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The quantum field theory of gravitation is used to compute quantum corrections to the classical
Schwarzschild solution of the Einstein equations. The event horizon at r = 2M must now be modified, and
there are indications that quantum effects may prevent the appearance of the intrinsic singularity at the
origin.

I. QUANTUM CORRECTIONS

In a recent paper by the author' it was shown,
using the techniques of quantum field theory, how
the classical Schwarzschild solution of the Einstein
equations, which in familiar coordinates is given
by'

-1
ds'= 1 ——' dt'- 1-~ dr2 —r'dQ,r r

(1.3}

xp,' =0,2L (1.4}

or, in momentum space,

g""=n""+x0!" g'"= & gg-"'

where Q,
""is the classical field evaluated from

Fig. 1(a). To perform the calculation we employ
the harmonic gauge g"",= 0, and explicitly we
have

dQ = d8'+ sin'8dg', L, = 2Gm,

could be generhted by the tree diagrams of Fig. 1.
The single-graviton exchange diagram [Fig. 1(a)]
provided the linearized line element

Pl
(1.5)

Here P„ is the momentum transfer of the virtual
graviton and is spacelike, p'&0. Now, by includ-
ing Fig. 2(a), Eq. (1.3) becomes instead

dg — ] +—~ dy y dg (1.2) g"' = yI""+x(g" + (g"}, (1.6)

while the remaining diagrams yielded the nonlinear
contributions. The motivation for this work was
to pave the way for genuine quantum corrections
by including the closed-loop diagrams, some of
which are shown in Fig. 2.

The purpose of this paper is to find out how Eq.
(1.2) is modified by including the single-closed-
loop insertion of Fig. 2(a), which to order G' is
the only quantum correction. We begin by writing
the classical linearized metric as

where the quantum correction p",
" is given by

~Pv Dl~a811 y
Y& (1 7)

D"" 8 is the graviton propagator

D ll&a 8(p2) (~g n ~u 8~+p ~Sv a ~pv aa)1
2p'

(1.8)

and II „&yq is the self-energy insertion which, by
symmetry and Lorentz invariance, must be of the
general form

aye(P) =11 (P )P yI ayIys+112 yI yyIB + y}ay +II (P P (yI BPyPs+'Rye 8

+ 4(P )P (ylayPSP6 +ylang PaPy +yI&yPaP5 +ylphPaPy) +lls(P )PaP8PyPh (1.9)

p p ai'"~SII Dy'i' =0
P asyh

which imposes the restrictions

(1.10)

The immediate difficulty, of course, is that
II-~8yq is highly divergent. Recently, however,
Capper, Leibbrandt, and Rain Medrano' have
shown, using dimensional regularization, how one
may extract the finite part of II Syq in a manner
consistent with the Slavnov-Ward identity4

11,+II, =O, 4(ll, +11,—11,)+II, =O. (1.11)

The calculation is in fact much more complicated
than Fig. 2(a) would indicate; one must also in-
clude the "fictitious-particle" contributions and
possible "tadpole" diagrams. We refer the reader
to Ref. 3 for details. Splitting up II Qy$ into an
infinite piece and a finite piece, with real and
imaginary parts, these authors find that the real
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FIG. 1. Feynman diagrams for the classical gravita-
tional field produced by a c-number source (denoted by
the crosses). The solid lines represent the virtual
graviton s.

finite part is given by Eq. (1.9}with

p'II„=z' a~in —,+b&, R=1, 2, 3, 4, 5 1.12

b, +b~ =0, 4(b, +b, —b, ) +b, =0,
and p, is an arbitrary subtraction constant having
the dimensions of mass. The significance of p.
is intimately connected with the dimensional-reg-
ularization program, but, as we shall see, it need
not concern us here. The infinite part of II 87$
will presumably be canceled by appropriate coun-
terterms in the Lagrangian, though one must
await a complete theory of renormalization for
the gravitational field before this question is sat-
isfactorily settled and before one can be precise
about the absolute magnitude of the coefficients
a„and b„.'

Since P' is spacelike, there will be no contribu-
tion from the imaginary part of II 87~, so we may
insert Eq. (1.9) back into Eq. (1.7) using the Ils
of Eq. (1.12). We find, with p" =q""p that

y.""=[21I,P25"„6", (Il, +11,-+-.'11,)P2q""q.,

where a„and b„are purely numerical coefficients,
of order unity, which do indeed satisfy

a, +a, =0, 4(a, +a, —a,)+a, =0

H. THE SCHWARZSCHILD METRIC

P~ Tgv P Tpv (2 1)

these "gauge" pieces make no contribution and so,
for practical purposes, may be ignored. ' Thus we
are left with the r ' terms.

Mapping back to familiar coordinates, and re-
laxing the condition 5= c =1, we find that the line
element of Eq. (1.2) becomes

L L
q2 dg2r r'

In the Schwarzschild case, using Eq. (1.5), and
then Fourier-transforming back to x space, we
find that there are three types of contribution to
the P",

" of Eq. (1.14). They are of the forms
5'(r), r ' Ingr, and r '. We shall now discuss
each in turn. The 6'(r) terms are analogous to
those which are found in quantum electrodynamics
when one computes the vacuum polarization cor-
rection to the Coulomb potential and which are
partly responsible for the observed Lamb-shift
splitting in the hydrogen atom. ' Their significance
in gravity theory is not so clear. In any case they
arise only if the r ' behavior of P~ is continued
all the way down to the origin, i.e., for a strictly
pointlike mass. For a mass of finite extension,
they leave the exterior solution unaltered. Next
we look at the logarithmic terms. The appearance
of the constant p in metric (1.6) may, at first
glance, seem disturbing. Fortunately, we can
trace the emergence of these logarithms to the
p "p" terms in Eq. (1.14). When the "loose end"
of Fig. 2(a) is attached to a source T» which is
conserved,

~3p p qR8) pc (1.14} -r' 1+P ' ' dg, (2.2}

Although we have focused our attention on the
Schwarzschild solution, the above equation equally
describes the first quantum correction to all solu-
tions P,"8 of the classical Einstein equations.

where

2Gm
C

is the Schwarzschild radius and

L = — -10 '3 cm

(a) (b)

FIG. 2. Some typical quantum corrections. There will
be a factor 8 associated with each closed loop. The
above diagrams are schematic only; in practice one must
include the fictitious-particle contribution and possible
tadpole diagrams.

is the Planck length. o. and P are numerical con-
stants which emerge from the details of the cal-
culation. '

To obtain the complete quantum-gravity Schwarz-
schild metric we must add to the line element (2.2)
the known higher-order classical terms of Eq.
(1.1) which are of the form L,"r ", where n is the
number of crosses which appear in any given dia-
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gram, and the higher-order quantum corrections
which are as yet unknown but which, on dimen-
sional grounds and ignoring possible logarithms,
will be of the form L "Lp r "+, where m is
the number of closed loops in any given diagram.

So we have shown that the r ' and r ' behavior
of the Schwarzschild solution is left unaltered by
quantum corrections, which serve to modify only
the classical r "(n ~ 3} terms, becoming compar-
able in size with them only for masses whose
Schwarzschild radius is as small as the Planck
length. This occurs when

m- — -10 ' g.

Since r ' terms are beyond the range of experi-
mental test, even for masses as great as the sun' s,
the chances of directly observing these quantum
corrections are, unfortunately, exceedingly re-
mote.

It is amusing the examine the case of elementary
particles where L~ »L, -10 "cm; then the r '

(l ~3) behavior is completely dominated by the
quantum effects. In fact, it may be that at very
small distances the gravitational interaction be-
tween elementary particles is almost exclusively
quantum in nature, though this is a matter for
speculation.

Without summing up the entire perturbation
series, we can talk with confidence about the met-
ric only at large values of r, but it is really just
the short-distance behavior that makes quantum
gravity interesting. Qualitatively, at least, the
following comments would seem to be in order.

Firstly, the event horizon obtained by setting g~
=0, which occurs at r =L, in the classical theory,
should now be modified. We are not yet in a posi-
tion to say where the new horizon will be located,
nor indeed if the number of such horizons should
be restricted to only one. Secondly, the scalar J
formed from the Riemann tensor,

2
J=~PVP

gee

blows up at the origin like r in the classical the-
ory since g»=r'. Now, however, gee becomes

L,Lgee=r' 1+P ',' + ~ ~ ~

and there are indications that J might now remain
finite in the quantum theory and vanish as r-O.
The infinity would reappear of course in the S-O
limit. Thus, the hope that quantum gravity might
somehow come to the rescue and avoid the appear-
ance of intrinsic space-time singularities may yet
be realized.
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