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which is found to be of the order m2/E? and is
negligible.

The total spin-dependent decay rate is then ob-
tained by summing Eqs. (15) and (21):

vergr =31+ E T 0+ 3(1- £ T0, (26)
where the spin-flip rate is
y® =yt (27)

while the spin-nonflip rate is the difference be-
tween the total and the spin-flip rate:

Y@=y -y, (28)

as expected.
In the limit when

A=§£ EIi

S S, (29)

we may expand Eq. (22) in power series in A and

obtain
the spin-nonflip rate is
v @D =:—f5mf2 A<1—El76§—x+g~g'x+§gxz
-377 g"‘2> ’ (31)

in agreement with that obtained in Refs. 1-3.
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How to calculate low-energy partial-wave parameters of dual resonance amplitudes*
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It is shown that the low-energy parameters for all classes of dual, elastic scattering amplitudes can be
readily derived by simple use of Rodrigues’s formula for the Legendre polynomials.

In an earlier publication,’ we showed that the
low-energy parameters of the dual n7 scattering
amplitudes can be easily extracted from an inte-
gral representation of the partial waves. This
particular representation is applicable to most
one-term (without satellites) Veneziano-type me-
son-meson dual resonance amplitudes? which have
thus far been proposed in the literature. However,
if we add satellite terms, or if we consider me-
son-baryon® or baryon-baryon®* dual scattering

amplitudes, this method is not applicable for cer-
tain ranges of the trajectory parameters (particu-
larly, the intercepts).

In this note, we would like to show that a more
compact and direct way of studying the low-energy
parameters for all classes of dual resonance am-
plitudes®™ is to make use of Rodrigues’s formula
for the Legendre polynomials. Let us consider,
without loss of generality, a dual, elastic scatter-
ing amplitude (including satellite terms) for the
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process 1+2-~1+2,

TG = a,(s)) D= a,(t)) (1)
T(k=-a,(s)-a,lt) ’

Vs, t)

where a,(s) =as+b,; a is the universal slope of the
Regge trajectory and b, is its intercept; and ¢, j,
and % are positive integers for meson-meson scat-
tering® and may have half-integral values for me-
son-baryon® or baryon-baryon* scattering. Also,

where v=3%, z =cosé, { is the three-momentum,
and 6 is the scattering angle in the c.m. system.
The general dual amplitudes involve particular
combinations of V*(s, t), V*(¢,u), and V*¥(x, s).

Now we carry out a partial-wave projection of
V*(s,t):

T(i—as—=b)(j+2a 1l =2)=b,)
I(k-as+2al1-2)-b,-b,)

0= [ idzP,(z)

. . ! (2)
s and ¢ are the usual Mandelstam variables, with Substituting
s=2v+m?+ m2 +2[(v+ mP2)(v+m,2)]*/? !
P,(2) =L -d—> (22-1)
and ! 211\ dz ’
=-2(1-2), we obtain
1 1 d>’ T'(i —as- b )T(j+2av(l-z)-b,)
Xy, = - 22\ = X h L4
vy 2’11[1 dz(1-27) (dz I'(k-as+2av(l-2)-b,-b,)
(2av)} ]‘1 2 gl d )’ T(i—as=b)(j+2a(l-2)=b,+w)
=27 - —_ . 3
2h J, dz(e - 1) <dw T(k-as+2av(1-2)- b, - b,+w) |, ®)
To determine the low-energy parameters, we expand V3;¥(v) around v=0;
VW =v[CcP+vDP+0(v?)]. (4)

Then it follows immediately from (3) that

C,y=2(-2a)’1"(i-aM2—b,,)<i>’ T'(j-by+w)

! (21+1)11 dw) T(k-aM®-b ~b,+w) ’

D,y=2(-2a)'”r(i-aM"’- b,)(i)’ L(j-by+w) 5)
! (27+1)!! dw/ T(k-aM?-b,-b,+w)

M? . 2 ) M2
X[Zmlmz Yle—aM?-b,) - p(j-b,+w) - (Zm

where w =0, M=m, +m,, and y(z) =(d/dz) In['(2).

Equation (4) exhibits the normal threshold be-
havior of the amplitude, and (5) expresses the
threshold coefficients for arbitrary angular mo-
mentum [ in terms of the trajectory parameters.
It is now a straightforward matter to use (5) to
calculate the low-energy parameters, such as the
scattering lengths and effective ranges for any I,
in terms of the trajectory parameters.*

We can apply the same method to V*(¢, ) and
V*¥(u, s), to a class of “smeared” dual resonance
amplitudes,® and also to polynomial-times-beta-
function types of dual amplitudes; furthermore,

- 1><p(k -aM*-b, - by*‘w)] ’

r

the extension to higher orders of v is trivial. The
simplification embodied in (5) comes, of course,
from the use of the auxiliary differential variable
w and the fact that cosg, in dual amplitudes, always
appears in the form vcosé. In point of fact, the
procedure can be carried through quite generally
so long as one is dealing with an amplitude which
is a function of the Mandelstam variables s, ¢, «
and which is singularity-free in the closed interval
-1<cosf<1. In essence, therefore, the pro-
cedure described in this note is rather elementary,
but it appears to have been overlooked in the lit-
erature.
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