
PHYSICAL R EVI EW 0 VOLUME 9, NUMBER 7 1 A PRIL 1974

Pion electromagnetic form factor-data analysis and asymptotic behavior
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Existing data on the pion form factor are analyzed with a view to suggesting a method of
verifying theoretical predictions about its asymptotic behavior. A Broadhurst-type analysis
gives a falloff faster than (lnt)c/t ~~ ~ for t ~, where p is the exponent of the threshold
factor of the structure function v W2. Most of the dynamical models predict an asymptotic
decrease (lnt)2 /t" with m and n as integers. For data analysis a 6/D method is developed
and parametrized, the D function posessing the analyticity property due to the two-body
elastic eut and the C function possessing the inelastic cut and the p-~ interference term.
The logarithms occur naturally in a conformally mapped parabolic variable which is used
to parametrize the G function. An analysis of the available data yields the result that
although a 1/t2 or {lnt)2/t2 type behavior is not ruled out, the best fit is given for c ~ 0

andp = 5, suggesting a 1/t3 behavior. We also obtain the results (i) r„= (0.70+0.01) fm
for the pion's electromagnetic radius and {ii) $ = (0.0094+0.~&0&) x expi(101'+38&.) for the p-~
interference amplitude and phase.

I. INTRODUCTION

It is conjectured that if the electromagnetic form
factor of any particle falls off more rapidly than
a dipole form it is composite in nature, whereas
a single-pole-like behavior could imply that the
particle is elementary. Since the pion is the least
massive of the strongly interacting particles, the
asymptotic behavior of the pion form factor is an
important problem in particle physics. Following
Cooper and Pagels' and Broadhurst' me have de-
duced an exact inequality for the asymptotic bound
of the pion form factor. %'e have also considered
predictions from various theoretical models for
elementary and composite objects. It is the aim
of the present paper to suggest a method of study-
ing the asymptotic behavior by analyzing the ex-
perimental data in a scheme of parametrization
specially tailored for the purpose.

In a parallel work' on the proton form factor a
similar scheme of parametrization had been under-
taken incorporating (i) analyticity in t, (ii) correct
behavior near elastic threshold, (iii) the lowest
inelastic branch point, and also (iv) leading to an
asymptotic behavior (ink)2™/f"with m and n being
integers. Acceptable fits to the spaeelike data
were obtained for m =2 and n=2 or 3. The data
alone could not discriminate between these two
fits. The fit with n=3, however, gave a better p
signal in the timelike region on extrapolation. Our
analysis definitely indicated a falloff faster than
the dipole and at the same time reproduced the
Fraseati datum point at t =4.41 GeV'.

In the pion case the situation is quite differ-
ent and rather opposite. Extensive data are avail-
able in the timelike region. There are no reliable

spacelike data since the analysis of pion electro-
production can not unambiguously determine the
pion form factor. Even in the timelike data there
are discrepancies between different experimental
groups. There are also measurable effects due to
the p-w interference. The problem is to extract
meaningful results, if any, from the data as they
exist at present. In case of the proton' the formula
which fitted the spacelike data yielded a p signal
on extrapolation to the timelike region. It may be
possible, then, to use the timelike data for the
pion to extrapolate to the spacelike region. In ad-
dition, the use of the existing spacelike data, even
though unreliable, mill provide a distinct corridor
for extrapolation. In the literature me have not
found any attempt to fit both the timelike and the
spacelike data with the same formula. The exten-
sively quoted formula of Qounaris and Sakurai,
the more recent formula due to Lyth, ' and the fit
proposed by Benaksas' eI a/. yield unusually high
y' for the spaceiike region (see Table III, below).
Our formula is distinctly better and yields the
positive result that a falloff faster than the dipole
cannot be ruled out for the pion.

%e plan the paper as follows: In See. II me make
a brief review of the existing experimental data
and some existing phenomenological fits. In Sec.
GI we discuss the derivation of the asymptotic be-
havior. In Sec. IV we propose a G/D method suit-
able for verifying the asymptotic behavior. In Sec.
V we discuss our results.

II. EXPERIMENTAL DATA AND
PHENOMENOLOGICAL FITS

The existing data on the pion form factor can be
classified into two groups: (a) data in the timelike
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region (t&0) and (b) data in the spacelike region
(t & 0) where f is the square of the four-momentum
transfered to the photon. Experimental data for
t & 0 have been obtained from electron-positron
colliding beam experiments [Fig. 1(a)J. The ear-
liest measurements of Auslander etal. ' suggests
the mass and the width of the p meson to be mp
=764+11 MeV and I"z =93+15 MeV. Orsay re-
sults' indicate a peak almost 50% higher than the
Novosibirsk' results with m~ = 777.5 MeV and a
much higher width. Recent results of Augustin
equal. give indications of p-cu interference instead
of a single p resonance although the accuracy of
these data has been questioned. The latest xe-
ports by Lefrangois" and Benaksas e~a/. ,' how-
ever conf1rm the existence of p-u interference.
Data reported by the groups of experimentalists
mentioned above cover only the range 0.33 ~ t «1
(GeV'). Experimental data for higher values of f,

but with t ~ 4.41 QeV', have been reported from
Novosibirsk" and Frascati. "

The pion form factor in the spacelike region has
been extracted from experiments" "of an entire-
ly different nature, namely the electroproduction
of pions. Akerlof etal."and Mistretta ef, al.'
have extracted pion form factor from the electro-
production cross section by using the fixed-t dis-
persion theory of Zagury" and Adler. " Their re-
sults in the Iow-~t~ region can be reasonably fitted
by a formula, of the type E,(t) =1/(1 —f/m'), with

m =0.6 QeV. More accurate data covering larger
values of ~t~ have been recently reported by Brown
etal. "by using the dispersion theory of Berends. "
Although a single-pole fit to their data are not
ruled out, a better fit is obtained by a dipole-like
form factor: E,(t) =1/(1 —t/m')', with m'=1.812

(a)

QeV'. However the analysis of pion electroproduc-
tion cannot unambiguously determine the pion
form factor. This 1s partly due to the presence of
unknown subtraction constants in the amplitude
which satisfies a subtracted dispersion relation.
Recently Kellett and Verzegnassi" have made a
useful review of the proble.

Several attempts have been made to construct an
analytic formula for the pion form factor. The
most familiar method for construction utilizes the
dispersion-relation technique suggested by Chew
and Mandelstam" and parametrizes the J= I=1 mm-

scattering partial-wave amplitude by an N/D meth-
od. Such a procedure was at first adopted by
Frazer and Fulco" and subsequently refined by
Qounaris and Sakurai using the hypothesis of vec-
tor-meson dominance. Although the formula of
Gouna. ris and Sakurai' (GS) can explain the earliest
Novosibirsk results very well, the extrapolated
curve falls much lower than the high-energy data
in the timelike region and somewhat higher than
the data in the spacelike region. For clarity the
y' value by the QS formula has been reported in
Table III. The hard-pion current-algebra method"
which introduces a zero into the imaginary part of
the form factor also yields similar results. A

phenomenological parametrization procedure which
introduces a zero into the numerator has been pro-
posed by Vaughn, ' Kanazawa and Haruyama, ' and

Lyth. ' Many authors ' have studied the applicati. on
of the Veneziano model to the pion form factor
while others" have studied the approach of the QS

type. But all the formulas suffer, more or less,
from the same type of difficulties as the QS for-
mula. These formulas could not account for the
recently observed p-co interference effects. Re-
cently a practical way of parametrization including
inelasticity and the interference effects has been
suggested by Lyth' and a similar fit has been used
in the data analysis by Benaksas' @~ad. This for-
mula ignores the analyticity properties of the pion
form factor for the p-cu interference term and the
global fit is also not good, giving a high y' (see
Table III). In a subsequent section we shall suggest
a formula which possesses the correct analyticity
properties and gives a much better fit to the data.

III. ASYMPTOTIC BEHA VIOR

FIG. 1. (a) One-photon-exchange diagram for the
process e+e 7l+7l. . (b) One-photon-exchange diagram
for inelastic electron-meson scattering.

The knowledge of the asymptotic behavior of the
pion form factor is also an essential ingredient in
our scheme of parametrization. It is therefore
necessary to know the theoretical predictions of
different models in this regard. In the case of the
proton Broadhurst has obtained an exact bound on
the form factor using the sidewise dispersion meth-
od for inelastic electron-proton scattering initiated
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by Cooper and Pagels. ' Calculations of the Broad-
hurst' type were repeated by us for inelastic elec-
tron-meson scattering, Fig. 1(b). A Drell-Yan-
West"" relation is obtained for the meson and
the bound on the pion form factor turns out to be

dx&l—
1««(P +P)p ydy

„0 gp CX +&X+8
(4)

where m, is the mass of the gluon. Using the Feyn-
man method of integration equation, (3) gives

»m IF.(Q')
I
- (Inq')'/(q')'""",

(P -+ ao

where

Q 2y2

where c is any arbitrarily positive constant in-
cluding zero and p is a constant related to the
threshold behavior of the inelastic mesonic struc-
ture function" ~ ~

lim v W, =F,((u) = (s) —1)» .
(P~m

(2)

In (1) Q' is related to t by the relation t = »t' = -Q'.
We briefly summarize below our findings about

the asymptotic behavior by taking different models
for the elementary and the composite pion.

1. Elementary piongluon emission model

Here we consider the triangle graph with point
vertices given in Fig. 2(a}. The intermediate state
consists of two spin-zero objects: a bare pion and
a gluon. Thus the vertex in Fig. 2(a) can be writ-
ten as

a=-m„'y'-m, '(I-y) .
(6)

dy
p P P)«Iq«(Q« I +4 )«»

qy - (Q'y'+4m ')~'
Qy+ (Q'y'+ 4m„'}'".

= (P'+P).(Inq')'/q'.

Thus the prediction of this model is that

(6)

In obtaining the result (4) from (3) we have used
Lorentz invariance and current conservation.
Now integrating over x and noting that for Q'- ~,
the region 0&y & m, /Q gives the major contribu-
tion to the integral, we obtain the leading terms
lnIp as

I', =&P'lj (0)lp}

(p'+p —2k)„d k

J [(p —k)2 —m „'][(p' —k)' —m „'][k'—m „']
(3)

IF„(t)I
(lnt)'/t .

We observe that this asymptotic behavior is ob-
tained by saturating the asymptotic bound of the
Broadhurst type given in formula (1) with the val-
ues of c=2 andp =l.

2. Elementary NN mode

Pl We consider the NN mode of the elementary pion
as shown in Fig. 2(b), where all the vertices are
point vertices. The vertex function can be written
as

(a)

T

P

r - "d4aTr" «-- » .«--"» «-- )
(6}

where m is the mass of the nucleon. Using Lorentz
invariance and current conservation we reduce it
to a logarithmically divergent integral

d4u
'P'" J" [(P'+k}'-m'][(P+k}'-m']

(b)

FIG. 2. (a) Elementary pion-gluon emission model for
the pion. (b) Elementary ÃN mode of the pion.

The infinity is usually absorbed as a charge re-
normalization. Carrying out the necessary re-
normalization one obtains
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I'"„~ (p '+p) „ln(Q'/m')
(P~ oo

so that ~E, (t)~ goes to infinity as lnt in this model.

(10)

3. Composite NN mode

One can treat the pion as a bound state of the
nucleon-antinucleon pair NN as suggested by the
Fermi- Yang" model. This situation, illustrated
in Fig. 3(a), has been considered by several
authors. " Without solving the Bethe-Salpeter
equation one can use a deuteron-type wave func-
tion to arrive at the same result as in Ref. 36.
From Fig. 3(a) we have

(13)

r(m, ', k', (k+p')') -
(

1
(14)

and a similar function for the I'(m, ', k', (k+p)'),
where K is a constant. Evaluating the integrals
one obtains the asymptotic behavior

]F„(f)), „(inf}'/f' (15}

which saturates the general asymptotic bound (1)
with c=2 and p =3.

This can be generalized to have the relativistically
invariant form (-q + o. ) '. In analogy to the
deuteron form factor we can represent

I'*(m, ', k, (k+p') ) I'(m, ', k', (k+p)')
(k —m')[(p'+ k)' —m'] (p+ k)' —m'

x Tr[y, (k+m)y, (P'+P+m)y„(P" +k+m)] .

y(r)„~e (12)

and its Fourier transform gives the form factor

The function I'(p", p', (p'+ k)'} describes the ver-
tex connecting a pion of momentum p' to its con-
stituent particles of momenta -k and p'+ k. We
recall that the wave function of the deuteron,
which is a bound state of the two nucleons, has
the asymptotic behavior

4. Composite pion-gluon model

The asymptotic behavior of the pion form factor
can also be calculated by considering the pion as
a bound state of a bare pion and a scalar gluon as
shown in Fig. 3(b}. This type of situation has been
studied extensively in the Drell-Lee bound-state
model" of the nucleon. Following our ansatz for
the bound-state vertex described above, the ver-
tex function for large Q' is written as

I'„-, d'k(p'+p+2k)„

1
[(k —g p)' —K'][(k —i}p ') —K'][k' —m, ']

1
[(p+ k)' —m„'][(p'+ k)' —m, '] ' (16)

HiM '~~
P

where @=i'/m„, with p, =m„m„/(m, +m, ), the re-
duced mass of the pion-gluon system. After some
laborious calculations we obtain the asymptotic
behavior

kr-+—-
r

I KVT v r iR
i I~ ~ I ~ I i iL L ~ E

~ i i v i ~ I ~~i
I ~ ~ ~ i ~ii ~ ~ ~

~~
I

P

This important result is obtained as the extremum
of Eq. (1) with c=2 and p =5. The results derived
in this section are summarized in Table I. We
see that the most general type of asymptotic be-
havior of the type (1nt)' /t ", with m and n as in-
tegers, can be obtained by considering a suitable
model of the pion. The parametrization with the
help of a parabolic variable suggested in the next
section also exhibits such behavior.

IV. FORM-FACTOR PARAMETRIZATION

(b)

FIG. 3. (a) Vertex diagram for the NN bound state of
the pion. (b) Vertex diagram for the pion-gluon bound
state of the pion.

It is well known that F„(t) is analytic in the cut
t plane with a right-hand cut at 4m, ' & t & ~. It
has the phase 5', of the I=J=1 nm partial-wave
amplitude (modulo v) in the region 4m„' & t & 16m, .
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TABLE I. Asymptottc behavior of the pion form
factor from different models.

Models

Asymptotic behavior

Elementary Composite

—ih2/Wi (21)

1. Scalar gluon
2. NN mode

(lnt)2/t
lnt

(1 t)'/t'
(lnt)2/t 2

h= (-,'t —m„')' ' (22)

The most convenient way of parametrizing the
pion form factor is to write an N/D representation
such that the numerator contains the zeros and
the denominator contains the poles in addition to
satisfying the analyticity properties. It has been
shown by Bjorken and Drell" and by Chew" that
one can parametrize the pion form factor in the
form

&„(t)= G(t)D(o)/D(t), (18)

D(t) = a+ bt+ h(t),

with

(20)

where D(t) is the denominator function for the J=I'
= 1 Nw scattering partial-wave amplitude containing
the contribution from the elastic cut alone. G(t)
is an unknown function which can contain the in-
elastic branch points. Gounaris and Sakurai4 have
taken the form

&.(t) = D(o)/D(t),

where D(t) satisfies an effective-range formula of
the Chew-Mandelstam" type and is expressed as

The fact that the D function includes the threshold
structure of the p-wave nw scattering can be veri-
fied by observing that h(t) satisfies a twice-sub-
tracted dispersion relation

( 't' m 2)2-~2dt'
-m. '+ —-", t v (t

(22)

Instead of Eq. (20) for the D function we write a
general expression

D(t) = L(t)+h(t)+m '/s, (24)

where L(t) is a polynomial in t which should be
rapidly convergent in the whole t plane without
cuts in the first sheet. In the effective-range for-
mula of the Gs type the la.rge-t behavior of D(t)
comes from h(t) which behaves as tint. The pres-
ence of this term will vitiate the asymptotic form
(lnt)' /t" for the case when n=1. Thus only when

L(t) is a polynomial not higher than the first de-
gree (n=1) can we write in place of h(t) a sub-
tracted form

2 ( 't —m)~ t — ~ t + ( 't-m)t m—
H(t) =h(t) —— ' ln, 1 +, +i

v t 4m' 4m' ~t

1 I" (4t'-m ) t "
(—'t'-m ') ~ dt'

2 ' tISI2(tI t ) Ji tl5/2(te t )
m 2 I ~

2

J4

~!

2

~
4 ~

~ ~~
I ~ t 2

~~~

~

2

~
4

~4tft2 4m&
(25)

G(t)
g„a„t" h(t)+m„+/ 2v (26)

where the numerator function should grow as the
powers of (lnt) in the limit of large t and contain
the nearest inelastic branch point. A way of para-

m being the nucleon mass. This function does not
disturb the correct p-wave threshold property of
the D function but makes the form-factor paramet-
rization purposeful by removing the dominant kine-
matical factor in the asymptotic region for n= l.
With modifications suggested by (25) (for n= 1 only)
we represent the pion form factor as

G(t)F,(t) =
D(t)

G(t)=G,(t)+G (t), (28)

metrizing G(t) has been proposed" "'"in terms
of the zeros of the amplitude

G(t) =1 -Xt,
a form deduced 6 from hard-pion current algebra
with X =0.042 GeV '.

To meet our ansatz and ideas regarding extrap-
olation with an emphasis on large-~t~ behavior,
G(t) must be a convergent power-series expan-
sion ' ' ' in a suitably chosen conformally mapped
variable where the inelastic cut opens out to form
the boundary of the plane of analyticity. To take
into account the prominent p-cu interference fea-
ture we write G(t) as the sum of two terms
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where Gz(t) has the desired analyticity and con-
tains the inelastic branch point at t =16m,'. G (f)
contains the inelastic branch point starting from
t=em„and a Breit-Wigner form for the u-reso-
nance denominator. Using the ideas of analytic
approximation theory"'~'" the cuts are mapped
into parabolas such that the region of analyticity
coincides with the region of a polynomial expan-
sion. The variable is

Z, (t) = [sinh-'(-t/t, )~']'

which maps the cut extending from t= I,, to ~ onto
the branches of a parabola in the Z, , plane with

origin as the focus and the entire region of ana-
lyticity in the t plane being mapped onto the in-
terior of the parabola. The physical region of the
e-m scattering is then mapped onto the right-hand
half of the real axis of the Z, plane. Further the
variable has the very useful and desirable feature
that (Z, ( tends to (lnt}' for large (t(. Thus the
variable is potentially useful for the study of the
asymptotic behaviox of the pion form factor and

it has been employed to good effect for studying
the nucleon form factor. ' In the absence of the
cu term, the form factor is

(29)

(30}

and the interference term is

(31)

such that

F.(t) =F.'(f)+F.(t) . (32)

In the p region this term should be smooth even
though ReD(m~') =0. Also we impose the condition
that E (0) = G (0) =0. Keeping these and the ana-
lyticity properties in mind we write

of the cv meson were taken from tables and the
amplitude and the "phase" of E",(f}was determined
from the fit to the form-factor data. The excellent
cu peak with a smooth tail at the p mass which al-
most approaches zero aftex a few MeV away from
the oi mass shows that our choice for the G (f) is
correct.

V. RESULTS AND DISCUSSION

%e have collected 65 data points on the pion
form factor from the literature. 6 " Out of these
22 are in the spacelike region in the interval 0~ t
~ -1.1& GeV' and the rest are in timelike x'egion
in the interval 0.33 ~ I, «4.41 GeV'. The data re-
ported in Ref. 3 by Augustin et aI,. show a wide dis-
crepancy from the measurements of the other ex-
perimental groups in the same range of t. As has
been pointed out by Benaksas etaI. ' one of the rea-
sons for such a discrepancy is the overestimation
of the nuclear absorption correction (namely 22$).
This systematical error decreases the cross sec-
tion by 8%. Thus we have used the form-factor
data of Ref. 3 reduced by 8%. The data for higher
values of t are from the p, m and the BCF groups"
and are much higher than given by a dipole fit.
This has led to the speculation" that the form fac-
tor vanishes much more slowly than 1/t as ~t~

Total X' values were obtained for different val-
ues of m and n. In Table II we give nine such fits
with m = 0, 1, 2 and n = 1, 2, 3 corresponding to c
=0, 2, 4 and p =1, 3, 5 in the inequality (1). The
mass and the width of the + meson were taken
from the Particle Data Tables to be m = '784 MeV
and I' = 10 MeV. %e find that our formula gives
the best fit for the case c ~ 0 and p = 5, which im-
plies a 1/f' behavior for the pion form factor.
For this fit, we have (4+ 2} unknown parameters
[with the normalization~ F„(0)= 1], the number of
degrees of freedom (NDF) is 59, giving a }t'/NDF

f,Z, „(t)+f,Z, „(f) (33}

where Z, „ is the parabolic variable with t, =(3m„)',
Z,„ is the variable with t, = 16m, ', f, and f, are un-

known parameters, and

u„=(-',f- m„')'~',

k =(-', m ' —m„')'~'.

TABLE II. Total g2 values for different c and p val-
ues where ~F, (t)[ ~ (int)~/tti'+t~~t with the formula
(32) and for 65 data points. The first quantity inside
the parenthesis represents the contx'ibution to the y

2

from the timelike data whereas the second term is the
contribution f'rom the spacelike data alone.

A denominator of the modified Breit-signer form
similar to that used in (33) has also been used by
Roos and Pisut. " We approximate G~(t}

=P „g„Z„"and the polynomial in D(t) as I.(t)
=g„a„t". These forms of the G function and the
I.function were put into (32) and the world data on
the pion form factor were used to search for the
best set of parameters. The mass and the width

156.34
(110.07 +46.27)

87.98
(52.47 + 35.51)

79.36
(44.77+34.59)

95.13
{46.01 + 49.12)

83.40
{46.30+37,10)

79.35
(45.08+ 34.27)

86.81
(45.11+41.70)

83.38
(45.81 +37.57)

79.34
(44.87 +34.47)
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=1.32. This is definitely a good fit in view of the
uncertainties and discrepancies discussed above.
The first term inside the bracket in Table II shows
the g' value for the timelike data points whereas
the second one in it represents the g' for the
spacelike ones. We are aware that the fits giving
the 1/t' or (lnt)'/t' behavior cannot be ignored as

g /NDF is not very much different (1.4) from the
above-mentioned value. Although the asymptotic

. behavior of the type (lnt)4/t seems to be likely
(y'= 86.8), the curve passes far below the time-
like data available at large t and behaves like a
p tail. One of the important features in our fit is
that we can still account for the large +t data even
with asymptotic behaviors faster than the single-
pole fit. For definiteness we write the formula
and the parameters with errors for the c = 0, P = 5
fit

F ~(t)
ac+a, t+a ta+ast~+h(t)+m, a/s

f~Z~~+faZ4~
(a +a, t+a, t'+a, t'+h(t)+m„'/w)(m '-t-il' m k, „'/k ')

(35)

(36)

with

a =(0.365+0.006),

a, = -(0.'185 + 0.012) GeV ',
a =(0.109+0.009) GeV 4,

a, =-(0.010+0.003) GeV '

f, = (0.042 + 0.007) x 10 ' GeV',

f, = -(0.057 + 0.009) x 10 ' GeV',

(3't)

where the errors have been computed by the usual
error-matrix method. The fit to the form-factor
data with the above formula is shown in Fig. 4.
The kink due to the p-co interference is sufficiently
prominent. Figure 5 represents the real and the
imaginary parts of the form factor. It is worth
mentioning that the form taken for parametrization
saturates the bound of Eq. (1) and to study the pos-
sible asymptotic behavior of the form (lnt)' /t"
for F,(t) there are m+n+1 free parameters for

io

co interference

"c-)
C.)

I I I I I I I I I

—l.2 -0.9 -0.6 -0.3 0.0 0.~ 0.6 0.8 1.0S1.25 2.25 3.25 4.25

I (GeV')

FIG. 4. Fit to the pion form-factor data. The solid line shows the fit for the case c= 0, p = 5. The kink appears due
to the p-~ interference. The data points were taken from~Refs. 6 to 17.
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6.0

4.0

5.0

2.0

1.0

0.0

i.0

-$.0-
—p.5 .2 ~4

I.6 t I I I

.6 i.0 2.0 3.0 4.0 5.0 6.0
t (GeV )

es ond' to the fit of Fig. 4.arts of the pion form factor correspon ingFIG. 5. Real and imaginary parts o

F ~ t) and in addition F„(t) introduces two more

It is of interest to compare o
he ' values wit' hobtained in earlier analyses. The g

able III. One imme-different fits are given in Tab e
1 finds that our formula is a superior one indiately in s a

both the timelike and the spacel&e regi
separately and together.

Further to illustrate the p aand v contributions
(35) and (36) more clearly we have phave lotted F„(t
and F,(t)j in xg.F' 6 We find that the p resonance

he mass 765 MeV and has the width 1"~occurs at the mass
44.6 MeV. Since the parameters in xs

are determine rd from a fit consistent with the ana-
ma belyticity an t e't d 'he experimental data they may e

taken as more reliable.

F f't the p-co interference amplitude
45,4Bcomes out to be

(0 009'0' ~) exp[i(101,g) J .0+28 (38)

ur result withbl IV ives the comparison of ou
those obta' ed from photoproductxon and gd colliding-

It is to be noted that our phase is t-
r e radiusdependent. ~ The value of the pion s charge r

obtained from the fit is

(39)r„=(0.709+ 0011) fm,

d to the vector-dominance value s,~„a o p
=0.63 fm. Thus we obtain r„'/r„~„=

hov-UCLA4' measurements on en scat-
tering suggest that r, '/r, ~„'=3.03+
formulas on the pion form factor suggested so far

ormula with other phenomenological fits.TABLE III. Comparison of our formula m o e

References Total g2

g2 from
the timelike

data

X from
the spacelike

data y 2/NDF

Gounaris and Sakurai
(Ref. 4)

Benaksas et al.
(Ref. 6)

This analysis

398.70

182.70

79.36

237.80

56.10

34.59

160.90

126.60

44.77

6.1

3.0
1.32
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40

~~ 20
~L

f.6
i.i

~~0.8

404-
0.0
0.54 .56 .51 .60

t (GeV )
0.66

Parameter Measured value References

( (y, 2m)

((y, 2e)

((2e, 2n)

(0.009 97 0.008)

(0.014+ 0.016)e' ~

(0.0106+ 0.0012)e' 9

(0.106+0.022)e~~4' '" &

(0 142-o'o329) exp[i (100'+ ))
0

(0.016+ 0.004)e'(95 ~ 5 &

0 0

(0.010+0.003)e' 5.

(0 0094 ()'()()g) exp[i (101 ))

Ref. 46(d)

Ref. 46(e)

Ref. 46(b)

Ref. 46(a)

Ref. 46(c)

Ref. 9

Ref. 6, 10

This analysis

TABLE IV, Results on the p-co interference ampli-
tude obtained by different experimental groups and this
analysis. We follow' the notations of Lemke and Sachs. 4~

i0

0-
0 ~ 2 .4 .6 .8 f 0 f 2 1 4 1$

t (GeV')

FIG. 6. Contributions of the p and ~ terms to the pion
form factor corresponding to the fit of Fig. 4 and the
formulas (35), (36), and (37).

gives a radius nearly equal to the vector-meson-
dominance value. En fact it has been demonstrated
by Levin, Mathur, and Okubo~ that the pion's
charge radius must be smaller than the naive vec-
tor-dominance value unless a peaked phase" 5,' is
assumed between 4m, ' & t + 16m „'which is con-
tradictory to the result obtained with the Chew-
Low extrapolation method. Our formula does not
suffer from the flaw of a peaked phase but gives
a ratio 25% higher than the vector-dominance val-
ue.

VI. CONCLUSION

As mentioned earlier, a fall-off of the form fac-
tor faster than dipole cannot be ruled out. A more
positive statement is possible only if unambiguous
data are available in the spacelike region at a
large values of jt~. The pion being a very light
object, the asymPtotic region is likely to set in at
a much smaller value of ~t~ (t&0) than for the pro
ton. We suggest that experiments be performed
to find E,(t) at least in the range -4m„' & k &0.

We are also aware that the main body of data
lies in the p-co interference region. This has in-
troduced two more parameters into our theory,
but has not affected our main aim of suggesting a
way of determining the asymptotic behavior and
showing that this may yield meaningful results.

ACKNOWLEDGMENT

One of us (M. K. P. ) wishes to thank Dr. D. J.
Broadhurst for some useful communication. The
calculations were performed by the IBM1130 Com-
puter of the Utkal University and we are thankful
to the personnel of the computer for all possible
help in computation.

F. Cooper and H. Pagels, Phys. Rev. D 2, 228 (1970).
D. J. Broadhurst, Phys. Rev. D 5, 2615 (1972).

3B. B. Deo and M. K. Parida, Phys. Rev. D 8, 2939
(1973).

~G. J. Gounaris and J. J. Sakurai, Phys. Rev. Lett. 21,
244 (1968); and G. J. Gounaris, Phys. Rev. 181, 2066
(1969).

5D. H. Lyth, Nucl. Phys. B45, 512 (1972).
8D. Benaksas, G. Cosme, B. Jean-Marie, S. Jullian,
F. Laplanche, J. Lefranqois, A. D. Liberman,
G. Parrour, J. P. Repellin, and G. Sauvage, Phys.
Lett. 39B, 289 (1972).

~V. L. Auslander, G. I. Budker, Ju, N. Pestov, V. A.
Sidorov, A. N. Skrinsky, and A. G. Khabakhpashev,
Phys. Lett. 25B, 433 (1967).

SJ. E. Augustin, J. C. Bizot, J. Buon, J. Hassinski,
D. Lalanne, P. Marin, H.Nguyen Ngoc, J. Perez-y-
Jorba, F. Rumpf, E. Silva, and S. Tavernier, Phys.
Lett. 28B, 508 (1969).

J. E. Augustin, D. Benaksas, J. Buon, F. Fulda,
V. Gracco, J. Hassinski, D. Lalanne, F. Laplanche,
J. Lefranqois, P. Lehmann, P. C. Marin, J. Perez-y-
Jorba, F. Rumpf, and E. Silva, Nuovo Cimento Lett.
2, 214 (1969).



PION EL ECTROMAGNETIC FORM FAC TOR —DAT A ANAL YSIS.. . 207'7

~pJ. Lefranqois, in Proceedings of the 19T1 International

Symposium on Electron and Photon Interactions at
Qigfg Energies, edited by N. B. Mistry (Laboratory of
Nuclear Studies, Cornell University, Ithaca, N. Y.,
1972).

~~V. E. Balakin, Institute of Nuclear Physics, Novosibirsk
Report No. 62-70, 1970 (unpublished), and V. E. Bala-
kin, G. I. Budker, L. M. Kurdadze, A. P. Onuchin,
E. V. Pakhtusova, S. I. Serednyakov, V. A. Sidorov,
and A. N. Skrinsky, Phys. Lett. 41B, 205 (1972).

~2C. Bernardini, report presented at the 1971 Interna-
tional Symposium on Electron and Photon Interaction
at High Energies, Cornell University, Ithaca, N. Y.,
1971 (unpublished); M. Conversi, report (unpublished).

3C. W. Akerlof, W. W. Ash, K. Berkelman, C. A. Lich-:
tenstein, A. Ramanauskas, and R. H. Siemann, Phys.
Rev. Lett. 16, 147 {1966); Phys. Rev. 163, 1482 (1967).

~4C. Mistretta, D. Imrie, J. A. Appel, R. Budnitz,
L. Carroll, M. Goitein, K. Hansen, and R. Wilson,
Phys. Rev. Lett. 20, 1523 {1968); C. Mistretta, J. A.
Appel, R. J. Budnitz, L. Carroll, J. Chen, J. R.
Dn~»ng, Jr., G. Goitein, K. Hansen, D. C. Imrie, and
R. Wilson, Phys. Rev. 184, 1487 (1969).
E. Amaldi, B. Borgia, P. Pistilli, M. Balla, G. V. Di
Giorgio, A. Giazotto, S. Serbassi, and G. Stoppini,
Nuovo Cimento 65A, 377 (1970).

~6P. S. Kummex' et al. , x'eport presented at the 1971
International Symposium on Electron and Photon Inter-
action at High Energies, Cornell Univexsity, Ithaca,
N. Y., 1971 (unpublished); 1971 International Symposium
on Electron and Photon Interaction at High Energies,
Cornell University, Ithaca, N. Y., 1971 (unpublished).

~~C. N. Brown, C. R. Canizares, W. E. Cooper, A. M.
Eisner, G. J. Feldman, G. A. I ichtenstein, L. Litt,
W. Lockeretz, V. B. Montana, and F. M. Pipkin,
Phys. Rev. Lett. 26, 991 (1971}.
N. Zagury, Phys. Bev. 145, 112 (1966).

~9S. L. Adler, Ann. Phys. (N.Y.) 50, 189 {1968).
2pF. A. Berends, Phys. Rev. D 1, 2590 (1SVO).

B. H. Kellett and C. Verzegnassi, Nuovo Cimento 13A,
195 (1973). See also paper presented at the Seventh
Finnish School in Physics, Lorna-Koli, Finland, June
26-July 7, 1S72 (unpublished}.

22G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467
(1960}.

23W. R. Frazer and J. B. Fulco, Phys. Bev. Lett. 2,
365 (1959).

24J. J. Brehm, E. Golowich, and S. C. Prasad, Phys.
Bev. Lett. 25, 666 (1969).

2~M. T. Vaughn, Nuovo Cimento Lett. 2, 861 (1969).
A. Kanazawa and M. Haruyama, Hokkaido University
report, 1970 (unpublished).

2~D. H. Lyth, Nucl. Phys. B30, 171 (1971).
28A. Amatya and M. O. Taha, Phys. Bev. D 1, 2147

(1970); T. C. Chia, M. Hama, and D. Kiang, ibid. 1,

2126 (1970).
M. Parkinson, Phys. Bev. D 1, 368 (1970); Y. C. Liu
and I. J. McGee, ibid. 3, 2906 {1S71);and G. J.
Aubrecht, ibid. ~I. 284 (1970).

3 S. D. Drell and T.-M. Yan, Phys. Rev. Lett. 24, 181
(1970}.

3~6. B. West, Phys. Rev. Lett. ~24 1206 (1SVO).
32A. Niegawa, Nuovo Cimento 4A, 883 (1971); Nuovo

Cimento Lett. 3, 684 (1972); H. Sato, Prog. Theor.
Phys. 45, 1592 (1971); M. Chaichian, Nuovo Cimento
Lett. 1, 831 {1971).

338. D. Drell, D. J. Levy, and T.-M. Yan, Phys. Bev.
D 1, 1617 (1970).

34M. Hama, D. King, and Y. Sumi, Prog. Theor. Phys.
47, 908 (1972).

3~E. Fermi snd C. N. Yang, Phys. Rev. 76, 1739 (1949).
~J. S. Ball and F. Zachariasen, Phys. Rev. 170, 1541
(1968); D. Amati, L. Caneschi, and R. Jengo, Nuovo
Cimento ~58 783 (1968); D. Amati, R. Jengo, H. R.
Rubinstein, G. Veneziano, and M. A. Virasoro, Phys.
Lett. 27B, 38 (1968); M. Ciafaloni and P. Menotti,
Phys. Rev. 173, 1575 (1968); M. Ciafaloni, ibid. 176,
1898 (1968).

3~S. D. Drell and T. D. Lee, Phys. Rev. D 5, 1738 {1972).
38J. D. Bjorken and S. D. Drell, Relativistic Quantum

E',fields (McGraw-Hill, New York, 1965).
G. F. Chew, S-Matrix Theory of Strong Interactions
(Benjamin, New York, 1962).
M. Boos, and J. Pi5ut, Nucl. Phys. B10, 563 (1969).

4~R. E. Cutkosky and B. B. Deo, Phys. Rev. 174, 185S
1968).

42S. Ciulli, Nuovo Cimento 61A, 787 (1969).
43B. B. Deo and M.K. Parida, Phys. Rev. Lett. 26, 1609

(1971).
44Ordinarily Ep~(t} would requix'e (m+n+ 2) free param-
eters. From our construction of the D function, D(0)
= ap in all cases and Z4„(0) = Z3~(0) = 0. Thus the nor-
malization of the pion form factor E (0) = 1 imposes the
constraint gp = ap which reduces the number of free
parameters by 1.

4~We follow the notation of J. L. Lemke and R. G. Sachs,
Phys. Bev. D 5, 590 (1970). In this notation our $
= (f&z3„+f2'«)/[ao+ait +a2t +azt + h(t) + m« ll, ,
(a) H. Alvensleben et al. Phys. Rev. Lett. 25, 1373
{1g70); {b) 27, 88 (1971); (c) P. J. Higgs et al. , Qid. 24,
1197 (1970); {d) 24, 1201 (1970); (e) H. J. Behrend
etal. , iMd. 27, 61 (1971).

4~P. Shepard, invited paper presented at the 1972
Washington xneeting of the American Physical Society
(unpublished). This report was based on an analysis
of 25%%up of the data.

+D. N. Levin, V. S. Mathur, and S. Okubo, Phys. Bev.
D 5, 912 (1972).

49D. N. Levin and S. Okubo, Phys. Rev. D 6, 3149 (1S72).


