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A class of solutions of the coupled Einstein-Maxwell field equations is found.

Recently, Misra et aE. ' considered the solution
of the axial-symmetric Einstein-Maxmell equa-
tions. They showed that the problem of obtaining
a solution of these equations ean be reduced to
that of finding solutions to the Ernst' equation,
which was originally proposed in order to find a
solution of the vacuum Einstein equations. It
therefore follows that if one knows a certain solu-
tion of vacuum Einstein equations one ca,n then con-
struct a corresponding solution of the coupled
Einstein-Maxwell equations. In their paper Misra
eI; al. ' constructed only one such solution, namely
that which formally corresponds to the Kerr metric
of the vacuum Einstein equations. The resulting
solution mas then shown to represent the static
field of a massive body carrying an electric or
magnetic dipole moment.

Meanwhile, Sato and Tomimatsu2 (called TS
hereafter) have constructed a series of solutions
of the Ernst equation, from which they obtained
the fields due to appropriate spinning masses.
What are the corresponding solutions of the Ein-
stein-Maxwell equations'P This paper is devoted
to answering this last question.

We first recapitulate the principal results of
Ref. 1. Consider the metric
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and write the electromagnetic fields as
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where A(p, z) and B(p, z) are the magnetic and the
electric potential, respectively. After a duality
rotation& =C cosp, pl =C sinp, the Einstein-Max-
well equations become
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C is a new potential and P is a constant. Equation
(3) is the Ernst equation. Once this has been
solved the function k(p, z) can be obtained by solv-
ing Eqs. (4) and (5}. This then yields the metric
as mell as the electromagnetic fields. We nom
proceed to solve Eqs. (3)-(5). Following TS, the
solution of $ can be written as

where

where n and p are complex polynomials of prolate
spherical coordinates X and p.. The metric function
e" and potential C become
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n =W+iv,

P =m+in,

A =W'+v'-m' —n',

a =(W+m)*+(v +n)',

D = 2(vm —nW) .

(10)

From (4) and (8) we can obtain the metric function
e as
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p will be defined later and 5 is an integer. For
5 = 1-3, the expressions for A, B,D are as follows.

a=1:

A =p'(&' —1) —q'(1 —p'),

D = ( pA +1) +q iR,

D =-2qp, .
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A =p (A. —1} +q (1 —p ) —2p q (X —1)(1 —p )[2(X —1) +2(l —p ) +3(X —1)(1—p )],
g=[pR(yR+1)(y —1) —q (p, +1)(p' —I)+2pz(X —1)] +4q p [pX(X —1)+(pX+1)(l —p )],
D = -4qg(1 —g ) —4p q[X p (1 —y. ) +2k y(X —1)(X —p )]+4q y, '(I —g ) .
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where p'+q' =1 and q can be identified as charge
per unit mass -ejm. The prolate spheroidal co-
ordinates (X, p) are related to spherical coordi-
nates z, 9 and cylindrical coordinates pz by

p = (m pit})(~' —I)"'(I —y.')'"
=(r —2mr+m q ) ~ sing,

z = (mp/5}Xp =(r -m) cosg.

The following remarks about the above solutions
are in order.

(a} When 8 =1, the result is the same as that of
Misra et al.

(b} The asymptotic form of electromagnetic
potential is (for 8 =1-3)
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which is independent of 5. This can be regarded
as the static field of an electric and magnetic
dipole.

(c) Just as in the TS metric, the solutions have
a singularity wherever r'+ e' cos'8 = 0.

(d) In the q =0 limit, the solutions reduce to the
Weyl metric with 5' =25, where 5' is the Weyl
parameter. 4

(e} The solutions have asymptotic flatness.
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