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Using an effective-range-type expansion in the j plane for the N and D functions, the #-chan-
nel partial-wave amplitude A(j,£) (= N/D) is expressed as [Fy + Fy(j - &) + G,(j — &) 1/2]/
[j—ay+e(i— ac)“ %], where a square-root singularity is assumed for simplicity. For ¢ linear
int the following results are obtained: (1) The Regge poles (= a,) are complex below a cer-
tain¢ value. (ii) The amplitude A(s,¢) in the scattering region is of the forma (s,¢)s®+
+a_(s,t)s*-, witha, (s,t) expressible as a sum of two terms. The first term is one-half
the residue of the complex pole, whether the pole be on the physieal or unphysical sheet, the
second term is a series involving the product (o, —a/)Ins. It is found by explicit calculation
that if € is small (~0.1) then only one or two terms of the series are important up to quite
high s(~200 BeV?), Only at asymptotic s will the series sum up to give the tip of the cut
contribution, s%/(Ins)*2. At presently available energies, therefore, the s dependence
is largely given by s®*. The results remain unchanged if the pole is on the real axis
(e=0). (iii) At the ¢ value where the poles collide, the s dependence is of a typical double
pole from s%ns. (iv) It is observed that the strength of the cut is manifested through |F,/F,|
and |Gy/Fy| as well as through €. (v) For small, fixed € the F, term plays a crucial role in
shifting the zeros in ¢ of A(s,¢) from their simple pole values. (vi) The sign of the cut is
intimately connected with the phase of the complex residues for ¢ <0, the width of the ¢
channel resonances, and with the question of determining the sheet on which the poles are
located for ¢ =0. (vii) Finally, A(s,?) is in general not factorizable but can be written as a
sum of (complex conjugate) factorized quantities.
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I. INTRODUCTION

The j -plane singularity structure of #-channel
partial-wave amplitudes are believed to play a
crucial role in determining the high-energy be-
havior of the s-channel scattering amplitude. If
t -channel unitarity is to be taken seriously then,
as emphasized in recent years, ! the so-called
D function of the partial-wave amplitude should

inherit the singularity structure of that amplitude.

Thus if the amplitude has j -plane cuts then so
must the D function.

Let us suppose for simplicity that the cuts are
of the square-root type with a branch point at
j=a,. One can then expand the D function in a
power series around j=a, in the (j —a, )2 plane?

D(j,t)=dy+d(j-0, )2+ dy(j—a,)+*+ .

Similarly, one can expand the N function which is
the numerator function of the partial-wave ampli-
tude,

N(j, t)=ng+n,(j-a, )2 + ny(j—a, )+ .

|©

Here the d;’s and »;’s for i=0,1,..., are assumed
to be functions of ¢. The 7;(¢) functions are of
course not independent of the d;(¢)’s, since they
are (at least with two-body unitarity), the differ-
ence of the d;(¢)’s on the two sheets of {. How-
ever, for ¢<0, this is not a very relevant con-
straint and we may as well consider the 7;(¢)’s

as independent functions.

In the spirit of the effective-range theory, which
has worked so well in the % plane, we keep terms
only up to and including the quadratic, j-a,. The
partial-wave amplitude A(34, ¢) (= N/D) can then
be expressed, after appropriate readjustment of
terms and normalization, as?®

_F+ F,(j-a.)+ G,(j-a )?
j-a,+e(j-a, )2

A(j, t) . (1)

One can interpret the numerator above as a prod-
uct of the factorized form,

(By+BI(J=00 2 4+ ) (By +Bi(J=ag 2+ )

=F, + F,(j-a.)+ G(j—a )P +++ .

1991
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This interpretation would ensure that the residues
at the pole will be of the factorized form, whether
the pole be on the physical or unphysical sheet.

It is implicit in the above expansion that € ap-
pearing in the denominator expression is small.
The phenomenological consideration give €~ 0.1.*
Thus the trajectory function obtained from the
zero of the denominator will not be too different
from a,. From now on a, will be assumed to be
linear in {, so that the actual trajectory, to a very
good approximation, will remain linear in . The
quantities F, and G, should also be small in ab-
solute magnitude (note that our numerator and
denominator functions are dimensionless®). How-
ever, if F, itself happens to be small then the ratio
F,/F,, G,/F, can be ~ 1. Obviously, all quantities,
in particular F,, G, and €, must be related to each
other. In the absence of cuts, one would expect
€, F,, G, to vanish identically leaving the ampli-
tude with “unperturbed” pole a, and “unperturbed”
residue F,.

The above discussion was based on the square-
root model but arguments and formulations re-
main the same for other types of singularities as
well.? The square root is among the simpler sin-
gularities and, phenomenologically, it appears quite
relevant to high-energy scattering.* We will as-
sume it to be valid throughout the discussion below.

The expression (1) for the amplitude A(j, t) is a
natural extension of the simple pole form, B/(j-a),
to the case where cuts are present. Its Mellin
transform for ¢<0 will be related to the scattering
amplitude for the (crossed) s channel. The first
question we would like to ask is what kind of high-
energy behavior will the partial-wave amplitude
(1) predict in the s channel, and to what extent the
cuts change the structure of the amplitude from the
simple pole case. Of particular relevance is the
so-called complex-pole approximation and the re-
lated high-energy phenomenology. It is also most
interesting to study the possibility of having the
crossover zeros and their relation to the strength
of the cut. The expression (1) is also useful in the
t channel for ¢ values above threshold where the
residues will be proportional to the resonance
widths. We will investigate the problem of ex-
trapolation from the region £ <0 to the resonance
region as well as the location of poles and the
significance of the sign of the cut. Finally, the
constraints due to factorization will be investi-
gated. .

In Sec. II, we obtain the Mellin transform of (1).
In Sec. ITI we discuss the question of the complex-
pole approximation and the tip of the cut contri-
bution. In Sec. IV, we investigate the double pole
corresponding to the point at which the complex
poles collide. In Sec. V, the poles on the real

axis vis-a-vis the absorption model is considered.
In Sec. VI the relation of the strength of the cut to
the crossover zeros and dips is investigated. In
Sec. VII we discuss the location of the poles, ex-
trapolation of the residues, and the sign of the cut.
Finally, in Sec. VIII we consider factorization.

II. THE MELLIN TRANSFORM OF A(j,t) AND THE
SCATTERING AMPLITUDE

We note that the poles of A(j, ¢) in (1) are given
by the solutions of the equation

j—ay+e(j—a,)2=0.

If o, and a, are the two solutions, then

(g —a, ) %==jex (€2 + ay-a, )2 (2)

The two poles collide when the term inside the
above square root vanishes. Suppose this happens
at t=t,; then one can write

1€+ a,-a,=c(t-ty), c>0

where we assume that @, and a, are linear in ¢.
We also assume, following standard theoretical
arguments, that a, has a smaller slope than a,.
The expression (2) can then be written as

(@ -, 2=~k e £ [c(t-1,)]" 3)

and taking the square on both sides, we obtain the
two solutions

ap=a,+ie2+c(t-t,) ¥ €[c(t—t,)] 2
=a,+s€zelc(t-ty)]2. (4)

For ¢>>t, the two poles are on different sheets,
one physical [Re(j —a, )*/2>0] and the other un-
physical. The two poles collide at ¢t=¢,. For
t<t, the poles are complex conjugates of each
other. They will both lie on the unphysical sheet,
for t<t, if €>0 and on the physical sheet if €<0.
In Fig. 1, we have sketched a diagram for the un-
physical sheet case. The real part of the trajec-
tory, ag, for t<t,is given by

agp=a.+3€+c(t-t,)

=a,+3€2.
Thus ay differs from o, only by 3 €.

Let us designate a, to be that pole, either on
the physical or unphysical sheet, which develops
a positive imaginary part a, whenever {<¢,. Then
a . will be the other pole. Thus for {<¢, and
ar=|elle(t-t,)]*2
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a,=a,=a, +y€2+c(t-ty)+ie[c(t~t)]*?

(e>0),
a, =0,

=a, +3 €2+ c(t—t,)—ielc(t—t)]*?

(€<0). (5)

From now until Sec. VII we will consider the
case where the poles are on the unphysical sheet
(e>0). In Sec. VII we will compare the results
with the physical-sheet situation. We now consider
the Mellin transform of A(4, ¢) for ¢ <0. This
Mellin transform is the imaginary part, A(s, ¢), of
the scattering amplitude, T(s, ¢), above the s-chan-
nel threshold.

L ey
A(s,t)—zm.f dji s'A(j,t)

=fjoot+y
=Im T(s, t),

where 7y is to the right of all the j-plane singu-
larities of A(j, ¢) and where from now on we em-~
ploy BeV units with the scale factor s,=1.

For the case where the poles are on the unphys-
ical sheet (€ >0),

A(s,t)=——111-fac dj ' discA(j, t), 6)

where discA(j, ¢) is the discontinuity of A(j, ¢)
across the j-plane cut. In order to evaluate disc A
from the expression (1) we note that one can write

f1 +g1(j-ac )1,2

A, t)= j—a,+e(j-a,)M? + B, @
where
fi=F, + Flag-a;)
=F, +F,[c(t-t,)-1€*], (8)

8&=G,-€F,,

then because F, is independent of j the second
term in (7) will not contribute to discA. There-
fore,

[g]_(j_ao)_efl] (ac _j )1/2 (9)

disc A(j, t) = (G-03)(G-a.) ’

i

discA(j, t)=% {&+W (fi-3 Egl)s
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FIG. 1. A sketch of the motion of the poles for € >0

in (a) the (j — @,)'/? plane and in (b) the j plane. This is
the unphysical-sheet case.

where in the denominator |j-a,+€(j-a, )] is
replaced by the products involving the two roots
a, and a_.

From (4) we note that

ay,=3(a, +a.)-3€2.
Also for the unphysical sheet case (e >0) under
discussion where a, corresponds to the positive
sign in (4) we have for £<¢,
Ha,—a)=idelc(t~t)] 2
=ia;.

The expression (9) can then be written as

_s)/2
l -(E‘L.L + c.c.,
J-a,

where c.c. means complex conjugation. The Mellin transform integral (6) is then reduced to a single inte-

gral which is the following®:
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f djs’ (@, —j)'”? _

=-7la,-a, )2 s™

j-a,
T 1/2 o,
+§(1ns> ¢+(sst)s ’
(10)
where
(¢, —a,)"(Ins)"
(s, 1) Z (n_z)m : (11)

The amplitude A(s, ¢) is then, using (3)

Als, ) =37, (t)s*+

1 i L
- i (6 [ Ui es)

(11113)“24)"(3 t)s*+ + c.c., (12)

where 7, is given by
?«1» (t) = (( fl_egl)_ igl[c(to"t )] vz

i€ .
c(t-1)]72 (f1‘55g1)> . (13)

We can also write

A(s,t)=a,(s, t)s* +a_(s, t)s* .

We note a very important point about (12) above.
It is expressed in terms of the complex poles a,
and a. and the energy dependence is in terms of

*+ and s*-. The first term in the expression cor-
responds to the contribution from the semicircle
around the pole a, with ¥, the full residue, the
second (series) term involving ¢, corresponds to
the rest of the contour (see Fig. 2), with a con-
tribution that depends on both s and ¢. As we shall
see later, only a few terms in the series are found
to be significant if € is small. One can consider
(12) as a complex-pole expression with energy-
dependent residues ay (s, t). In other words, the
energy dependence is largely determined by s**
though with residues that may have slow Ins de-
pendence. Of course, if the energy variable s is
extremely large then the higher-order terms will
be important and the infinite series in ¢, (s, ¢) will
add up to give

s

—_— §=0 ,
(a. - a,)Ins as

b. (s, t)s%+ ~

Als, )= 1, ~e=ileltg=0)]V

ie?
S YO )
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FIG. 2. The contour of integration for the case when
the poles are on the unphysical sheet.

We will see an explicit demonstration of this in the
next section. We will also see, however, that for
s as high 200 BeV? only a few terms in the series
need be important.

The expression for A(j, t) can be divided into
two distinct parts. One coming from the term

R | U
j=a,+e(j-a, )?

which we call the “pole-type” term. The other
coming from the term

g (j_a )1/2
j=a,+ €(j-a, )2
which we call the “cut-type” term.
The A(s, t) corresponding to the “pole-type”
term is obtained from (12) by putting g,=0

A(S,t):%fl(l zw)s +
. 1 .
T s (5 O

+ C.C.

As €-~0, a, and a_ each become real (= a,). The
second term and its complex conjugate mutually
cancel each other so that we have for the above

case
Als, t)~f, s%

} as €-0
i $) L1
AU, )~ 5=
which is simply the usual (real) pole behavior.
Hence we designate the f, term in A(j, t) as the
“pole-type” term.

The A (s, t) corresponding to the “cut-type”
term is obtained from (12) by putting f, =

1
4_\7'-_( 1- Z[C(to & ) (Ins )72 P4 (s, t)s™ +c.c.
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As €-0, only the second-term and its complex
conjugate will survive so that for the above case

A(s, t)-—z—g‘#-— (—h:'sv 4)0(8, t)s%o

A(] t)-o g](j_ag)uz
’ j—ao

}as €-0,

where ¢ (s, t) corresponds to replacing a, by a,
in the series expansion (11) of ¢, (s, ¢). The in-
teresting point to note is that these expressions do
not give the simple pole behavior as did the “pole-
type” term, discussed earlier. Eventhough A’(j,?)
has the pole at j=a, the residue at the pole for
a,<a, gets different contributions from the upper
and lower half of the semicircles. In the limit
€-0 (but g, #0) the presence of the branch cut
makes the contribution from the upper half of the
semicircle around j=a, to be of equal but opposite
sign compared to the lower half. Thus the two
contributions exactly cancel for € =0 instead of add
as in the usual case. The leading behavior of

A(s, t) has, therefore, Ins dependence in it with an
overall power dependence of the pole form, s®.
Hence we designate the g, term in A(j, ¢) as the
“cut-type” term. We remind ourselves here that
the limit € -0, with other parameters fixed, is a
mathematical limit. Physically, we anticipate

&, to depend on € through unitarity etc. so that
physically, of course, as €—0 one should expect
also g,-0.

In general the amplitude A(s, ¢) will be some
mixture of the “pole-type” and the “cut-type”
terms. In the next section we will investigate, for
both cases, the validity of approximating ¢.(s, ¢)
by just a few terms.

III. THE COMPLEX-POLE APPROXIMATION
AND THE TIP OF THE CUT CONTRIBUTION

A. Complex-pole approximation

In order to facilitate our discussion let us make
the following observations: (i) phenomenologically,
the analyses of high-energy data with complex
poles yield, generally, a very small value of €,
roughly ~0.1.% (ii) Also, phenomenologically, a;
is consistent with a V= behavior so that the col-
lision of poles seem to take place at t=0.* (iii)
Theoretically, as well as phenomenologically, a,
is found to have a smaller slope than the pole tra-
jectory. We will assume the slope of a, to be
identically zero. Thus we will take

t,=0, a,=a (= constant).

For simplicity, we will also take the slope of «,
to be 1 BeV? so that c=1,and

SIGN OF THE CUT, AND FACTORIZATION... 1995

a,=a-;€*+t.
For the unphysical sheet case (€>0) for t<0
a,=a+ie+t +ieV=1
=a* . (14)

We consider the following case first, “pole-type”:

Ap(s t)_._ ( _J_)s .
4L\ffn‘__ thl,s)uz ¢, (s, t)s** + c.c.,

(15)

The first term in (15) and its complex conjugate
behave like complex conjugate poles with s-inde-
pendent residues. We call the two terms CP. The
second term in (15) and its complex conjugate be-
have like complex conjugate poles but with s-
dependent residues. These terms involve a sum-
mation. The contribution of the Nth term in the
summation we call Zy. Thus

AP(s, 1)=CP +Z,+3,+Z,+ 0+ .

In Figs. 3(a), 3(b), 3(c) we have plotted the exact
value (the solid line) of A®(s, t) with f,=1 and with
s® factored out (@=a +5€2). The plots are for three
specific s values s =5, 20, and 200, each over a
t range from 0 to —0.5. We have chosen € =0.1
(note that the specific value of a never enters).

We note that CP is reasonably close to the exact
value even up to s =200, the error being 10-15%.
CP +Z, is even closer and CP +Z,+Z, is almost
identical to the exact value. The higher series
terms are, therefore, negligible and we can write
the approximation

AP(s, )~ CP+3Z,+32,.

Let us point out a few salient facts. The series
terms above and in ¢, (s, t) involve powers of Ins.
These terms, however, are multiplied by powers
of (a-a ) which is the vector distance of a, from
a.. Fort’s not too large they are effectively pro-
portional to a; and, therefore, to €. Thus if € is
small the higher terms will get smaller. To this
fact we add that the factor 1/n! also greatly re-
duces the contribution of the higher terms. The
above approximation will break down if € and { are
large and if s is extremely large. Nevertheless,
what is interesting is that we have chosen a very
realistic example (¢=0.1, ¢=1, £,=0) and have
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found the approximation to work very well even up
to s =200.

We next consider the case “cut-type”:

2
Ac(S,t)=%gl(—€ —iV=t + z:}% >s°‘+

i€ 1

(18)

In Figs. 3(a’), 3(b’), and 3(c’) we have plotted
the exact value (the solid line) of A°(s,t) with g,=1,
€=0.1 and s® factored out. We again find, with
the same s, £, and € values as in the previous
case, that

A(s,t)~ CP+Z,+Z,

even at s =200.

We thus conclude that the approximation of keep-
ing only a few terms (in particular, just two) in
the series is very good for the “pole-type” term
as well as the “cut-type” term. Thus for the gen-
eral amplitude A(s, t) (=A? + A°) we expect

A(s, )= CP +Z,+Z,

to hold. That is, a complex-pole approximation
with energy-dependent residues should hold. The

esaaCP s=5
eeee CP+L
xxxx CP+ Lg + L4 .
Exact LI
(a) s o)X
l.’/
o X

s=20
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energy dependence of the residues is, however, of
the Ins type and will no¢ change rapidly with en-
ergy.

The above discussions strongly indicate that the
s dependence of the scattering amplitudes is large-
ly determined by s*t even in the presence of cuts.
It also indicates that the complex-pole analyses*
of different high-energy data carried out in recent
years is quite consistent with the model of the
partial-wave amplitude given by (1). In these anal-
yses the residues were assumed to be s-inde-
pendent. This effectively means that the Ins terms
are approximated as constants. One can improve
upon the phenomenological formulation by explicit-
ly including Ins terms given by our model. The
inclusion of additional Ins terms, however, will
not involve additional parameters. The same pa-
rameters that appeared earlier, e.g., f,, &, and
€ will appear as coefficients of the Ins terms.

In the paper of Ball, Marchesini, and Zach-
ariasen® where the feasibility of the complex-pole
approximation was first pointed out, it was the
“pole-type” case that was considered as their
example. We have found here that even in the “cut-
type” case the dominant energy dependence is s.
Furthermore, we have shown that any corrections
to the residues due to Ins terms can be explicitly
taken into account without adding new parameters.

D s =200
N

(b) o° (c)

.

| ol =l
. -
o

';/_I

11
1

[ ]
Kﬂ{‘
|
e
X
1
I R R . - TR I T T-)

o°°..../(/_

XXX x x x X% 0
- T—.1
- —1-.2
[ T DO B | I N B B I S B B
-5-4 -3 -2 -1 -5 =4 =3 =2 -1 =5 =4 =3 =2 -1
t t t

FIG. 3. Comparison of the exact result (solid line) with the approximations mentioned in the text for €= 0.1 and
s=5, 20, and 200. Both the pole-type and the cut-type cases are considered. The quantity s® is factored out. (For

units see Ref. 3.)
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B. Tip of the cut contribution

In the above section we have found that for small
€ (0.1) and ¢ not too large only a few terms of
@4(s, t) are important even up to s =200—the en-
ergy dependence being largely determined by s**.
As s is increased, more and more terms of the
series will become important. At extremely high
energies higher terms in the series will dominate.
As we shall see below it is at this stage, well
beyond the energies of the current measurements,
that the tip of the cut will begin to dominate giving
an s%/(Ins) %2 dependence rather than s*:. We
note,

(5,15 Lzt ney
n=0

(n-z)m!

b

~ (a,—a,)"(ns)"
el E (n+1)!

where lower-order terms are neglected for large
s and, for the higher-order terms, n-3 replaced
by n+1. Now

=, (a,—a,)"(Ins)" _ 1

Z: ~ e(uc-ou)lna
~ (n+1)! (@,—a,)lns

" (a,-a,)lns

.
N
x
<}
~

2

S = 5 |

-—--Tip of the cut :
|

[}

| ==

Exact

s =20
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and, therefore,

s%™%+
9:(s, )3, (a,—a,)lns

(17)
Thus from (10) substituting the above expression
for ¢, (s, t) we get

o, _a\1/2 o
fdjsl(""’) ~ T =

j-a, s=»o 2(a,~a,) (Ins)*?
(18)

The result on the right-hand side can be con-
firmed by explicitly doing the integral on the left
for asymptotic s (when the poles are on the physi-
cal sheet there would be an added pole contribution
to the above expression).

The amplitude A(s, ¢) for asymptotic s is given
by

1 gila—ay)-€f, \ s%
O + 2§ e e

= 1 €f1—g1(i Ez—t) s%
_57&7( (%ez:t)z—ezt) (Ins)*2 (19)

In Fig. 4 we have plotted the above (tip of the
cut) contribution and compared with the exact re-
sult (solid line). Here again we divide out s
(@=a +3 €%). As before, we consider two cases,
the “pole-type” (f,=1, g,=0), and the “cut-type”

.85x10% .37x
4| s =200 1.

—— - -

0

-1
- -2
N \(g) | -3
Loy LN o B,
-5 -4 -3 -2 -1 ; -5 -4 -3 -2 -1 ‘ -5 -4 -3-2 -1 v :
t 2 2 t 1

-54x10 -20x10 -.88x10

FIG. 4. Comparison of the exact result (solid line) with the tip of the cut contribution given by (19) for €=0.1 and
s=5, 20, and 200. Both the pole-type and the cut-type case are considered. The quantity s® is factored out.
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(f,=0, g,=1). We note, for both cases, an enor-
mous difference between the exact result and the
above tip of the cut contribution. For the “pole-
type” case the denominator (a.-a,)(a,~a.) gives
rise to a sharp peak at £=0 with the value four
orders of magnitude larger than the exact result.
Away from £=0, the contribution falls off very
quickly, going below the exact result around
t=-0.1. In the “cut-type” case the contribution of
the tip of the cut is negative at £=0. The reason
for this is the following: From the exact results
at s=5, 20, and 200 we note that A(s, ¢) is positive
at £=0 but it has a zero at a ¢ value which moves
towards £=0 as s is increased. For asymptotic s
this zero moves past the point £=0 so that A(s, ¢)
now starts out negative. As far as magnitudes
are concerned we find here again as in the “pole-
type” case that the tip of the cut contribution is
very different from the exact result.

At what s will the tip of the cut dominate? To
answer this question we look at the series ex-
pansion of ¢, (s, ¢) and note that to achieve the
dependence s%/(Ins)¥? the higher-order terms
must be large. Thus for n sufficiently large,

|ag-a, |Ins 21,
n

If we take n=5 then for £=0 and €~0.1 this will
give Ins >2000, whereas for £=-0.5 it will give
Ins >10. These are extremely large energies,
well beyond the range of our present interest. We
also remark that the dominance of the tip of the
cut depends on both s and ¢ and that the correct
asymptotic limit should be |a,~a, |Ins>>1.

One can improve upon the above asymptotic
expression and include higher-order terms. The
integral in (10) can be expressed using the ex-
pansion

1 1 j—a )
j-oy oo n=o A =y

to give

f"‘c @ @, ~j) % _ s%

— j-a,  (a,—a,)(Ins)*?
T(n+3)
X Z (a, —a+)'f(lnS)" )

Thus adding higher-order terms (i.e., lower
powers in Ins) in the sense of an asymptotic series
one can achieve the exact result.

One may wish to express the integral in terms
of the above series involving explicitly the con-
tribution of the tip of the cut. However, we pre-
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fer to write the expression in terms of s** as in
(10) because it seems more meaningful to do so.
First of all, as we have seen, by doing so one
needs only very few terms in the series for the s
values of interest. Secondly, there is a direct
connection between the expansion involving in s**
and ordinary Regge poles, especially when the
cuts are weak.

IV. THE DOUBLE POLE AT ¢ =¢,

In the expressions written down earlier for
A(s, t) there were terms proportional to 1/
[c(t,~t)]2. At first glance these terms appear to
give an infinite contribution to A(s, #). As we
shall soon see they actually correspond to a
double-pole contribution at ¢=£,.” The two poles
a, and a. collide at £=¢{;, and, hence, the am-
plitude there has a double pole. As a consequence,
A(s, t) will have the behavior s®Ins at that point.
Let us express A(s, ) as a sum of two terms,
A,(s, t) which is regular at £=1£,, and A,(s, ) which
has the factor 1/[c(t,~t)] Y2

A(s,t)=A (s, t)+A,(s, t),

A,(s, t)= Z[Ezt:—jt—)]'ﬁz— (fi-z€g)
X (e(s"‘* -s*)

1
(mlns)/?

(@057 =9-5=))..
The above case is for the poles on the unphysical
sheet (€>0). Corresponding expressions for poles
on the physical sheet can be also written.
Now let us look at ¢=¢,. Since a;=e€[c(t,—1)]'?,
we find at £=1¢,,
Ay(s, t)=3(f,-2€g)s°® Ins

x(ez = 1ns)"2 (¢- ¢)> (20)
where
_w= (0 —ag)"(ns)"
ols, ) =3, (n—2)n! ’
n=0

(a.—a )"(lns)"
m+3)n!

-5(3) to) =Z

We have thus exhibited explicitly that precisely
at ¢=1, there is a different s dependence in A (s, f)
than at other ¢’s and this dependence corresponds
to the double-pole contribution s®lns. The above
case was for the poles on the unphysical sheet for
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which eventually, at asymptotic s, the tip of the
cut will dominate at all ¢ and the double-pole con-
tribution will be negligible. However, at present
energies its contribution need not be negligible.

If the poles collide at a point on the physical sheet
then at all energies, including asymptotic, one
will have the double-pole contribution.

An interesting question is whether such a double-
pole effect can be observed experimentally. One
area where one may look for this effect involves
the p exchange in 7N scattering. From the do/d¢
data the trajectory intercept for p seems to be
lower than that obtained from the cross-section
difference, Ag, where only the value of the tra-
jectory at £=0 is involved. An intriguing pos-
sibility” is that the poles collide at ¢=0 giving an
effectively larger s-dependence, s%Ins, there
than at other ¢ values where the dependence is s*
This possibility is being investigated presently.?
In the previous phenomenological analyses such
an effect was ignored®.

V. POLE ON THE REAL AXIS,
THE ABSORPTION MODEL,
AND THE SIGN OF THE CUT

Suppose, for some reason, the poles are not
complex for £<0 (we consider £,=0 in this section).
That is suppose € =0 in (1) without, at the same
. time, having F, and G, (or f; and g;) vanishing.
The amplitude we will have then is

fi+ gx(j—ac )2 = fi - g:.&j-ac ) .

J=a, j=a, J=0,

The first term on the right is a pure pole. The
second (the “cut-type” term) has a pole but, as
explained in Sec. II, the contributions to the res-
idue from the upper and lower half semicircles
cancel each other due to the (j-a,)'/? term. The
second term, therefore, is a pure cut term and
we have

- f % . s'g (e, - iV
- —
A(s,t)=f,s% m dj —a )
where P means principal part. To obtain this

principal part we simply go back to (12) and put
€=0. We then obtain

Al O)=fisto- o i 04(s, D5,

(21)
>\ (a.—ay)"(Ins)"

Pols, t)=_z=o (n-3)n!

Here again as in the previous case of complex
poles only the first two terms in the series of

@,(s, t) will be important. The demonstration of
this fact is no different from that in Sec. III. In
other words, even when the poles are on the real
axis the power dependence of A(s,t) is lavgely
given by s%0 for s as high as 200 BeV?. It is not
at all crucial for our avguments about s depen-
dence that the poles be complex.

Let us now consider the absorption model.®
This model is not expressed in terms of the lan-
guage which is inherent in our formulation. In the
absorption model the cut term is a separate, in-
dependent, entity not sharing a common D function
with the pole as is the case in our model. Accord-
ing to the model (appropriately modified for the
square-root situation) the pole is on the real axis
with the amplitude given by

21 T (e )12

-ay* &,(j—a)'* .

Note the absence of the denominator, j-a,, in the
second term. The amplitude A(s, ¢) is then given
by.

s%e

Als, t)=f13°'°-2—g# sy (22)

One major difference between expression (22)
of the absorption model and the expression (21)
predicted by our model is, of course, the s de-
pendence of the second term. In our case the
second term has the basic power dependence s*o
whereas in the absorption model the tip of the cut
is the only contributor.

The other major difference is that g, in the ab-
sorption model must be positive. This is neces-
sary because the zeros in the amplitude are as-
sumed to arise from the cancellation between the
first and the second terms in (22), with f, and g,
having no zeros in £. In our case the sign of g, in
(21) does not necessarily play a crucial role in
giving the zeros of A(s, ). It is the zeros in ¢ of
f, & F,+F,t) which are responsible for the zeros
of A(s, t) (see Sec. VI.).

In order to discuss the question of the sign of
the cut let us use the traditional definition, i.e.,
the definition in terms of the sign of the asymp-
totic cut contribution at £=0. The absorption sign
then corresponds to a negative relative cut con-
tribution and hence positive g,. To discuss our
model let us consider (21) and put t=0, where we
also have a,=a,. From ¢.(s, t) above we obtain

(s, t=0)==2.
Thus at ¢=0,

s%o

Als, t)=f,s% + b Ty (23)
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We note that the power of the second term is
s$%/(Ins)'/? rather than s®/(Ins)*2. This is a con-
sequence of the fact that at £=0 the pole lies on
top of the cut.!® Now, for our model the absorp-
tion sign will correspond to a negative g,. As it
will be clear in the next sections the sign of g, is
not too crucial in determining the zeros of A(s, ¢)
but that it contributes to the phase of the complex

residue and can be determined phenomenologically.

VI. THE RELATION OF THE STRENGTH'
OF THE CUT TO THE CROSSOVER
ZEROS AND DIPS

In order to discuss the problem of the zeros of
A(s, t) let us make the following simplifications
which allow us to bring out the most important
points. We will ignore the Ins terms, and, except
in the powers «, and «., we will also ignore €.
We get for the unphysical sheet case (¢>0), and
t,=0, c=1, the following:

Als, t)~5(f, —ig,V=T) s*++1(/, +ig/-t)s*-
~3(F, + Ft-iG V=t) s*+
+3(F, + F,t +iG V=§) s"~ . (24)

We might call (F, +F,¥iG,V=t) the “residues” of
the pole. Combining appropriate terms in the
above expression we can write

A(s, t)~(F, + F,t) s*rcos(a; Ins)
+ G,V—t s°® sin(a;, Ins) .

For small a; (and small ¢, Ins) the zeros of A(s,?)
are determined, to a good approximation, by the
solutions of

F,+F,t=0, (25)

where, we remind ourselves, that F; and F,, in
general, ave functions of t. The contribution of
the G, term will be proportional to (G,e Ins)¢ which
will be small compared to F,¢ unless G, is ex-
tremely large. Of course, the presence of the

G, term will give a correction to the position of
the zero which will depend on s. Thus the zero
will shift as a function of s.

Now the strength of the cut is manifested in two
different ways. One through the magnitude of €
and other through the ratios |F,/F,| and |G,/F,|
at some ¢ value, say £{=0. It is entirely possible
that two different amplitudes (e.g., spin flip and
spin nonflip) have the same € but different |F,/F, |
and |G,/F,|. In other words, it is possible that
F, and G, (as well as €) are small but the two F,’s
are very different. In what follows we will keep
€ small and constant but designate by the strength

of the cut the magnitudes of |F,/F,|, |G,/F,| at
t=0.

We return to the factored form discussed in the
Introduction. We can divide the cut strength in
three parts:

(7)) Weak cut. This corresponds, in the factored
form, to the situation where Bj<<B; @ =1,2) so that
F,<<F, and G,<<F,, and, therefore, g,<<f,. This
will then correspond to the situation where the
“pole-type” term is the dominant term.

As discussed earlier, this “pole-type” case
would resemble very closely the simple pole situ-
ation. The F, will presumably be given by the
dual-resonance model,

_1
I'(a,)

and consequently the zeros of A(s, ¢) will be given
a,=0, etc. The spin-flip amplitude will come un=
der this category. The position of dips in do/d¢
corresponding to the appropriate zeros of 1/T'(a,)
will remain unchanged from the usual simple-pole
prescription. This is what is observed experi-
mentally and hence cuts here are weak.

(ii) Strong cut. This corresponds in the factored
form to B{~B; (=1,2) so that F,~F,~G, and f,;~g,.
This will involve an approximately equal mixture
of “pole-type” and “cut-type” terms. Here we
expect

Ft)~

F~ rio) + perturbations,
where “perturbations” refer to any modification
from the dual-resonance picture due to cuts.

If we ignore, for illustrative purposes, this
perturbation and take F;~ a,, the first term in
1/T(a,), and also take F, and G, to have compa-
rable magnitude to F, at ¢=0 (e.g., F,~1, G,~1)
then the zeros will be given by

a,+tx0.

Clearly the zero will be moved considerably from
the prediction of the dual resonance model. The
nonflip amplitude will come under this category.
Here we have the so-called crossover zeros which
are at much smaller ¢ values than predicted by the
dual-resonance model. Hence the cuts here are
strong.

(iii) Extremely strong cut. This is an interest-
ing extreme case where B{>>g; (i=1,2) so that
F,<<F,, G,<<F,. We are then back to the “pole-
type” situation with the numerator of A(j,¢) being
essentially F,(j-a,). The zero is moved closer
and will lie at £=0. This case has not been ob-
served experimentally.

A word of caution about some of the assumptions
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made above which are not related to the basic re-
sults of our model. First of all, in this section
we have neglected the Ins terms. Secondly, in the
strong cut example above we neglected the effect
of perturbations on F, due to cuts which may well
be important. Finally the G, term, neglected in
the residues above, will also contribute to the dis-
placement of the zeros. The point we are trying
to emphasize all along is that the stronger the cut,
the further the zero moves from the dual-reso-
nance prediction. Furthermore in nature there
seem to be two types of amplitudes. One which is
very much like simple Regge poles and, there-
fore, has small corrections to the Regge residues.
The other, which is very different, has a structure
which can be explained only in terms of strong
cuts. We remind ourselves that by strong cuts

we do not necessarily mean large € but rather
large corrections to the residues coming from F,
and G,.

VII. LOCATION OF POLES, EXTRAPOLATION
OF RESIDUES, AND THE SIGN OF THE CUT

A. The case of poles on physical sheet for t <z,

Up to now we confined our attention only to the
case where the a; poles for ¢{<{, were on the un-
physical sheet (€>0). Let us quickly summarize
the situation when the poles are on the physical
sheet corresponding to €e<0. We have for this
case

(@s-a)?=-3ex[c(t-1)]¥*, t>¢,
=-3exifc(t,-0]"?, t<t,.

In particular for £<¢,
ay=a, +3€+ c(t-t)Fie(t,~t)1/2.

For €<0, both @, and a. are on the physical sheet
when ¢ <{?,. The residue of the a, pole is then

%, = fi+ & (0, —a))t?
Y 1+€/2(a,-a,)?

=(( fo—eg) +iglct,~t)] 12

i€ L
* W (fi-2 €g;)>

and, also
A(s, )=y, s+ +y_s%~

1 %e . . .
—7/; dj s?disc A(j,t).

Using the fact that for this case

o J —3)1/2
f °dj s'a—j)'" =M, —a,) V2

- j-a,
1 T 172 o
+2\ Tos by (s, £) 8%+,

we obtain (e<0)

A(s, =57, (8) s*+

i i l
_m(gl_ m]l_/z (f1—§€g1)>
x uTl)l/z ¢ (s, t)s®* + c.c.

We notice that ¥, here is the same quantity as
the one obtained by taking the complex conjugate
of 7, defined in (13) for the unphysical sheet case,
remembering that € in ¥, above is a negative quan-
tity.!* In fact A(s, t) for the physical-sheet case
above is itself the .complex conjugate of A(s,t) in
(13) for the unphysical-sheet case, again vemem-
bering that € in A(s, t) above is negative. Thus
all previous discussions on double pole, asymp-
totic behavior, zeros etc. can be simply carried
over to the physical sheet case by this prescrip-
tion.

B. The region above threshold

The discussions so far have been confined to the
region ¢<{,. We now consider the region above
the t-channel threshold. In particular, we will be
interested in the residues and poles in the neigh-
borhood of resonances.

Let us consider the simplified but realistic case
treated in the last few sections, i.e., £,=0, c=1,
a,=a. We first consider the continuation of the
poles which, for ¢<0, are on the unphysical sheet
(e>0). The two roots of the denominator in the
partial-wave amplitude above threshold then are

(ag-a)?=-2exVE (k=1,2).

Thus for €>0, @, (=a_) will be on the physical
sheet and @, (=a,) on unphysical sheet for ¢ above
threshold. Hence the a, pole which was on the '
unphysical sheet for £ <0 will remain in the un-
physical sheet for ¢ above threshold, whereas the
a. pole which was also on the unphysical sheet for
t<0, will, however, go into the physical sheet for
t above threshold. The residue y_ for a. above
threshold can be obtained in the usual manner,

- €
7—=[(f1—€g1) +g1ﬁ _-2—7}" (fl—% €g],)] .
For €<0, both the poles @, and a. are on the

physical sheet for ¢<0. However, just as before,
for ¢ above threshold a, (=a,) will be on the phys-
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ical sheet and @, (=a.) will be on the unphysical
sheet. The residue of a, pole for £ above thres-
hold is then

7‘;+ =[(f1‘€g1) +g1ﬁ - 2767 (ff'% egl)] .

Note that this is the 'same expression as y_, ob-

tained above for the € >0 case, except that the sign
of € is now negative. The fact that the expressions

for the residues are the same is not surprising
since we are considering for both cases the res-
idue of the same pole, @,, which is on the phys-
ical sheet above threshold.

Below we summarize the total situation:

(i) Poles on unphysical sheet for t<0 (e>0).

A(s, t)=cut (~ complex poles), #<0
=y_s""+ cut, #>0.

(i) Poles on physical sheet for t<0 (€<0).

A(s, t)=F, s +y_s*=
+ cut (~ complex poles), <0

=9, s®* + cut, ¢=0.
Note that in the limit

€e~-0, g,-0,

we have )7., ='i7-='y and a, =a. =a so that for the
two cases

(1) cut—=3 (v, s¥++y_s*=)=-ys*, t<0
-0, t=0

(ii) cut= -3 (P, s™ +y_s"")=-ys®, <0
~0, t>0.

Thus, as expected, when the cut strength van-
ishes, we recover, for both cases, the simple
pole result,

A(s, t)=ys”®.

C. Determination of the sign of the cut
and location of poles

Let us continue to consider the very simplified
case of neglecting the contributions of the Ins
terms and € in the residues. In other words, we
will keep the poles complex but in the approxi-

mation of the discontinuity integral neglect the Ins
and € dependent terms. We find the following two

cases:
(i) t<0.

Als, t)~3 (fy-g,V-1) s*+

+3(f, +igV~t)s*~ (e>0 unphys.)
Als, t)~3(f, +ig,V=1)s*+

+3 (f,~ig,V=1)s*- (<0 phys.).

Here “unphys.” and “phys.” indicate the sheet on
which the poles are located for £<0. For the
resonance widths we have

() t>0.

Resonance width ~ y_(t)~f, +g,V (€>0)
Resonance width ~y, (t)~f, +g,Vi (e<0).

As previously pointed out the formula for the width
remains unchanged irrespective of where the poles
are located for £<0, whereas the residues for
t < 0 have opposite signs for the imaginary part
(i.e., opposite phase) for the two cases. On the
basis of our simplified example above we can
determine the sign of the cut (i.e., the sign of g,)
by a careful analysis of the resonance data. To
determine the location of the poles (for ¢<0) we
now have to go to the high-s and £ <0 scattering
region. For instance, if we assume f, positive,
then if one finds that g, is positive from the res-
onance data and the phase of the residue of the a,
term negative from the scattering data then the
poles must be on the unphysical sheet for £<0.
Recent phenomenological analyses which ignore
the Ins terms do, indeed, show that the phase is
negative from the scattering data.* An analysis
of the resonance data is presently being carried
out.” In this, as in any careful analysis, the lns
and the € terms will be kept. Whether these terms
will change the above discussion remains to be
seen. But in principle, it is clear, that the sign
of the cut and the location of the poles can be de-
termined on the basis of our partial wave model.

VIII. FACTORIZATION

In the Introduction we had indicated that one pos-
sible way of expressing the numerator function in
the partial-wave amplitude A(4,¢) is to write it in
a factorized form. Such an assumption, though
perhaps ad hoc in nature, insures that the residues
at the pole are factorizable. The question we
would now like to consider is whether A(s, ) itself
is factorizable.

Let us return to the factored form mentioned in
the Introduction,

(B, +B! (j—a N 2)\[B, +BL (j-a,)Y?=F, +F,(j-a,)

+ G (j—a) 2.
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We consider, specifically, the point j=a, where it
is easy to show that

F +F(a,-a,) + G (a,~a,)"?*=f, +g,(a, -a,)2.

Thus the above factored form allows us to write

fi+gi(a,—ac) 2 =[g, + ] (@, -a )]
x [B,+85 (o, —a,)'?]

=(y,e'®1)(y,e' %)

=Y. 7% e‘(d’ﬁ%) ,

where the y;’s are positive quantities and the
¢,’s are the phases. Both are functions of ¢ only.
The indices on the right, on y; and ¢; correspond
to the different vertices for a given residue. Now
the residue 7, defined in (13) is also given by

V.= [ +g (e, —a )
Y 1+€/2(0, —a,)?
-)/172 e‘(¢1+¢2)
1+€/2(a,~a,)? -’

We note that the denominator depends only on the
trajectory function and not on the vertices. It can,
therefore, be easily absorbed (and, say, equally
divided) into the numerator. We can then write

Ta 7, V1t %)

which is in an explicit factorized form.
The amplitude A (s, ¢) given in (12) can also be
written as

1= (1) 1 1 $4(5,8) | @,
A(s, t)= 2'y.,(t)[l— 2V1 (@—a)”® (ns)” }

+ C.C.

Again the terms in the square bracket depend only
on the trajectory function and not on the vertices.
They can, therefore, be easily absorbed into the
factored function ¥, (¢). One can then write

Als, 1)=37,7,e™01+®) g% 4 Ly gy o HOF O |

where 7; and 6; are functions of £ and s. We notice
that each individual term in the right-hand side
above is of the factored form but the sum is not.
To be more explicit

A(s, t)=7,7,cos(6, +6+a;1ns) s*R .

Thus because of the cosine term A(s, t) is not of
the factored form. That is it cannot be written as
a product of two functions, each depending only on
a single vertex.

To understand the deviation from the predictions
of exact factorization let us introduce explicit

indices in A(s, t),

Ayy(s, t) =% 7;cos(6; +6, +a;Ins)s*R .

We then have for the difference, A ,’-A4,,A,,, the
following:

A=A A= 7?sin?(6,-6,).

For exact factorization to hold the left-hand side
should vanish (4,,2=A,,4,,). Such a factorization
is known to hold for simple Regge poles. In the
presence of cuts, as our model indicates above,
explicit factorization is not possible unless the
phases 6, and 6, are equal or more precisely the
phases ¢, and ¢,, defined earlier in this section,
are equal.

In general, ¢, and ¢, will be different. If so
then, for instance, a zero (e.g., crossover zero)
in A,, at a negative ¢ value (¢=1,) will imply that
at t=1t,

A Ay<0.

Hence, if all A;’s are positive at £=0, then one
of the two, A, or A,,, will have a zero for {<{,.
It would be most interesting to carefully analyze
the high-energy data and to check whether, in
terms of our model, any deviations exist from
exact factorization. (All the above results can be
carried through to the physical sheet case, €<0).

IX. CONCLUSION

Incorporating the constraints due to unitarity in
the ¢ channel and using effective-range-type ex-
pansion in the j plane we wrote down, for the
square-root singularity, a simple expression for
A(j,t) given by (1). For linear a, we found, not
surprisingly, that there are two Regge poles which
are complex conjugates of each other below a
certain value t=¢,. At the point £, the poles collide
giving rise to a double pole. The s dependence of
the amplitude, A(s, t), can be obtained from the
Mellin transform of A(j,£). This A(s, t) is really
the s-channel imaginary part of the total scattering
amplitude T'(s, ¢). We found that A(§, ¢) can be
written as a sum of two terms each having a multi-
plicative factor s**. The coefficient of s*¢ in the
first term is one-half of the residue of the com-
plex pole, whether the pole be on the physical or
unphysical sheet. The coefficient of s*t in the
second term involves the series ¢.(s, ¢) in terms
of the product (a¢,—a,)lns. If € is small (~0.1)
then for s as high as 200 BeV? and ¢ not too large
we found that at most one or two terms are needed
to reproduce the exact result. Thus the s-de-
pendence is largely determined by s**. As s be-
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comes larger more and more terms of ¢,(s,t) will
be important and at asymptotic s the terms will
add up to give the tip of the cut contribution,
s%¢/(Ins)*/2. However, at present s values this
behavior is inconsistent with the exact result. All
the above results remain unchanged even if poles
happen to be on the real axis (e=0).

" It is observed that the strength of the cut is
manifested through two sources, one from € and
other from the ratios [F,/F,| and |G,/F,|. For a
fixed, small € it is found that when the cuts are
strong, i.e., when F, is of the order of F, the zeros
in A(s, t) can appear at a value different from the
“unperturbed” situation. For instance, the zeros
could be the solutions of F, +F,{~ 0. Such a cir-
cumstance would correspond to the existence of
the so-called crossover zeros. When |F,/F,| is
small we revert to the simple-pole-type situation
with zeros given by F,~0 which presumably are
the same as the zeros of 1/T(a,) predicted by the
dual resonance model. The strength of G, does
not appear to play a crucial role in developing
zeros. However, it appears in the phase of the
residues (F, +F, t¥iG,V-t). The sign of G, is the
same as the so-called sign of the cut.’? This sign
enters in a crucial way in determining the res-

onance widths as well as in determining the sheet
in which the complex poles lie for £ <0. Some
simplified examples have been given to illustrate
the way in which the sign of G, can be determined.
As far as factorization is concerned, we found
that A(s, t) can be written as a sum of two complex
conjugate terms each of which is factorizable but
the sum, in general, need not.

We used a specific model for A(j, ¢) and hence
were able to obtain several specific conclusions.
The expression we used for A(j, £) as well as the
type of parameters we chose were, we feel, quite
realistic. The results we have obtained should be
most useful in any future theoretical and phenome-
nological work.

ACKNOWLEDGMENTS

One of us (B.R.D.) wishes to thank Dr. A. Morel
and Dr. C. De Dominicis for their kind hospitality
at CEN-Saclay, where part of this work was done.
We also thank Mr. John Horvath for his help in
numerical computations. One of us (V.A.T.) would
like to thank Professor W. K. H. Panofsky and
Professor S. Drell for hospitality at SLAC during
his stay in the United States.

*Work supported in part by the National Science Founda-
tion.

TOn sabbatical leave from the University of California,
Riverside, Riverside, California 92502.

!P. Kaus and F. Zachariasen, Phys. Rev. D 1, 2962
(1970); R. Oehme, Phys. Lett. 20B, 414 (1969); Phys.
Rev. D 4, 1485 (1971). Also see Ref. 6 below.

2For a general cut one can write, in the j plane,
D=fy+fD, +f;D.%++++, where D, corresponds to the
cut [e.g., (j—0o,)'?, In(j—a,) etc.]l and f; are poly-
nominals in (j—a/).

3We will use BeV units throughout the paper. The
partial-wave amplitude A(j,¢) is dimensionless, how-
ever. We normalize it so that it is proportional to
[t/ —4m?] V%8 sing. The quantities F, F,, G;, and
€ will also be taken to be dimensionless. Furthermore,
when we write s* we mean (s/sg) ® with sy =1 BeV?2.

B. R. Desai and P. R. Stevens, Phys. Lett. 45B, 497
(1973). Other relevant references are given here.

°See M. Abramowitz and I. A. Stegun, Handbook of Mathe-
matical Functions (National Bureau of Standards,
Washington, D. C., 1966).

83. S. Ball, G. Marchesini, and F. Zachariasen, Phys.
Lett. 31B, 583 (1970).

"We are most grateful to Dr. G. Cohen-Tannoudji for
pointing out the importance of the double pole in our
formalism and its relevance to high energy data.

8B. R. Desai and P. R. Stevens, report (unpublished).

%G. Cohen-Tannoudji, A. Morel, and H. Navelet, Nuovo
Cimento 484, 1075 (1967); R. C. Arnold and M. Black-
mon, ibid. 176, 2082 (1968); F. Henyey, G. L. Kane,
J. Pumplin, and M. H. Ross, Phys. Rev. 182, 1579
(1969).

VFor =0 we find that the asymptotic expression (19)
blows up at ¢ = 0, reflecting the fact that the pole lies
on top of the cut. Expression (23) is the correct one
to use at this point.

Eventhough 7 and 4 both correspond to the residue at
the pole, the former is reserved for the pole on the
unphysical sheet, the latter for the physical sheet pole.

2We have talked interchangeably about g; and G, as if
they were the same quantities. They are, of course,
not. But for small € and F, not too large they are
almost the same.



