading
order in Y=lns/s, . This factorization property
can be tested experimentally by studying the ener-
gy dependence of ratios of left-right multiplicity
cross sections and comparing with the SRO pre-
diction

The violation of factorization is determined by the
(expected) small value of an/cr„. This can be made
more reasonable by noting that this model could
result from two terms, each of which factorizes:

(naz„n }a=a (nI, )an(nz) + az(nl, )az(nz) . (2.25)

The factorization property (2.15'}is therefore
seen to test the form of correlation functions.
What is needed to obtain factorization is the inte-
grability of correlation functions (both exclusive
and inclusive) in rapidity differences. This type of
integrability is not found in all models. The reso-
lution of whether it exists or not will ultimately
come from experiment, so we now turn to the
problem of experimental tests for factorization in
left-right multiplicities.

etc. Some discussion of the tests (2.29) and recent
NAL and CERN ISR data has been presented re-
cently. ' The lack of correlation expected in (2.27)
implies

(n„)L,-cYas Y-~, (2.30)

where c is independent of nL. As we will discuss
in more detail in Sec. IV, the data on this test are
not conclusive. In particular, the important ques-
tion of whether (2.30}is true for nz =1 has not yet
been answered with current data.

The energy behavior of the cross sections pro-
vides yet another test of the factorization (2.26).
In particular, the following cross sections in pp
collisions are related if p, -0 in (2.15'}:

u(n, tot}= pu(a, a„}

= (s/s )~+»(')+~z(''}
0

a(nz, n„)=(s/s, )"»'""z'",
a(tot} =(s s/, )' +»"}"&"&

inc(N, tot) + inc(tot, M)
1na(N, M) + inc (tot)

(2.32)

which are expected to approach 1+0(1/Y) as Y- ~.
It is important to note that these tests (2.2'I),

(2.30), and (2.32) are to be made at several ener-
gies so we can study the Y dependence of the cor-
rection terms.

At finite energy, the effect of charge conserva-
tion is to destroy the factorization expected asym-
ptotically. In terms of the generating function for
pp scattering, as an example, charge conservation
imposes that the number of charges in the final
state is even and greater than two. This means,
for example, that the generating function has the
symmetry [(2.6)]

ignoring logarithmic factors. As an example, if
the exclusive and total cross sections behave
asymptotically like (s/s, ) ' and (s/s, )', respective-
ly, then a(nz, tot) -(s/s, ) 't'; i.e., the mixed quan-
tity has an energy exponent halfway between the
exclusive and inclusive quantity exponents. The
vanishing of p,(z~=0, z„=0) in (2.15') asymptotical-
ly can be tested by looking at the energy behavior
of the quantities (for a general reaction now)

a(N& M)o'(K, L) =1+O(l/' )
a(N, L)o(K, M)

(2.28}
@ zl.} -zz}=Q(zz, z„) . (2.33)

From this it is easy to illustrate that even if the
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cross sections factorize,

o(n~, n„) = a(n~)a(n~), (2.34)

the generating function Q(zl, , z„) does not, except
asymptotically. A particularly instructive case is

m"~
a(ni, ) =

nx, f

which leads to the generating function

(2.35)

Q(zl, , z„)= QQ a(nt, )a(n„)zI "&z„"s
t3g+tfl even I ~ &

(n~, n„e0)
= sinh(mz~) sinh(mzz)

+ cosh(mz~} cosh(mzs) -1

= cosh[m{z i, +z„)]-1, (2.36)

C. What has to factorize

In a short-range-order picture it appears well
known that the leading J-plane singularity is an
isolated pole and that the above factorization con-
straints involving left-right multiplicities are
among the consequences of the existence of this
leading pole. It is important to keep in mind that
several currently popular models for production
processes do not possess short-range order. In
particular we have seen that the hybrid diffraction-
plus-multiperipheral model which has been the
subject of much current theoretical speculation
has the feature that the correlation functions
C„(y„.. ., y„) approach nonzero constants in the
limit ly, —

y~ l
-~ for any pair of rapidities y, ,y~ in

the central or plateau region. It is then possible
for the integrated correlations in (2.14) to grow
like (-,'F)"~'"z, both in the case that either nz or
n~ =0 and for n~, n„g0. There is no u Priori rea-
son to expect factorization from these models. It
is also clear that fragmentation models need not
factorize, as discussed in Sec. II A, due to the
long-range correlations which can occur in them.
Thus, the questions discussed here are not trivial
and deserve experimental investigation. Indeed
Chere are important theoretical reasons to believe
that the leading Z-plane singularity, even if it is
not a simple pole, may factorize anyway. If this
is true, we then have (for example) powerful re-
strictions on the types of hybrid models that are
possible. The vanishing of p, (z~, zz, x), which is

which obviously satisfies the symmetry property
(2.33}, but does not factorize. At high energies
with m-cln(s/s, ), the behavior of In@(zi,, z„)has
the expected (factorized) form [see (2.15')]

In@(zz,, z„) c(z~+z„)K+const+0(1/F) . {2.37)

B,,(J; t) = B„(Z, t) .
If the amplitude is analytic and properly bounded
so the unitarity relation can be continued to com-
plex J, we can write t-channel elastic unitarity as

B„(Z, t) —B„(Z, t) = 2~B,.(Z, t)B,.(Z, t), (2.39)

where channel g is the elastic channel and B,z is
obtained from B,&

by a continuation around the
elastic cut. Using (2.38) and (2.39) it is easy to
verify that B„B~,=B~,B„; substituting B~,B„/B„
for B„in (2.39) we obtain

B (Bi~ —Bo)=2iPB;,B),B, .
If the partial-wave amplitude B„ is singular,

limlB„(z, t)l =~, (2.41)

we see that (2.39) implies

iimB„(J; t) = (2tp)-' . (2.42)

Thus, the partial-wave amplitude B,&
has from

(2.40) the approximate behavior as J' a
Bg, By~

fj
aa

since B,&
is not expected to be singular, whereas

B„and B,, are. It is then easy to see that the
singular behavior (2.41) as Z- o. leads to

Bo(Z, t)B~g(Z, t)-B;I,(Z, t)B~g(J; t) .
%'e thus have factorization, and are allowed to
write

(2.43)

B„(Z, t) =y, (t)y, {t}f(Z,t)+ 5„(Z, t),
where

limlf(J& t)l =~ i

(2.44}

(2.45)

automatic in the short-range-order picture, may
occur in complicated ways in other pictures.

One of the early results of Regge-pole theory
was the observation that Regge-pole residues must
factorize. " The impression has been gained, ap-
parently by a sizeable segment of the physics com-
munity, that factorization is a property of poles
only. In fact it has 'been shown by Kawai' that
partial-wave unitarity implies that any infinity in
the partial-wave amplitude must reflect certain
factorization properties. Since this result bears
on our investigations here, we briefly review
Kawai's argument.

Suppose we have m coupled channels of scalar
particles with the signatured, reduced partial-
wave amplitude B,~(Z, t} in the t channel. Time-
reversal invariance makes B,~ symmetric,

(2.38)
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bu(Z, t)
f(z, t)

(2.46)

do'(y ~ ~ y ) a(y y )a(y ~ ~ y )
y

This factorization property depends upon unitarity
and on the fact that the partial-wave amplitude is
infinite at J = o.. It does not depend on this singu-
larity being a simple pole. The most singular part
of a hgxd branch point must factorize as well; a
soft branch point such as (J'- n}'~' where the par-
tial-wave amplitude vanishes need not factorize.

The factorization of reduced partial-wave ampli-
tudes in coupled two-body channels does not, of
course, lead dixectly to the factorization of left-
right multiplicity distributions. It is possible to
construct a chain of inference which would lead to
this result, however. If (2.48} could be extended
to a situation where the indices j,j ranged over
quasi-two-body as well as two-body channels, we
could make contact with production processes.
Such an extension is plausible but has not been
proved. Such a proof would require considerable
theoretical effort because of technical compBca-
tions involving many-particle partial-wave ampli-
tudes such as complex helicity. "

If we assume the extension can be made and al-
low the indices i,j to represent the internal quan-
tum numbers of a many-body final state, then we
ean obtain a constraint on production cross sec-
tions when the leading J-plane singularity obeys
(2.44)-(2.46). The constraint is that the production
cross section faetorizes whenever any rapidity gap
becomes large. That is, if we order the rapidities

y& &y]+x &ye+ay

ing left-right multiplicities will be illustrated here
by means of some explicit calculations in simple
models. Two pictures of hadron dynamics will
be stressed: an inclusive one, as best represented
by Mueller-Regge models (MRM), and an exclu-
sive one, a.s best represented by multiperipheral
models (MPM). It appears well known to some
that the multiperipheral picture always leads to,
or is expected to always lead to, an equivalent
Muellex -Regge inclusive description. Recent work
has taken the first step in establishing an explicit
connection between these two pictures. " Although
we believe the physics of MRM and MPM to be the
same, it is nevertheless instructive to treat them
separately in that certain aspects of data can be
more conveniently described from one picture than
the other.

A. Multiperipheral picture

The essence of the MPM ean be obtained by mak-
ing some crude simplifying approximations. The
approximations consist of neglecting the transverse
momentum dependence of the matrix element and
assuming all invariant momentum transfers along
the multiperipheral chain to be small so that we
can reformulate the model in one (longitudinal)
dimension. '0 In this reformulation, the strong-
ordering limit is taken so that the only energy-
momentum constraints are those fixing the total
allowed interval of rapidity. If the matrix element
depends only on momentum transfers, we shall
call such a model the neax est-neighbor multipe-
ripheral model (NNMM). "For n secondary par-
ticles produced, the differential cross section in
the NNMM has the form

This is still not sufficient to guarantee the factor-
ization of integrated cross sections (2.28) unless
the correction term is integrable in (y, -y„,), that
lsy

g&1 e (2.48}

It is therefore interesting to look at diffexential
cross sections directly and test this exclusive
cluster decomposition" (2.4V) as well as the sim-
pler constraints on the integrated cross section
(2.28).

Using the same assumption of a factorizable hard
singularity in the discontinuity of a Mueller graph
we can conclude that inclusive cross sections sat-
isfy (2.4V) as well as exclusive ones.

HI. MODEL CALCULATIONS

Some of the underlying dynamical features of pro-
duction processes which can be learned by study-

=ZaAZ e f yx yaf ym yi

where g is the Reggeon-Reggeon-particle coupling
squared, y, and y, are the initial rapidities of the
beam and target (Y=y, -y, ), [e ""f(y)] is the multi-
peripheral kernel, and a is the leading trajectory
in the kernel. In the Chew-Pignotti model, "the
kernel is (s„„,/e, )'"-e' ~ "&+& "&~, so that f(y) = 1.
The function f(y) will in general not be unity due
to the existence of daughter trajectories, and may
be replaced by a matrix if more than one input tra-
jectory is considered, or if isospin or charge is to
be included explicitly. "

With the particles and rapidities labeled as in
Fig. I, the cross section for n„particles in the
region [y„Y„+y,] and n~ particles in the region
[y, —Yz„y ] (where Y~+ Y„=Y) is in this approxi-
mation
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X

x'„
L

L R
~n+1+xn +1
Xn

b

nR

nR-1

0

Q(aL3 nz) =g Q nLn&(Z Lg) (Zsg)

1 f (nL) —f (n„)
1 —zLgf (nL) nz —aL

1
1 —zzgf (nz)

(8.6)

In the usual case where f(n) is analytic for Ren&0
and has the behavior f(a) -1/a as n-0, the vanish-
ing of 1 - zgf (n) determines the leading asymptotic
behavior of the inverse transform of (3.6). De-
noting this solution by p (z },

FIG. 1. The multiperipheral ladder diagram for the
production process ab a'b' nL(n's) + nz (m''s). The
phase space is assumed to be one-dimensional and the
x& shown are rapidity differences.

o (n„n,) =g,g, g "e"
fIL+1

x

1 =zgf [p(z}],

we obtain for (3.3)

q( ) (233-2) Y Lg Rg P( L)
p(z, )-p(z„) z,g

X e2(4L) YL e (nR)YB

where

(3.7)

(3.8)

n +&

~cfxg5 xg
f -1 t I=a

n

x] [f(z,}f(z„',„+z„„„). (3.2}
~g =1

Here x,'. and x~ are rapidity differences, and YL, Y~
will be treated as arbitrary. The generating func-
tion which determines the left-right multiplicities,

Q(zL, z„)= g o(sL, n„)zL"Lz„"z, (3.3}
AIL"8

will here refer to total rather than charged multi-
plicities for convenience. It is straightforward to
include charge in the NNMM, but the equations be-
come cumbersome. To evaluate (3.3), we first
take a double Laplace transform of

o(nL, n„}
QnLn„(YLe Y„)—=

o (Y)gnL+

[o,(Y) ~g,g, e(' ""] (3 4)

which is defined as

Q„„„(p,p„)= f 3)' e '

where f (a) is the I.aplace transform of f(y). Sum-
ming Q„„„(zLg)"L(z„g}"zwe obtain

p(z) =-zp'(z) =— 1
zg'p (3.9)

Vfe note that the asymptotic behavior of o is

g g e(2+ 2)~ ~ P(&)&(z)o. -g,g~e (3.10}

which can be obtained directly from (3.1) or from
(3.8) with zL =z„=z. The correlation between left
and right depends upon the factor (zL -zz)/
[p(zL) -p(z„)], and we can compute explicitly the
function p, (zL, zz) which appears in (2.15). With
the constraint p, (zL, 1)= 0 used in defining p„we
obtain

g — 2 I

p(zL z )= —ln g L g ln g g
p(z, ) -p(z„),p(1) -p(z„).

ln g-gL -+ln g
p(1)-p(z ) p(1) I

'
(3.11)

To proceed further we would need a specific mod-
el for the kernel f(y). Two simple examples may
serve to illustrate what can result.

The first example is the well-known Chew-
Pignotti model whose kernel isf(y}=1 and n = —,'.
For this model f (a) = 1/a, p(z) =zg, and
(z gL-z„g) [/p(z )L- p(z )z) =1. Therefore there
are no left-right correlations, and p, (z L, zz) =0."

The second example is the "hard core" model of
Chew and Snider. ' In this model f(y) = e(y —5),
and f (n) = e "'/n The corr. elation can be noted
directly by computing the Laplace inverse of (3.5):
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~I"z, e ~s"z~ e ~a~/(r —e ~s, /c[~q„„(a„o.„)=
"& R +L"L +R R Ql, —QR

(3.12)

By standard techniques, we invert to obtain

[Yz —(nn+1)b] "& (YI, —nr, b)"&Q„„Y,Y
n 1

((' —n ()" '"" ' [F —(n +()(]' [Y —(n„n()n]" '"" (Y —n n]'

I~

~

(n~+ n„—k)! k! (n~+ n„—k)! k! (3.13)

lt can be checked that for Y~= Yz = —,'Y, Q„„ is
symmetric in nr, and n~ and further that

[Y- (n+1}b]"
gl

tfr ffR

(3.14)

the result for the total multiplicity distribution in
the "hard core" NNMM. There are clearly left-
right correlations in (3.13) which result from the
sum of components. To compute p, (z~, zz), we re-
turn to the asymptotic expression (3.11). The
power exponent p(z) is obtained by solving (3.V):

P(z) b

~ p(z)
(3.15)

B. The KUH model

The fact that there exists a mathematical iso-
morphism between the multiperipheral model as
formulated by DeTar" and the nearest-neighbor
one-dimensional fluid has led to a great deal of
speculation that the fluid analogy might be a way
of extending our understanding of production pro-
cesses."

Kac, Uhlenbeck, and Hemmer" (KUH) have dis-
cussed in detail a one-dimensional fluid where the
pair interaction consists of a hard-core repulsion
(as in the Chew-Snider model) plus an exponential

which will clearly result in a nonzero expression
for p, (z~, z„). We leave this hard-core NNMM for
the time being, since without additional input it is
incapable of describing existing multiplicity data.
The basic problem is that it predicts a distribution
narrower than the Poisson distribution, whereas
data favor a distribution (ignoring diffraction ef-
fects) slightly broader than the Poisson.

attraction

V„„(y}= yae-»e(y b)—. (3.16)

The KUH fluid is of particular interest for had-
ronic processes because the corresponding gener-
ating function Q can be evaluated explicitly, and
because the potential (3.16) contains a weak inter-
action which is not of the nearest-neighbor type or
the multiperipheral type but might represent long-
range interactions. There is some evidence that
this type of physical mechanism does play a role
in the data, and so the KUH model will be taken a.s
an example of a model with complicated final-state
interactions.

KUH show that in the limit of y-0 and a fixed
[i.e., f, dy V~, (y) fixed] the resultant energy ex-
ponent of o„,(z) = s "] satisfies

p(z)=
1 ( )b

—ap(z),p(z) (3.17)

where p(z) =zp'(z) as before. This equation, known
as the Van der Waals equation of state, has been
applied to NAL and Serpukhov multiplicity data
with some success. '&'~ Even if the KUH model
were to have no physical connection to high-ener-
gy data, the formal isomorphism would still make
calculations in this model instructive.

The technique which makes the interaction (3.16)
soluble is an identity which reduces the calculation
of the cross section involving non-nearest-neigh-
bor interactions to that of a nearest-neighbor
cross section. The price one pays is the introduc-
tion of n auxiliary integrations (for calculating o„).
The essential point (the reader should refer to
Ref. 12 for details} is that instead of (3.1), the
KUH model has the form

dnq ~
-1

dz.+,(zi}.$[&(S&.i-y;lz z,'}e(y;. -y;-b)]+.(z.). (3.18)

The explicit form of the kernel K in (3.18) is
known, but is not important to us here. Once
(3.18) is Laplace-transformed, the important
quantities are the eigenvalues and eigenfunctions

of the integral equation

(3.19)



It is known" that K is a symmetric, positive-
definite Hilbert-Schmidt kernel which has a dis-
crete set of positive eigenvalues A, (.a}whose maxi-
mum is X,(a) and which go to zero as i -~. The
kernel therefore has a uniformly and absolutely
convergent expansion in terms of its complete
orthonormal set of eigenfunctions:

Z' (z, z') =Qz, (a)e, (z, a)e, (z', a) . (8.20)

These facts allow the evaluation of Q„(a):

(i, nCk, a„& J=eke, (x, a,M,. (x, n„) . (3.2(0

In the limit that y 0, (8.27) simplifies due to the
orthogonality of the eigenfunctions:

( )
1 (d(az) Qp(az)9 ass az—

1 —z~g(d(a~) a~ —a„

Q„(a)= Q A, (a)'X,.""(a), (3.21) X (8.29)

A, (a) = )t dz e,.(z)e,(z) . (3.22)

The calculation now proceeds as with the NNMM.
The total cross section is

( ) ~ &,(a)'X, (a)
1 -zgX, (a) (8.28)

and the behavior of Q(Y) is determined by the lead-
ing singularities of (3.23}. If the interaction (3.16)
has a nonzero y, the asymptotic behavior is deter-
mined by the vanishing of

1 -zgx, (a) =0, (3.24)

q(Y) p( }p(.)r
Sg

(3.26)

for the total cross section, where p(z) and p(z)
satisfy (3.17).

The steps leading to Q(az„a„) for the left-right
multiplicities are analogous to those leading to
(3.6}, but for the subtleties involving the eigenval-
ues and eigenfunctions. No new complications
arise which did not occur in obtaining (3.23), and
so we quote the result

q( ) g +(ai) &~(az)
I -zz gX, (az) I -zzgx, (az)

( ) ( )
Q g —tXR

(3.27)

where X,(a) is analytic for Rea &0 and has the be-
havior e "~/a as a 0. In the limit as y 0, how-
ever, we have a feature not present in the simple
NNMM in that an infinite number of terms in (3.23)
contribute because the eigenvalues begin bunching
around the function +(a), the maximum eigenvalue.
It is shown in Ref. 12 that in this case X,(a}= ~(a),
and from the completeness of the eigenfunctions

( )
(d(a}

1 —zg(d(a)

The vanishing of this denominator leads to the be-
havior

The result for the inverse is thus formally the
same as (3.6) except now p(z) satisfies a different
type of equation not derivable in a MPM.

To investigate what might happen in such a mod-
el in more detail, we shall make use in Sec. IV of
a simplifying approximation, known in statistical
mechanics as the mean-field approximation (MFA).
The approximation consists of replacing the long-
range part of the non-nearest-neighbor interac-
tions by its average value. In the KUH model, the
limit y-0 is meant to simulate a long-range po-
tential. For n produced particles, the mean fieM
approximation replaces (3.16) by

d tlq
e(y y 6)&sn /r

~ ~ e dp
(3.30)

since the average potential is the number of pairs
times (1/Y) J~"dy V(y), or ad/Y. But (3.30) is al-
most in the form of the Chew-Snider model, the
"hard core" NNMM. The result is that the cross
section Q„„(Yz,Y„) is given by (3.13) times the
extra weight e'" ~~. In Sec. IV, this model is
compared with certain aspects of the data. For
completeness we give here the parameter values
used, and the prescription used for including
charged and neutral particles. A fit to data'&'~

with this model favors

a=Q, 5=~8, g=4e '~'; 2a-2=-1, (8.31)

8 (&)nz nJ( (2)nf(

hach

R

for right movers, and a corresponding weight fac-
tor for left movers, into the expression (3.18).
Calling Q„„„ in (3.18}Q„".~-„, the present model is

R g,

which corresponds to a Van der Vfaals fluid at the
critical point. The distinction between neutral
and charged particles is accomplished by introduc-
ing a binomial weight factor [as in Ref. 3(e)]
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Cg Chp p ~-Y R R &g n~ 2g ng L L &g fthm 2g Lgf8n /Y h.t- y (8.88)

with (3.31) giving the parameter values. For comparison, we note that the Laplace trans-
form of the total cross section is

C. Pomeron-plus -Regge model
Q(n) = G,F((x)[I-zGF(n)] 'Gb . (3.36)

In applications of the types of model discussed in
Secs. III A-III B, it is usually assumed that dif-
fractive effects are small. For this reason the
elastic process is excluded in these analyses. To
include diffraction explicitly in the multiperipheral
picture, two exchanges have to be included in the
input: a Pomeranchuk pole and a secondary meson
pole representing an average of all lower-lying
trajectories. " If a matrix formalism is adopted,
the formulas are similar in form to those in the
NNMM of Sec. III A. In place of (3.1) we have

= G,F(y, —y, )GF(y, y, )G-
x' ' 'F(yn yn-x)GF(y( -yn)G(, )

(3.83)

where the kernel is now an nxn diagonal matrix if
there are n poles exchanged. [We do not take out
the leading behavior in the definition of g as was
done in (3.1). Also we include in F the flux and
phase space factor e '".] G is an nxn matrix
giving the couplings between the ith Regge pole
and the jth Regge pole; Q, and G, are column
vectors of dimension n which give the coupling of
the external lines to the exchanged Regge poles.
Analogous to (3.5) we have the double transform of

Q„„„(Y~,Y„) [here o,(Y) =-1]

Q ( ) G T[F( )G]))s F(+L) F(+R)
Qg —Qg

det[f -z GF(a)] = 0 . (3.37)

In the general case, the leading behavior of the
generating function Q(Yz, Y„)will again be factori-
zable.

As mentioned in Sec. III A, the above formalism
is general and can be used to treat the exchange of
several secondary trajectories, or the effects of
isospin conservation. " Our interest here is in
the two-pole exchange model, Pomeron plus
Reggeon. The treatment has to be somewhat
roundabout since an input pole at cy = 1, treated in
the multiperipheral formalism, is well known to
generate an output'pole larger than unity. " The
difficulty remains in the inclusive picture and is
connected with the vanishing of the triple-Pomer-
on coupling or the decoupling of the Pomeron from
physical processes. " The standard treatment of
these problems for phenomenology is to allow the
Pomeron to be exchanged only once, on the argu-
ment that the Pomeron coupling is very small.
For the coupling and kernel matrix we have

((y 0 ) (0
(3.38)

We see that the leading behaviors of the cross sec-
tions are governed by the zeros of

x[GF(a,)]"IG, . (3.34)

x[I-z„GF(o(„)] G, .
Q~ —Qg

(3.35)

Summing over all n~, n„, the analog to (8.6) is assuming the Pomeron to be at 1 and the secondary
exchange to be at —,'. These intercepts are taken
to be only approximations and might be varied.
For calculating multiplicities, the relevant quantity
is

&np

)
e(n- ()

en-1

(y+1 (y+1

(3.39)

After some algebra, and neglecting terms of order y
' and higher, we find that (8.34) has the form
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g nL+ nR
a y nL«Ro +Qn&n&(aL) aR) yeye a a g()g() (n + I)"g(n + I)"s

|')&~0 yg "s '8(n„- I) yg "& '8(n~ —1) g "&

a, a„(a„+()" a,(a, ~ ()" (a,+()""")

5))zo yg "& 8(nl, —1) yg "& 8(nz - I) g"i,a„a (a +()" a„(a +()" (a +()" ") (3.40)

The significance of these terms and a comparison
of this type of model with data has been done by
Snider. " We summarize briefly the physics of
(3.40}. The first two terms are the elastic scat-
tering given by Pomeron exchange (y', y~) and the
multiperipheral contribution to o(nz„n„)(g,g,)
The latter is here given by the product of two
Poisson distributions. The last two terms repre-
sent low- and high-mass diffraction. For example
the terms proportional to y,'g, consist of (1) Pom-
eron exchange extending across the left hemisphere
to a low-mass state in the right hemisphere-low-
mass diffraction; and (2) Pomeron exchange which
remains in the left hemisphere to a high-mass
state-high-mass diffraction. We note that the in-
verse transform of these diffraction parts,

2vi . ,„'n(a+1)"
ya-

=yg" ' 1-e " —, , (3.41)
ko

which is an incomplete gamma function, has been
discussed previously with regard to multiplicity
data "

The factorization properties of (3.40) are most
easily seen by writing the equation in the form

Q„„„(a~,n„)=A'„(n„)A'„(n~)+a'„„(n„)a'„(ai),

(3.42a)

we simplify (3.40) somewhat while retaining the
basic form (3.42). This will be explained in more
detail in Sec. IV.

D. Inclusive picture

It is interesting to counterbalance the above
microscopic, or exclusive, models for left-right
multiplicities with a simple Nueller-Regge model
for the inclusive multiplicity moments f„„„.We
choose for this purpose the model of Frazer,
Peccei, Pinsky, and Tan (FPPT). '~f& It is as-
sumed that the inclusive correlation functions are
dominated by their values in the central region,
and further that these values can be well approxi-
mated by the Regge form even down to small ra-
pidity differences. The diagrams considered are
shown in Fig. 2. Formally the contributions of
Fig. 2 have the MPM form (3.33) for Q„and (3.34)
for Q„„with G and g 2x2 matrices,

(g~~ g»&
y(n) =

I 0 I, (3 44)
(g~z gzz)

and the external couplings two-dimensional column
vectors,

(3.45)

We assume the meson trajectory is at a =-,', the
Pomeron is n = 1, and the particles are in the cen-

A'„(n) =y,' "'+g,y
; 5„, g '8(s- I)

a '
O. o. +I" (3.42b)

a'(n) = g'+ + y.y+ '(" '
(3 42c)(a+ I)"" a(a+1)"

Both terms in (3.42a} give leading behavior in the
approximation that (y Y)2 is negligible, and so the
generating function Q(z~, zs), which will have the
form

nL

P, M

P, M
nL

Q(z~, z„)= &'(z„)A'(z~) +B'(z„)a'( ~z), (3.43)

will not factorize. This lack of consistency with
the starting assumptions is clearly related to our
being forced for other reasons to keep only one
Pomeron exchange in the approximation. To com-
pare the basic features of this picture with data

P, M

P

FIG. 2. The multiperipheral Mueller diagram which
contributes to the (n&+ nz}-particle inclusive correlation
function.
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tral region so that the external meson coupling can
be ignored. To compute the integrated correlation
functions f„, we use the identities

with all z's replaced by z -1. The zeros of
det[I —(z —1)GF(n)],

Q Q„(z - 1)"= exp g f„
(z —1)"

(3.46) a(o. + )
, ( [n —(z —1)gap][o'+ a —(z —1)g„„]

-(z —1)'gR„') = 0, (3.48)

determine the leading behavior of the generating
function Q(c.) and Q(ni, , nR). For Q(Y) the result
ls

(z —1)"& (z„—1)"R
(3 47)Z c

n n =g R nc. Sg eI' R

so that the results for Q(o.~, nR), Q(c.), and
det[I-ZGF(n)] = 0 are the same as (3.35)-(3.37) where"

(3.50)

(3.51)

p, (z) = -,'[--,'+ (z —1)(g„„+gRR)]+—,
' {[-,'+ (z —1)(gRR -g„„)J'+ 4(z —1)'gR„'}' '

are the solutions for (3.48). The result for Q(zz, , zR) is

[p+(z&)+2 (zJ, 1) gR]R[ p(+zR)+2 (zR l)g„„]+(zI )(zR )gR„[p ( )Y +p (z )Y]
[p, (z )-p (z )][p,(z, )-p (z„)]

We see now explicitly that the left-right correla-
tions p, (z~, z„) go to zero like 1/Y as Y- ~, which
further illustrates the points made in Sec. II. Ad-
ditionally we see the formalism of the Mueller-
Regge picture closely parallels that of the MPM,
justifying our including them in the sa,me general
picture. Finally, we note that it is a simple gen-
eralization to include isospin constraints explicitly
in the above formalism. The coupling and kernel
matrices then have a larger dimension.

IV. IMPLICATIONS FOR THE DATA

With the continuing analysis of bubble chamber"
and two-arm spectrometer" data on high-energy
pp collisions, we are beginning to obtain the ex-
perimental values for the left-right charged cross
sections o(nl„nR), the average multiplicities (n~)
vs n~ the mean-squared charge transfer (u'},
and the other coarse-grained quantities we have
been discussing. The currently available amount
of data on these quantities is not large, and there
is still a lot of important information which can be
obtained from analyses of experiments helot NAL
energies. For example, the question of the ener-
gy dependence of the experimental quantities
R(N, M) in Eq. (2.32) requires measurements of
left-right multiplicities in the AGS-ZGS energy
range.

One thing which can be done with the data cur-
rently available is to examine the problem of sep-
arating that portion of the inelastic cross section
which might be labeled diffractive fragmentation
in a hybrid or two-component theory. This prob-

lem is important because it strikes at the viability
of the two-component concept. If the diffractive
and short-range components cannot be separated,
then it is not clear whether we can attach much
significance to the two-component models currently
being discussed.

A. The two-component concept and o(n~, tot)

The idea that a certain fraction of inelastic events
in asymptotic proton-proton collisions contain a
quasielastically scattered proton in one hemisphere
and an excited "fireball" which decays into two or
more particles in the other hemisphere has re-
ceived a good deal of attention. " Only recently
has it become apparent that these types of events
do not dominate production processes at current
energies. ' The experimental observation of a low-
mass enhancement in the inclusive cross section
pp -p+MM at NAL and ISR,"however, provides
sufficient evidence that there are some of these
events.

Currently, the most frequently discussed possi-
bility is a hybrid model for production processes
containing both a fragmentation component and a
short-range-order component. There remain
several important unanswered questions in the
two-component approach, such as whether the
dominant excitation of the "fireball" at current
energies is due to Pomeron exchange. These
questions can only be answered cleanly if there is
some way of looking at the data which separates
the two components so that each can be discussed
separately.
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In some versions of the two-component model,
the charged-prong multiplicity distribution would,
at infinite energy, develop a dip structure, the
diffractive component contributing only to low
multiplicity. If this characteristic were present
in the data, it would be possible to make the sep-
aration into two components comparatively easily.
The dip structure is certainly not present in the
data at NAL energies, and so a separation on the
basis of total charged multiplicities is not possible.
In addition there is a certain theoretical uncertain-
ty about whether any dip in the multiplicity distri-
bution is really expected. A "self-consistent"
model due to Ball and Zachariasen, "for example,
has several features in common with the other ver-
sions of the two-component approach, except the
"diffractive" component contributes to cross sec-
tions out to the mean multiplicity. In this version
of the two-component model no dip would develop,
but only a broad plateau. A related approach due
to Frazer, Snider, and Tan" also predicts no dip.

We have to look at slightly more complicated ob-
jects than the total charged-prong distribution in
order to isolate the diffractive component. Since
the Pomeron has isospin zero, it will contribute

l4 —y~EL A STI C+ IN E LAST lC

l2—

asymptotically only to those cross sections where
the charge transfer between hemispheres is zero.
In proton-proton collisions, this means for ex-
ample that the total charge in the forward hemi-
sphere due to a diffractive event must be +1. If
we look at the distribution v(nz„ tot) vs sz„ then dif-
fractive processes will contribute only to those
cross sections with n~ odd. It is not hard to con-
vince oneself that the most plausible situation is
for a substantial portion of the diffractive cross
section to be in o(1, tot). This is the cross section
which contains those events in which there is a
quasielastic proton in the left hemisphere. By
symmetry, there are an equal number of events
containing a quasielastic proton in the right hemi-
sphere. In the plot of o(n~, tot) these show up in
o(1, tot), o(3, tot), o(5, tot), etc. The graph in Fig.
3 shows preliminary experimental data on o(nz„ tot)
at p~ = 205 GeV/c. " The theoretical curves repre-
sent parametrizations based on models discussed
in Sec. III and are explained more fully in the fig-
ure caption. The data completely support the qual-
itative expectations of the two-component picture.
The presence of the expected large surplus of
events in o(1, tot) followed by a dip in o(2, tot) is
reinforced by the sawtooth behavior of the rest of
the distribution showing the tendency to prefer odd
multiplicities (and, presumably, hQ = 0) over even
multiplicities. The presence of the dip allows us
to extrapolate roughly the nondiffractive component
and estimate

IO—
g(1, tot)~~= 3.5 mb. (4.1)
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FIG. 3. Preliminary experimental data on 0(nz, tot)
from the AIL-NAL collaboration at Ph,b =205 GeV/c
(Ref. 30). The two theoretical curves are motivated from
models discussed in Sec. III. The dashed curve is the
prediction of a critical-point fluid model given by
Eq. (3.32) with the parameters (3.31). The smooth
curve is a two-component model with

It might be noted parenthetically that this distribu-
tion is the first inelastic multiplicity distribution
to show any sort of dip structure.

o(n» N —n~) =a(n~)a(N- n~) . (4.2)

Recall now that the short-range-order concept dis-
cussed in Sec. II would require that both a(nz) and
a(N- nz) be peaked around some central value
(n) ~ lns and that they fall off rapidly for values of
n larger or smaller than (&. We can see that in a

B. Estimates of the diffractive component from
g(n~, n~ )

To get more information about the amount of
fragmentation or diffraction we can look at the dis-
tribution of o(nz„n„) directly. As pointed out by
Nussinov, Quigg, and Wang, ' it is possible to dis-
tinguish between the extremes of pure fragmenta-
tion models and pure short-range-order models in
a single experiment at a fixed energy by looking at
the shape of o(nl, , N'- n~) as a function of n~. It is
easy to see how this can be if we assume exact
factorization,
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2 PRONGS
(INELASTIC)

4—

6 PRONGS

short-range-order picture o(s~, N- n~) will be
maximum near the symmetric distribution n~
=N- n~. The most popular "fragmentation" mod-
els would favor either n~ or N- nr small, so that
the antisymmetric distribution is preferred. The
specific examples of a(n~) being Poisson or 1/n~'
are discussed by Nussinov, Quigg, and Wang.

The general feature of short-range ordex con-
tributing mainly near (nz, } and "fragmentation" or
"diffraction" contributing to small n~ should be
true as well in two-component models, so looking
at o(nz, , N- nz) should aid in the separation of frag-
mentation and short-range order. Preliminary
data at 205 GeV/c are shown in Fig. 4 compared
with a critical-point fluid model and a two-compo-
nent model based on the discussion in Sec. III. A
model-independent statement can also be made.
Except for the four-prong events, the data favor
the symmetric distribution of left-right multiplic-
ities implied by the short-range-order concept.
The apparent surplus of events in v(3, 1) can be
understood if the "fragmentation" component is
entirely "diffractive" in that I =0 Pomeron ex-
change dominates. In the same experiment a more
detailed analysis of the four-prong events has been
performed. Figure 5 shows the missing mass

spectrum of pp -PX in the different four-pxong
charge configurations. " Not surprisingly, we see
a low-mass enhancement in &r(1, 3) not present in
either v(2, 2}or o(3, 1}. lf we identify the experi-
mental cross section for producing this enhance-
ment,

oD(1, 3) =0.82+0.OV mb, (4.3)

o~(1, 3)=1.35 mb, (4.4)

than the experimental low-mass enhancement. In
his approach, however, it is quite reasonable to
expect a large component of diffraction in the high
missing mass as well as a diffractive component
in pp -(nr )Xwhich are difficult to separate from
the short-xange oxder.

Equations (4.1) and (4.3) are consistent if we as-
sume that g(1,1) is predominantly diffractive and
that the amount of diffraction ill g(1, 5) e'tc. ls
small.

The obvious test for the presence of diffraction
is, of course, the energy dependence of the cross
sections. Figure 6 shows what data there are on
the energy dependence of the four-prong data. In
this plot o(1, 3) is compared with o(0, 4)+o(2, 2).

with the diffractive component we then conclude
that the diffraction and short-range-order compo-
nents in v(1, 3) are about equal at this energy.

Snider" has done an analysis of the same data
based on an assumption of a factorizable Pomeron.
He obtains a larger diffractive component,
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FIG. 4. Data on o{n» nz) at 205 GeV/c from the ANL-
NAL collaboration {Ref. 30) presented at fixed prong
number N = nl + nz as a function of nr. The theoretical
curves are from the same models as in Fig. 3.
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FIG. 5. The missing-mass spectrum off the slow
proton in the four-prong events at 205 GeV/c for dif-
ferent left-right charge configurations {Ref. 32).
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a g (5, I)

~ cr (2,2)+0 (0,4)—

where o is a diffractive piece and e a short-
range-order piece. A large fraction of the elastic
cross section is usually grouped with the dif'frac-
tive portion. The arguments presented in Sec.
II B concerning the short-range-order component
indicate that it separately should asymptotically
factorize with respect to left-right multiplicities.
If the Pomeranchuk singularity is a hard one, as
discussed in Sec. II C, then the diffractive piece
associated with single Pomeranchuk exchange
should also factorize. At high energy, it may
therefore make sense to write

0
0 10

Ms (Gev)
20

FIG. 6. The energy dependence of the cross sections
0'(1

~ 3) =0'gq 0 and ~(0,4) +a(2, 2) =o&+ &as a function of
energy. The data at 12 and 24 GeV/c are from the Bonn-
Hamburg-Munchen collaboration. The 205-GeV/c data
are from the ANL-NAL collaboration (Ref. 30).

C. Average multiplicities and factorization

As indicated in the discussion of Sec. III C con-
cerning the two-pole -nearest-neighbor-multipe-
ripheral model, the standard formulation of the
hybrid or two-component model is explicitly not
factorizable in left-right multiplicities. We can
define the hybrid model by writing the total cross
section in the form

0 = a~+cr~ (4.5)

Since Pomeron exchange should not contribute
asymptotically to A@=1 the latter cross section
should be free of diffraction. The experimental
errors are certainly large, but there is not much
indication for a different dependence. The energy
dependence alone is consistent with the diffractive
component in o(l, 3) being zero, but it can be as
large as that given by (4.3).

A related test for the presence of diffraction in-
volves plotting the data as a function of the maxi-
mum rapidity gap in the event and the charge trans-
ferred across that gap. Data on this are available
at +„=12and 24 GeV. Since this quantity can in
principle separate diffractive events with large
missing mass, data at higher energies would pro-
vide a check on the considerations presented here.

(ng) „-g —— a const.
Z n~n~aa(n~}

„a n
(4.8)

For charge configurations in which diffraction can-
not contribute, such as n~ =2 in pp collisions,
which must have charge transfer, or for right
multiplicities large we obtain

Pa'(n~} (4.9)

There is some evidence for this distinction between
(nz, &„„,and other values of n„ in the ANL-NAL
data" at 205 GeV jc. The fact that data from ISR
do not show this distinction can perhaps be under-
stood from the fact that the spectrometers in the
ISR experiment do not detect events in a cone of
about 4' around the forward direction. They there-
fore miss most of the diffractive events and are in-
sensitive to the possibility of two production mech-
anisrns. Data from the NAL experiment are shown
in Fig. 7. The theoretical curves are again the

o(n&, n„) = a (n~)as(n„)+as(nl)a (n„), (4.6)

where we have to keep track of the fact that the
diffractive piece contributes only to those distribu-
tions where no charge is exchanged between left
and right hemispheres. In terms of the two-pole-
nearest-neighbor-multiperipheral model discussed
in Sec. III, it is interesting to note that we recover
the factorization properties (4.6) if we group "high-
mass diffraction" with the short-range component.

The consequences of the factorization properties
of (4.6}are roost clearly seen in the energy de-
pendence of the quantities

Q „ni,raD(ni)aa(ns) + as(nz)a (ns)]

g„[a~(nz, )a~(n„) + as(nl)a (ns)]

(4.7)

with the usual assumption that at high energy
a (n„}is peaked at (ns& =lns while an(ns) is energy-
independent and peaked at small n„(n„=1 in pp
collisions). We therefore get
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fluid model and a version of the hybrid model.
Note that if we write asymptotically an explicitly

factorized form for e(nz, , n„),

p(nz„n„) -=[ybp(nz)+bs(nl)] [yb (ns)+b (n„)],
(4.10)

(4.11)(n~)„,=(n~) ~lns .
Since many current approaches to the two-compo-
nent model present it as consisting of the first two
terms in a power-series expansion in something
like gzzPns, where g~~~ is a triple-Pomeron cou-
pling, it is perhaps premature to rule out the pos-
sibility that at superasymptotic energies we re-
cover factorization in left-right multiplicities. It
is not clear, therefore, that the prediction (4.8)
is an absolute test of these ideas. However, it is
clear that measurements of (n~)„at several en-
ergies through the ASG-ISR range can supply a
great deal of information with little fuss.

The factorization test (2.28) can also be used to
investigate the possibility of a two-component
structure such as (4.6). Keeping in mind the fact
that a~(nz) will only contribute to odd n(u=0), we
would predict that ratios of cross sections in-
volving only even multiplicities would be much
closer to unity than those involving odd multiplici-
ties. In the 205-GeV/c data we have, for example,

we can still incorporate the idea of two types of
production mechanisms. It is not easy to disen-
tangle the various terms of this kind of adhoc
factorizing hybrid model to each o(nz„ns). If we
neglect terms of O(y'), the structure is quite simi-
lar to the usual hybrid model. In the factorized
form we have explicitly the result

If this tendency is observed at other energies it
will be an important confirmation of these ideas.

D. Data on charge transfer

The energy behavior of the mean-squared charge
transfer between hemispheres has been proposed
as a feature of the data which will distinguish
short-range-order and fragmentation models. ~

We define the charge transfer

((u')) =p„, ' Q u'o(n~, n„, u) .
N~ 8

In models with short-range order it is well known
that

(4.14)

((u~))sap const . (4.15)

o(n~, n~, u) 0, ux0 (4.16)

but the summation over n~, ns in (4.14) diverges
at large n to give

((u'))ch -v,~ ccs' ' . (4.IV)

This is another example of the general feature of
diffractive fragmentation models of large correla-
tions in the central region from high-multiplicity
events. The hybrid model in this case does not
predict a behavior for the charge transfer inter-
mediate between the short-range-order and frag-

The simple arguments given in Sec. II in terms of
the generating-functional formalism confirm this
result. See, for example, Eqs. (2.15') and (2.17).

The arguments for the behavior of ((u')) in the
diffractive fragmentation picture are slightly more
complicated. In these models we have for large s

p(2, 2)a(4, 4)
o(2, 4)p(2, 4)

p(3, 3)p(5, 5)
p(3, 5)cr(3, 5)

(4.12)

(4.13)
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FIG. 7. Data on (nz) „ from the 205-GeV/c bubble
chamber experiment at NAL (Ref. 30).
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FIG. 8. Data on ((u2)) vs v s (Ref. 30).
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o~(n~, n~ u)-0, uv0

o (nz„ns, u)=0, nz+ns&N

(4.19)

(4.20)

where N is some (approximate) energy-indepen-
dent integer. In the hybrid picture no energy-de-
pendent divergence of the sum (4.14) takes place
and

((u'))s o...-' Q u'os(n~, n„, u)

-const; (4.21)

the mean squared charge transfer behaves asymp-
totically just as it does in a short-range-order
model.

The available data on charge transfer is shown
in Fig. 8. The fact that we see little experimental
evidence for the approach to a constant asymp-
totically indicates that the correction terms to
factorization of the generating function p, (s~, z~ s)
discussed in Sec. II may be large at available en-
ergies. This does not mean that the ideas pre-
sented in Sec. II should not be investigated experi-
mentally. The suggestion is that the correction
terms are large, and this means that the energy
dependence of quantities such as R(N, M) in Eq.
(2.32) will provide nontrivial information.

V. SUMMARY AND CONCLUSIONS

The analysis of data on hadronic production pro-
cesses is becoming more sophisticated, as some
of the simple early questions have been answered.
We are still at a primitive stage in our understand-

ing, however, so it is important to be flexible in
our approach. In this paper we have considered

mentation pictures. To see this we write

o(n~, n„, u) =vs(n~, n„, u)+crs(n~, n„, u) (4.18)

and input the usual assumptions about the diffrac-
tive component:

what can be learned from left-right multiplicities.
Data on left-right multiplicities are easy to obtain
and can provide important dynamical information
both at intermediate and high energies. Along with

other coarse-grained or integrated quantities,
left-right multiplicities illustrate the advantages
of dealing with exclusive and inclusive data on an

equivalent footing.
As an example of the dynamic questions which

left-right multiplicities can provide we have seen
how the short-range order concept leads to factor-
ization. This left-right factorization can be inter-
preted as a consequence of the presence of a lead-
ing Regge pole in the short-range-order frame-
work. Left-right factorization is not a universal
property of models for the production process,
but, due to the fact that unitarity" and other con-
straints" favor approximately factorizable J -plane
singularities, we discuss a series of tests for this
property. Data at low energies are needed so that
we can see if there is an approach to factorization.
The indication from the behavior of charge trans-
fer is that correction terms may be large.

Another feature of left-right multiplicities is that
they are sensitive to the presence of a diffractive
component in the production mechanism. Pre-
liminary data at 205 GeV/c give a good measure
of the amount of diffraction in o(l, 3) and o(1, tot).
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