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A parametrization for hadronic total cross sections, which incorporates a logarithmically rising term, is

proposed. The new parameters present in it are restricted, using a scahng assumption for q2 in the
timelike region. The resulting expression contains only one parameter in addition to the usual Regge

parameters. In the energy range between 10 and 400 GeV/c this model gives very good fits for m p,
K p, pp, and P p total cross sections. Above 400 GeV/c, the agreement with recent data on the pp
total cross section is only qualitative. The model also predicts the vanishing of the ratio of real to
imaginary parts of the pp forward elastic amplitude at 360 GeV/c in agreement with experimental

data, the increase of this ratio to a maximum value, and a vanishing asymptotic limit.

I. INTRODUCTION

A possible increase of hadronic total cross sec-
tions has often been considered during the last
three years. Several models have been constructed
to accommodate it. Among them, we can quote for
example, the quantum- electrodynamics model of
Cheng and %u' and the absorbed multiperipheral
model of Finkelstein and Zachariasen. ' It is also
known that several modifications of the Regge-pole
model lead to rising cross sections. Such is the
case for various pole-plus-cut(s) models and for
the pole-plus-dipole model. ' The motivation for
those works can be traced back to the fact that to-
tal cross sections for laboratory momenta between
10 and 65 GeV/c are observed either to flatten out
more rapidly than is predicted by the Regge-pole
model or are seen to increase slowly. The various
modifications of the naive Regge picture are
largely arbitrary and contain at least one addition-
al parameter for each reaction. Therefore, even
if the ensuing fits are good, they are not very
compelling from a theoretical point of view. Re-
cently, several groups' have measured the Pp total
cross section and the real over the imaginary part
of the forward pp amplitude n» at CERN ISR (in-
tersecting storage rings} energies.

The total cross section is seen to increase sub-
stantially and n» is compatible with zero for en-
ergies in the neighborhood of 400 GeV. Moreover,
they have shown that their data can be fitted by the
expression

o„,(pp) = 38.5+ 0.5(in~37 s)'.
This remarkable result raises several important
questions: Does the increase of o„,(K'1) observed
between 10 and 65 GeV/c come from a In'(s/s, )
term? Do other total cross sections increase in a
similar way? If we introduce a term o''[ln(s/s, )] '
in the expressions of total cross sections, how

can be interpret it? How can we fix the scale s,

and the new parameter 0'? In this paper, we pre-
sent a model which in first approximation gives
for total cross sections the expression

with

S
tot Reggo (I + 2/~R)2 I 2

II. INTUITIVE CONSIDERATIONS ON THE
PHENOMENOLOGICAL PARAMETRIZATION OF

HADRONIC TOTAL CROSS SECTIONS

In this section, we attempt to explain intuitively
the phenomenological parametrization of total
cross sections we have chosen, i.e.,

S
Otot =&Regg +0 ln

so

It involves two assumptions:

b
&Rcgge= &+

(~ )|y2 ~

In (2), g is the mass of the projectile and M an
effective mass chosen to be the proton mass. C is
a dimensionless universal constant. In (2 '), a and

5 are the effective Regge couplings for Pomeron
and Regge exchanges.

The work develops as follows: Ne make a few
qualitative considerations on the meaning of the
[In(s/s, )]' and explain the additive assumption
made in (2). Assuming that "timelike scaling" is
valid for strong amplitudes and making a few ap-
proximations, we show how to fix the scale of s
and determine 0' up to a dimensionless constant
independent of the particles involved in the reac-
tion. The fit of (2) to experimental cross sections
is done and gg g(pp) is seen to increase in qualita-
tive agreement with the data of Amaldi et al.'
From the pp dispersion relation, we calculate the
high-energy behavior of a» and find that it goes
through zero at about 350 GeV. Finally, several
comments relating to the present work are made.
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FIG. 1. The n-particle production amplitude.
FIG. 2. The n-particle production amplitude when a

particular particle i is picked out.

(a) The extra term adds to the usual cross sec-
tion;

(b) as a function of energy, it behaves as the
square of a logarithm.

few (GeV/c)';
(iii) D„(P,r) as the complementary of D„in E„.

With these definitions, we can write

A. Discussion of assumption (a)

We consider o„,as the distribution for the inclu-
sive reaction A+ B-anything. It can be written

(4)

where 2,
„

is the production amplitude for n par-
ticles and is drawn in Fig. 1. For simplicity, we
suppose that there are only particles of one kind.

Let us concentrate on one particle among the n
final-state particles and call it i. Then, the same
process can be represented as in Fig. 2 and it is
clear that the g- 1 particles left can be kinemat-
ically defined as a pseudoparticle i*. For particle
i we can define in the usual way the Mandelstan
variables t,. and u, , as well as the Feynmanvariable

where p« is its longitudinal momentum in the
center-of-mass system.

When s becomes large, ' we can write

t,. u,-
PENT y

where p, ~ is the transverse momentum. There-
fore, small t, or u,. means small p, ~. Intuitively,
this result is almost obvious.

Of course, this kinematical separation ean be
done for every particle.

We divide the phase-space integration in (4) into
two parts. To this end, we define for any fixed n

(i) E„asthe total n-particle phase-space do-
main;

(ii) D„(P,r) as that part of E„. for which

p&& &a &(s

for every particle i (i.e., i = 1 to n); in Eq. (7),
the constant a is assumed to be of the order of a

The first term includes contributions from small-
momentum-transfer (forward or backward) pro-
cesses only. In the second term, one Particle at
least has a large momentum transfer. Of course,
we are aware that this separation is somewhat
arbitrary insofar as dynamically there is certainly
no clear-cut separation between the two types of
events. Also the present stage of our knowledge
of the underlying dynamics does not allow us to
define precisely the value of the constant a.

Next, we examine the physical content of each
term in (8) when s is large.

The first term receives contributions from
elastic scattering, quasi-two-body reactions of
diffractive and nondiffractive nature, and also
from multiparticle processes of a peripheral na-
ture. All these processes can be theoretically de-
scribed by the Regge model suitably modified by
inclusion of absorptive corrections. The range of
the interaction seems to be roughly independent of
their nature and to be about 1 fm. If elementary
particles have structures, they are not seen be-
cause the subunits act coherently. Therefore, this
term is to be identified with o„, [see Eq. (2)] and
we expect it to behave roughly as a constant at
lllf1 nity.

The second term certainly receives very little
contributions from both elastic and quasi-two-body
scattering. Indeed, model calculations" show that
at fixed angle

PP PP) -nE( g)

with n -10, and available data look compatible with
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A+8-C+anything, {10)

such a behavior. This term also contains the con-
tribution of inclusive processes of the type

The following argument is more suggestive. We
start from the one-particle inclusive distribution
E(x, pr, s). From the relation

where particle C has a big transverse momentum.
From recent experiments done at the ISR, we
know that they are much more frequent than ex-
pected on the basis of small-p~ data. Moreover,
it is quite possible that their cross sections do in-
crease with s.' A recent model calculation' which
assumes pointlike interaction between partons
shows that at 90 the inclusive cross section for

is given by

2

(12)
Pm r

We must also add that recently Krisch' has shown
that a geometrical picture of the interaction at high

p~ mould lead for the inclusive cross section to a
Gaussian-like behavior in disagreement with ex-
periment. This indicates the essential incoher-
ence of large-p~ processes. We can conclude that
this term is much smaller than the first one at
conventional accelerator energies but it should
increase zoitk s.

we require

g, p~, 8 - ln'—

since we know from experimental data that

(n) - la(—) .

Assuming Feynman scaling, for very high s the
left-hand side of (IV) can easily be written

E(0, pr)d'pr - ln's.dx

z/Ws
{19)

I' O, p~ d'p~" ln's. (20)

Such a relation is impossible unless some viola-
tion of scaling is introduced in E. A simple way
to do that is to assume

In Eq. (19), all energies are measured in units of
1 GeV. Therefore, we find

B. Discussion of assumption (b) E(0, p„)~s"&, (21)

How fast does the second term of (8) increase
with sV As long as we do not have a detailed dy-
namical picutre of the large-p~ processes, it is
impossible to answer this question in precise
terms. Several qualitative ar guments can be put
forward to generate a ln'(s/s, ) increase of total
cross sections. They are much too naive and can
even be wrong. One of them is based on potential
scattering and asserts that if the coupling constant
behaves as

where E is the energy and n a real positive num-
ber and if

where B is the effective radius for the particles,

E
g ~—ln2 —.tot (15)

In Eq. (15), p.
' gives the range of the interac-

tions. "
Apart from the difficulty in understanding the as-

sumption {13),the expression (14) for ct„suggests
a geometrical picture of the interaction, so that
it is probably irrelevant to the actual problem.

where a is a certain function of s. Inserting Eq.
(21}into Eq. (20), we get immediately

a= a
in~a '

where a, is a constant. Equation (22) gives

{pr) -clns.

Though a Gaussian form for the transverse-mo-
mentum distribution can only be chosen for small
pr (i.e., pz, s 1 GeV/c), "the above argument is
interesting because it shows that a close relation
between the s dependence of the transverse-mo-
mentum inclusive distributions and the growth of
total cross sections may exist. Experimental data
are as yet unable to tell whether such a broaden-
ing of the small-p~ distribution exists or not.

C. Conc1usion

Throughout this section we have tried to show
that several mechanisms can be invoked to gen-
erate cross sections increasing" as [1n(s/s, )]'. No
doubt several other mechanisms do exist. In
the present status of experimental data there is a
large arbitrariness in that respect. We have made
clear that the phenomenological expression (2)
for o«, is reasonable, independent of any detailed
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dynamical assumptions to generate it. If the in-
crease of total cross sections is due to the big-

p~ processes and ifthesedisplaythe existence of a
hadronic substructure, one cannot consider for-
mula (2) as an asymjtotic exPression for o~, since
sooner or later a new kind of physics comes into
play. On the contrary, if the expression (2) for
ot„is generated through the small-p~ processes,
it should hold up to the highest energies presently
accessible.

FIG. 3. The off-sheQ forward elastic amplitude
q(q2) +p(M2)~ q(q2) +p +f2)

III. DETERMINATION OF THE PARAMETERS
O'AND so

As we saw, it is reasonable to assume for 0~,
the phenomenological expression

in order to satisfy scaling. It is easily seen that
the most general function satisfying these condi-
tions may be written as follows:

S
&~0~ =&Ress +0' ln

So

The problem we want to solve is the determination
of 0' and s„.This can be done within very plausible
assumptions:

(i) The off-shell forward amplitude shown in Fig.
3 is an analytic function of q'; and

(ii) the off-shell Compton amplitudes have the

same structure as strong ones and still satisfy
scaling for both timelike and spacelike q2.

Let us consider the implications of these as-
sumptions on o' and s,. Since we will consider on-
mass-shell strong amplitudes, we restrict our-
selves to the timelike q

2 region and put, as usual,

q pq s-M -q
2Mp' M 2M (2s)

Then

21c»(q', v)= ',"o,(q', v)+C»(q', v)in' —, (26)

where o(~')r(q', p) gives the Regge term for large v

and q2 fixed and scales in the Bjorken limit'3:

))o~i "r(q ', v)
— =c((u).
q2 p ~oo

ftt fned

On the other hand, C~ r(q', v) must satisfy several
conditions:

with

f &1, b„~1,
lim p, (q') =p y 0,

q2 ~0

lim P„(q')(q')+ finite,
q2 ~0

lim P,(q ') =y g 0,
q2 ~op

lim P„(q')=y„finite.
q2 ~co

In order not to introduce too many parameters, we
put

P.(q') =P,

and since we will be interested only in a region
where q'))'v«l, we neglect+„P„(q')(q'/v)". More-
over, in order to avoid cuts in the q' plane, we
set f=2 so that

P dqR 2

(q', )=—.1,
Up to now, d is a parameter which is only re-

stricted by the condition d &0 in order to avoid a
pole in o(q', v). However, since d has the dimen-
sion of an inverse mass squared and since the pro-
ton mass is the only other dimensioned parameter,
it is natural to choose

(a) C, ,(q', ~) = O,
q2 ~0

(28)

(c) vCi r(q', v) = C((g)
q2 p

Q) fixod

(3O)

since for the real photon, there is no infrared di-
vergence in the total cross section;

(b) Ci, r(q', ~)- f(q')-
p ~40
q2 f1xed

in order to recover E(l. (24); and 8
~Rosy +& (1+ my~2)s ln 2 (35)

Using assumption (ii), we get from (33) and (34)
the expressions for cr' and so. The expression fog
o(„for the physical hadronic processes is obtained
by putting q'=g2, where p is the projectile mass.

For high s we obtain



1984 H. CAPRASSE AND A. BURNEL

30-

25
s s I

b
20

s s s s a f

—K'

15

10 20 30

P ~~b (GeV/c)

60

1

FIG. 4. 7r'p and K~p total cross sections between 10 and 65 GeV/c. The curves are the results of our fits, while
experimental points are taken from Ref. 14.

(36)

lim cr =0, lim v 0
a2 ~0 a2 ~0

(3'I)

Before we close this section, let us remark that
Eq. (35) could be obtained without any recourse to
Compton amplitudes if we replace assumption (ii)
by the following:

(ii') The strong off-shell forward amplitudes
satisfy scaling:

lim vo„,(q', v) = f((v)
a2, v ~~

(u fjxed

and they remain finite when q'-0.

(38)

is the only unknown parameter left. It can only
depend on the target and is therefore the same for
all reactions involving the proton, i.e., for wN,

KN, NN, . . . .
P has no dimension and is probably related to

the coupling constant of the pointlike interaction
between partons. In Eq. (35), o„~.is the high- v

limit of o(')(q', v). It may be asked, as we did for
a', why we do not use our assumptions in order to
get a mass dependence of oR,~. In fact, this term
has certainly no universal dependence on q'. The
example of o~' and o ~' well illustrates this fact.
Indeed,

IV. FIT TO TOTAL CROSS SECTIONS

Let us now write Eq. (35) as

Cp.', 2M
(I ''M') ' )+g/ (39)

and fit total cross sections for mN, KN, and NN
scattering processes with this formula. To this
end, we must introduce an explicit expression for
OR,~. It is known that, if we take

b
otot oReige s

(p )1/2
lab

(40)

TABLE I. Values of parameters used to fit total cross
sections.

Qp2
a (mb) b (GeV mb) 2 2 2 (mb) ~ (GeV ')

(1 +~2/M 2)2

K+P 15.7
K p 15.7
7r'p 21.6
7l p 21.6
pp 35.0
pp 35 0

0
16.1
6.5

14.5
13.5
53.0

0.36
0.36
0.045
0.045
0.53
0.53

7.66
7.66

95.7
95.7
1.07
1.07

it is not possible to get a good fit to all total cross
sections between 10 and 65 GeV/c. In accordance
with what has been said in Sec. II, we adopt the
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FIG. 5. PP and pp total cross sections between 10 and 65 GeV/e. The curves are the results of our fits, whQe experi-
mental points are taken from Ref. 14.

point of view that once the logarithmic term has
been added, the simplest Regge expression (40)
already should be enough to get a reasonable fit in
the above energy range. In other &cords, roe think
that the observed increase of u~&(K+p) above 20
GeV/c is due mainly to the presence of the loga-
rithmic tenn and not to the Regge cut(s) svhich

could be introduced.
This is an hypothesis worth testing. It explains

the way the fit was done. The constant C in (35)
has been fixed from the E'p total-cross-section
data, putting 5 =0, and it turns out to be

C=0.45 mbGeV '. (41)

This value of C corresponds from Eq. (36) to a P
value of

P =0.95.

With this value of C all other cross sections have
been fitted within the same energy range requiring
the validity of the Pomeranchuk theorem so as to
make the number of free parameters as small as
possible. The results of the fits are shown in
Figs. 4 and 5 (see Ref. 14), while the values of the
various parameters are given in Table I.

Let us notice the weakness of the coefficient of
the log, o' term for n'p. It is due to the smallness

of the pion mass and is re1ated to the vanishing of
the log»' term for real photons in order to avoid
infrared divergences. We will also remark that a
and b are, within 10/~, approximately the same
values as those obtained from fits with the Regge
term alone.

From the curves, we see that the contribution
of the log„'term is hidden by ordinary Regge-
trajectory exchange when it is important (as in pp),
while it flattens the curves more quickly than a
naive Regge-pole model would do, as in (s'p, pp,
E p). In all cases, our model is able to reproduce
the experimental data surprisingly mell.

These curves have been extrapolated to Batavia
(NAL) and ISR energies. For wH and KN, our
predictions are plotted in Fig. 6. ' For pp, the ex-
trapolated curve is compared to the data at these
energies. '" The result is shown in Fig. 7. For
momenta less than 400 GeV/c, we get a very good
agreement. Above 400 GeV/c, the experimental
data show a steeper increase of o~, (pp). The ori-
gin of this discrepancy is difficult to understand
because it seems that our logarithmic term is of
the right size to fit data up to 400 GeV/c. In order
to see this clearly, we have arbitrarily modified
the coefficient Cp'/(I+ g'/M')' in order to obtain
a qualitative agreement between 400 and 2000
GeV/c. We found
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However, with this new value,

g)„(pp)=38.9 mb

at 60 GeV instead of

o",g(pp) =38.4+ 0.1 mb. (46)

phenomena. This possibility is strongly suggested
by the fact that our fit starts to disagx'ee with the
data only above 400 GeV/c. This fact finds a
simple explanation if both small-p~ and large-p~
events do contribute to the rise of total cross sec-
tions, the contribution of the large-p~ events be-
coming significant above 400 GeV/c. A model
based on this idea is presently being investigated.

We see that the value (44} is definitely too high.
%e can reduce it by reducing the Regge contribu-
tion. For instance, a reduction of the 5 parameter
would do the job but then we would have difficulty
in fitting o„,(pp) correctly between 6 and 20 GeV.

In conclusion, the discrepancy may have one of
the following origins:

(1) There are systematic errors in the data at
«he highest energies. This possibility looks im-
probable since in the two experiments of Amaldi

et ul. and Amendolia et al. systematic errox's
are different, but nevex theless their results agx ee.

(2) The Regge parametrization we have chosen
is too naive, i.e., Regge cuts do play a significant
role. In the parametrization chosen above theix

effect is already partially taken into account by
breaking exchange degeneracy of the f and +
Regge residues; therefore the introduction of fur-
ther effects looks quite arbitrary.

(3) The observed increase of o(„(pp)inside the

ISR energy range is partly due to nonasymptotic

V. THE REAL PART OF THE

pp AMPLITUDE

(46)

probably vanishes somewhere between 200 and 400
GeV/c.

In this section, we px'esent the calculation of
this (Iuantity. Apart from minor normalization
differences we follow the notations of Ref. 16.
The dispersion relations for

X,(E) =-,'(X„~~„-) (4S)

Using forward dispersion relations and our para-
metrization for total c~oss sections, we can of
course give asymptotic estimates of the real parts
of the forward amplitudes. In the 100-GeV/c re-
gion, we only have data for pp scattering. Though
the errors are big, these data suggest that

RsA, (Z)=ask, (M)+RwMf', ~, &-+ (d'-M'), v, (E'), +, )
1 E'dE'ImAI, g(E')
m p E' -M

(49}

In these relations

&r, {E}= ,'(o»+v»), -
RRA, -aElnE+ pE+y&E,

Re~ -O{I/WZ).

(83)

(63)

E is the laboratory energy of the incident proton,
f' =0.08, E~ = (g' —3M')/2M, p, is the pion mass,
M is the proton mass, and U is the unphysical cut.

To obtain the dispersion relation for ReA (E)
[E(I. (49)], we have eliminated the unphysical-cut
contribution using the fact that in our parametriza-
tion

c (E) -0(I/WE).

Fronl TRble I, we obtain fol' the pRI'R111etel's (1 P,
and y the values

0. =0.56,

P =0.036,

y =-61.9.

Since we want only to know e» for E &20 GeV,
we have calculated the fix at few terms of the
asymptotic developments of ReA, {E). The calcula-
tional details can be found in the Appendix and in
Ref. IV. We get, using (A9), (A10), and (A11),

thexefore, we set

Ra4 =0. (66)
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FIG. 8. Our prediction for Q.&& =ReA&& /ImA&&.

It follows that

np, (E}=n, (E) =n,p (E).

From (All) and the dispersion relation (48), we
see immediately that

(5'I}

(58)

When the energy is large enough, n~ becomes
positive, reaches a maximum, and tends to zero
as v/InE.

Using (48), (52), and the optical theorem, we
have computed o.». The resulting curve is given
in Fig. 8. We see that

(58)

for E = 360 GeV. When S&360 GeV, n» increases
very slowly and it attains its maximum value

upp =+ 0.08

when

E=2.4x&P' GeV.

(60)

VI. CONCLUSIONS AND FURTHER REMARKS

We have introduced a model for total cross sec-
tions which rise as fast as they are allowed to by
the Froissart bound. Making use of a scaling as-
sumption in the timelike region, we have been able
to fix the scale inside the logarithmic term and to

determine its relative strength. The resulting ex-
pression has several convenient features:

(i) It includes the Regge contribution quite natu-
rally.

(ii} It incorporates the Pomeranchuk theorem.
(iii) It gives a correction to the Regge contribu-

tion which becomes negligible for small energies.
(iv) It is able to fit beautifully all total cross sec-

tions from 10 to 400 GeV/c.
(v) It predicts that n» should be zero at 860

GeV/c.
However, everything is not clear. We have no

simple picture of the relation between the increase
with energy of the large-p~ processes and the ap-
pearance of the logarithmic term in the total cross
section. The discrepancy between our o„,(Pp)
curve and the experimental data above 400 GeV/c
cannot be explained convincingly. As we have
noticed in Sec. IV, our curve is very sensitive to
the value of P. It is determined from the fit to
o„,(K'p) assuming exact strong exchange degen-
eracy for the &u and f trajectories. This is cer-
tainly an oversimplification. If we break it slight-
ly, we shall get a higher value of P and consequent-
ly a better fit to thp highest-energy data.

The scaling assumption we have made must be
further investigated and may well turn out to be
untrue. A very specific property of the model is
that it predicts a much slower rise for o„,(w'p}
than for o„,(pp). For instance, at 200 GeV/c



RISING CROSS SECTIONS AND SCALING 1989

c~,(w p) is smaller than at 65 GeV/c by about 0.5
mb, while c~,(pp) is bigger at 200 GeV/c than at
65 GeV/c by about 0.5 mb. A measurement of
ct,~(wh1) in the 100 GeV/c range is therefore a
crucial test for it.

totic expansion of ReE, (E) we have to determine
the dominant contributions of the dispersion inte-
grals over c,(E). We show how this can be done in
the case of ReE,(E). The case of ReE (E) can be
treated similarly. The dispersion integral is
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aid she has given us. where E»M. We neglect terms of (1/E'); there-

fore, (A6) can be replaced by the integral

APPENDIX

In many cases, the principal-value integral

Q(x) = P.V. , dx'(x')
Q x x (Al)

f , c,(E')dE' —,'2

with

c,(E) = a, + ' + c, (lnXE)',b,

(A7)

(As)

limRez(Z) I, „„=y(x) .
e~Q

(A2)

Follov6ng this procedure, we can easily calculate
the P.V. integrals we need here. For x &0 and
aE-[0, 1] we find that

can be written as a Cauchy-integral representa-
tion. This is always the case in dispersion theory.
Therefore, to calculate (Al), we do not need to
make an integration. We have only to guess a
complex function F(Z) such that

{i)E(Z) is holomorphic in the Z plane cut along
the positive real axis;

(ii) E(Z) =E"(Z*);
(iii) r(Z) -0 when

~
Z

~

-~.
For infinitely oscillating functions, condition (iii)
can be violated along the positive real axis. Since
we do not need to consider this case here, we re-
fer the reader to the specialized literature and to
Ref. 17.

The function E(Z) determines the integral since

where a„b„c„andA. are the parameters de-
fined in the text. The constant a, gives no contri-
bution to (Av). The 5, /E term gives [using Eg.
(AS)]

1 dE' 5+m 1', vZ E"-E' 2 EWE
' (A9)

2c, lou. „dE'=-,'w'c, (l~)—.lnE', , 1

Q

(A10)

P, gives [using Eg. (A5)]

The third term c,(lrQE)' can be decomposed into
three parts:

P~= c+ln E,
P, = 2c+lM lnE,

P, = c+ln'A. .
P, gives no contribution. P, gives [using Eq. (A4)]

dx 1 1P.V, ,
-- = m cotmn —,

Q x x x x (AS) ln'E', c,n2 lnE
E' -E 2 E (All)

lnx 1 lnxP.V, , dx' = m' cot@a
Q x x x x

Notice that to get (A9), (A10) and {All), we have
made the substitutions x=E', x'=S".. The com-
plex function E(Z) which solves (All) is given in
the x plane by

"ln2x' 1 ln'xP.V. ,~, — Cx' = w cotne
Q x x x x ( )

. ln'(-Z) . w'
(A12)

2w' lnx
+

sin na. x

2, cotwn 1
sin'gn x

To determine the dominant terms of the asymp-

where the arguments of the logarithm and of the
square-root function have been chosen in such a
way that for Z = x+i 0, x ~ 0,

ln(-Z) =lnx- iw,

WZ=Wx.
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