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Proceeding from the speculation that the real world is approximately SU4 SU4- and scale-
invariant, we study the mechanism of spontaneous breakdown by considering a 0-~e model
that embodies both operator parhal conservation of axial-vector current and operator partial
conservation of dilatation current. Solutions exhibiting spontaneous breakdown are analyzed
in relation to the behavior of transition when explicit symmetry breaking is turned on. Al-
lowed domains for the symmetry-breaking parameters are also derived.

L INTRODUCTION

The group SU, made its debut in nuclear physics
when signer' attempted to give a unified treatment
of nucleon spin and isospin. The appearance of
SU, (Refs. 2-7) in particle physics was an out-
growth of the success of SU, . Of the many features
that motivated the study of SU, the most attractive
is the transparent symmetry between hadrons and
leptons' "'., However, the lack of experimental
evidence for the existence of many new particles
invariably tended to preclude SU, from being se-
riously considered as a symmetry group of the
real world. SU, was soon swept into limbo after a
brief appearance in the waves of SU, . Nonetheless,
the recent emergence of non-Abelian gauge theo-
ries seemed to have revived interests in SU4,""
for instance, as a viable way to avert the strange-
ness-changing neutral currents. Other experi-
mental indications, such as the rise of the total
cross section of pP scattering, ""and the various
claims of the discovery of heavy partic)es, "may
also point to the charmed particles as embodied
in the SU, scheme.

The present work is concerned with another fac-
et of the possible relevance of SU, to high-energy
physics, vis. , chiral SU, SSU, (Refs. 8-14, 19,
20) and scale invariance. Instead of the commonly
hypothesized relation between scale invariance and
SU3 SU3 "we propose that scale invariance is
broken together with SU, SU4. In Sec. II a a mod-
el" comprising fields that constitute the (4, 4)
(B (4, 4) representation of SU4 SU4 is studied in
the "tree approximation. " SU, SU4 and scale in-
variance are broken simultaneously by terms lin-
ear in the fields, thence ensue operator partial
conservation of axial-vector current (PCAC) and
partial conservation of dilatation current (PCDC).
In Sec. III the allowed domains for the symmetry-
breaking parameters are derived. In Sec. IV so-
lutions in the symmetry limit, and their behavior

under conditions of smooth transition, are ana-
lyzed.

H. LAGRANGIAN MODEL

The model we shall study is described by the
phenomenological Lagrangian

z'os~.

2 =Co+XI,

2 = —a„mt', ~e&%,

Z, = f,(T

rsvp'3)I)'+

f. Tr(3)I'3g)'

+g(det%+ det% t),
g S~

= -6'00'0 —680'8 6~50'js ~

3)I = a+i Q
—=-P («+& i)&i

and the A. matrices are given in the Appendix. The
fields (c, Q) constitute the (4, @e (4, 4) representa-
tion of SU, SU4; they transform under the chira)
generators +. and + as

(2.3)
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The generators +- an't I ', define the Lie algebra
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TABLE I. Nonvanishing values off&&I, and d;».
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where

i, j,k=1, . . ., 15.

(2.4)

Nonvanishing values of f,» and d, » are tabulated
in Table I.

The form of the Lagrangian is the same as the
usual SU, o model, yet the underlying group con-
tent is now SU4 @SU4." In contradistinction to the
SU, case, g is both chiral- and scale-invariant,
i.e., the term" g(detgg+detggt) that breaks scale
invariance in the SU, case is now scale-invariant.
The breaking of SU4 SU4 and scale invariance is
due entirely to the same linear terms in J~~,
and hence we have both operator PCAC and PCDC.

If we introduce the notations
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&2&, e„
v3e, ' W3e, ' (2.5)

Reexpressed in terms of

we see that when a=0 the Lagrangian is SU, -sym-
metric; when 1+a+ 5 =0 it is SU, SU, -symmetric;
when a=0 and 5=-I it is SU, SU, -symmetric.

The physical fields are defined as
W2~,
W3(0

' (2.8)

&O=O0- &0~

8 8 ~8&

I
15 15 (15 I

(2.6)

&i5

v3~, '

the equations become

where $o=(ao), $s—= (os), and $»—= (o»). Using
the "tree approximation, "we obtain the consisten-
cy equations

&o = 4&o(to'+ &s'+ &»')fi

+ ~ (v 3 $o —v 2 $s —2$» + 3v 3 foes

+ 3~3 &o&is'+ 3&»&s')fs

-', so = 8(2 + 3c' + 6ds)(f, zs)

+2(2+ 9c' + 18d'+ Qc'd —3c ' —12d')(foes)

+ (2 —3c ' —6d'+ 3c 'd —c ' —4d ')(gX'),

=8c(2+3c +6d )(fiA. )ve

'6~3 (3v 3 (o —v 2 $s —2$» —3v 3 foes

—3V 3 &o&is'+ $is&s'}g

+12c(1—c+2d —cd+ c'+d')(fsX')

—2c(1+c —2d —3cd —3d')(gzs),

(2.9}

&s = 4(s((o'+ $s'+ (»')fi
+ $s(3)o +2)s + $» —v 6 $o(s

+2V 3 $o$,s —&2(s)»)fs

2' (v 3 $o —v 3 $» +v 2 foes

—2$o)» —W6 $s$»}g,

& s =4( s(&o'+ 4'+ &is')fi

—-'
(sv h

2' s—'lh»' —9(o'k»+6&3 his'$o

—3~~ hs'ho 3&s'&is)-fs

+ —s'(~2(s'- &is'-3&o'&is —2&3 &is'&o

+v 3 $s $o+3)s')is)g.

(2 7)

2v3
" =8d(2+3c'+6ds)(fins}

+2(6d+3c' —12d'+3c'd —c'+ 14ds)(fsks}

—(2d —c'+4d' —3c'd —c'+2d ')(gX').

The masses of the particles are identified as the
coefficients of the quadratic terms in the displaced
Lagrangian. They are listed in Table II.

III. ALLOWED DOMAINS FOR THE SYMMETRY-
BREAKING PARAMETERS

The spectral representations for the current
commutators are""

oo 8 8 (7
([6'„,(x), P„,.(x')]) =i dm' p„(m') g„„+ "," — ", „8„8Z( -x'x; m),

s

0
m' m'

([ 6s( )x, Fs„,.(x')]) =i dm' p'„(m') g„„+ "," — ", „8„8 6( x- x';m )s,
0

(3.1)

&&[a~&)„„»,]) fdm v„&m*=)-=»,.„
0

'& ']" »l, »l )]f-
0

(3.2)

where p„. and o, &
are the transverse and longitu-

dinal spectral weight functions. Taking the diver-
gence of (3.1) and integrating over space gives

If we use Gell-Mann's divergence equations"

i8"6:„,. = [F, , Xs~ ],
i 8" F'„& = [F ( Xsa. ]

(3.3)

we can relate (3.2) to the symmetry-breaking pa-
rameters E0 E8 E» and the field vacuum expecta-
tion values $„$„$». The divergence of the vec-
tor and the axial-vector current densities are
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TABLE II. Mass terms occur in the Lagrangian as —2 pjC j —~ p&4» —
pj& 4&4». They are

related to the Aj by the expression p = A&z&+A2x2+A3x3, where x& =—f&X', x2 =f2', , and
x3 —gA .
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—8(3c +6d +2)
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p
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-8(3e2+6d +2)
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3 (c' -4d2+4d)

2v 2c(c —2d —2)

—12(c+d +1)2

-12(c +d —cd —c+2d+1)
—4(c2+ 7d2 —cd +3c —6d +3)

—4(4c + Vd +2cd —6c —6d+3)

—6(3c +6d +2)

—12(3c +d —2cd —2c+2d+1)

—1&/6c

-32&Sd
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—8(3c +18d +2) —6(c +14d -Sd+2)

-3(c +2d —2)
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—v 6c(2+ c —2d)
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-2(2c —d +cd+c —2d —1)

2(c+d + 1)2

3(c2 +2d2 —2)

—2(3d +6cd —2c+2d —1)

-(3c —6d —8d —2)2 2

v 6c (2 + c —2d)

-v 3 (c2 -4d2 —4d)

—v 2c(3c+6d +2)

listed in Table III; the nonvanishing K„. and I,.~

are given in Table IV.
We notice that Kj~ and Ij~ are symmetric under

the simultaneous interchange of a—c and b —d.
The positivity conditions require that""

15

=0, c=0 (SU, SU, -symmetric Lagrangian and
SU, -symmetric vacuum) are given in Table V;
their graphical representations are shown in Figs.
1-3.

IV. ANALYSIS OF THE MECHANISM OF
SPONTANEOUS BREAKDOWN

c+Kj)c.~ 0,j
i. j=1

(3 4)
A. Spontaneous-breakdown solutions

15

c(+I(~ c)~ 0
j, j =1

for any choice of the constants c, . These condi-
tions are satisfied provided"

Kjj+ 0,
Ij. 0

88 15,15 8,15

(3.5)

Allow domains for the cases a=0, b=-1
(SU, SSU, -symmetric Lagrangian), a = c = 0 (SU,-
symmetric Lagrangian and vacuum), and 1+a+ b

6f, +g =0,
24f, +14f2 -g = 0 .

(4.1)

The ratios between the coupling constants are
thus fixed:

In this section we first study the possible solu-
tions of ($„$„g»)in the symmetry limit e, = e,
= ~» =0, and then we turn on symmetry breaking
and examine their behavior in the course of tran-
sition."'

We consider the following cases.
Case & $0 0 $8 0 $ 540. In this case Eqs.

(2.7) simplify to
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TABLE III. Divergences of the SU4SU4 current densities.

&"p] = (&8f;g, + &fsf ]fsf) op 8&$„',= —[(e /v2)6, +e8d]~+a, sd„]y

1——(~3~p+~2~8+ ~f5)4 i
&6
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14

E' O'
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1
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1
2W
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1
2&3

—~ (~8+2~2 ~fs)of2

1
(68+2% 2 Efs)

2v3

1—(e8-v2 efs)of4
vS

1——(e8 —v 2 Efs) o f3vS

1
2v6

(2v 3 &p —v 2 F8+2+f5)$4

1
2v6

(2v 3 &p —v 2 &8+ 2&f5)@5

1
(~3&p —~2&8 +2& fs)$8~6

1
(2v 3 E'p —&2E'8+2& fs)$ 7~6

1
[~36'8pp + (/Q 6p W268 + E' fs)$8 + E'p f5]

&6

1
(2&3 &p +&2&8 —2&f5)$

2&6

1 (~36'o +&2&8 —2&fs)f fp
2&6

1
2&6

(~3 6'p +v 2 e8 —2'E fs)f f f

1
(2&3&p +i/2 E8 —2E fs)f f2~6

1——(&3&p &2&8 —&fs)f f3
&6

1 ~3 E0
—W2 E8

—E f 5)Q f 4
ve

1
[~3 fs&o+&8~8+(~3 o

—2&f5)«s]
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TABLE IV. Expressions defining the allowed domains; y = —
8 ~pgp.

Kf3 i3

I44

i3 i3

I 88

Iis, is

18, fS

g 6868
3

f2 [c8$8 + 2v 2 (68$ fs + 6 is(8) + 8&f5) f5]

3 [ 8~8 ( 8~f5 f5~8) f5~f5]

—
8 (v 3 E'p+&2E'8+ efs)(&3$p+&2$8+ pfs)

—
24 (2&3 Ep —&268+ 2E'fs) (2&3(p —&2/8 + 2(fs)

-~ (2V 3 E'p+v 2 E8 —2efs)(2W3$p+v 2 $8 —2/f5)

-6 (v 3 E'p &268 ~15) (~3~o v 2 ~8 ~fs)

—
6 [4&8$8+ (~3 &p -~2&8+ &fs) (who ~248+ hfs)]

8 [ 8~8+36i5~i5 + (W36'p 2E'fs) (&3)p —2/f5)]

—
g [68 (0 3 $p + )is) + (W3 6'p —W2 6'8 + +f5) $8]

gyac

y (a +4b)(c+4d)

4 y (a —2b) (c —2d)

4y (1+a+b)(1+c+d)

y (2-a+2b)(2 —c+2d)

y (2+a —2b)(2+c —2d)

4y (1 —a -b)(1 —c -d)
4'Y [(1-a+b) (1 —c+d) +2ac]

2y [2(1—2b)(1 —2d) +ac+6bd ]

2v 2 y [c(1-a +b) +a(1+d)]



1830 B. HU

TABLE V. K&& and I;& for the three cases considered in Sec. III.

K;), I]

I44

I is, is

Is, is

a=0, b= —1

—47 (c+4d)

87 (c —2d)

47 (2+c —2d)

87 (1 —c -d)

127 (1 —3d)

a =c=0

167bd

47 (1+b) (1+d)

47 (1 -b)(1 -d)

47 (1 —2b —2d+ 7bd)

1+a+b =0, c=0

—47d(1 —3b)

87d (1+3b)

67 (1+b)(1+d)

27 (1 —3b)(1 —d)

87 (1 -d)

87 (1+b)(1+d)

47 (1-2b -2d+7bd)
—2v 27 (1+b)(1+d)

6F=-5 ~

where

F—=

G= —, ,36

G=——g

(4.2)

(4.3)

For d c+1,

-2(1+3d2)
1 —2d+5d2 '

-4(1 —3d)(1+3d')
(1+d)(l —2d + 5d') '

(4.6)

Case 2. )Ow0, $, =0, (»=0.

8f, + 2f, +g =0 . (4.4)

Hence, 2F + G = -8.
Case 3. F„vO, $, =0, $»oO. Equations (2.9)

become

8(1+3d )x, +2(3 —6d+Vd )x2 —(1+d) x3=0,

(4.5)

8(1+3d')x, + 2(1 + 9d' —6d')x, + (1+d)'(1 —2d)x, =0 .

6f, +g=0,

2f, +f, =0,

2f. -g=o.
(4.7)

Hence the only possible solution is f, =f, =g =0,
i.e., we are left with a free-field theory —or else

when d = 1, 2F —G = -8; when d = -1, F = -1, and

G is undetermined.
Case 4. $, =0, $, 10, $»=0. Equations (2.V) are

reduced to

4ii

I 4/3 2

FIG. 1. An SU3(3 SU3-symmetric Lagrangian (a =0,
b =-1). Allowed domains are indicated by the shaded
regions.

FIG. 2. Allowed domains for an SU3-symmetric La-
grangian and vacuum (a =c =0).
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$0 $8 $15 0, which is the normal solution.
Case 5. $, 0, $, 0, $„=0.

8(2+3c }x,+2(2+9c —3c')x2+ (2 —3c —c')x, =0,

1 15=-1 ~ -4

F 2 4 114
107

G=0, 0,—',
(4.13)

4(2+3c )x, +6(1 —c+c )x2 —(1+c)x, =0,

2(3 —c)x, +(1+c)x~=0.

For f, wO, c can only take on the values

c=1,2, -2;

the corresponding values of + and G are

(4.8)

(4.9)

when g = 2fm, f~ =f2 ~g = 0 .
From the foregoing analysis we see that, in

order for the spontaneous-breakdown mode to be
possible, the field vacuum expectation values, and
subsequently the ratios of the coupling constants,
can only assume certain definite values. This
situation is similar to that of the U3 U, case
studied in Ref. 30.

14 14F =-2 t 5 J 13

4 28 140 ~

0 15 0 13

for f2=0, c=-l, and f, =f2 g=0.
Case 6. $0=0, $810, )150.

(4.10)

B. Turning on symmetry breaking; fixed couplings

We proceed to examine the solutions when the
explicit symmetry-breaking interaction is turned
on. First we assume fixed couplings.

Case 1. Equations (2.9) now become

6(1+5)(1—25)'f, + (1 —5 +45')g =0,

4(1+25')f, + 2(1 —5 + 5')f, + 5 (1 +5)g =0,

245(1+25')f, —2(1 —35 —145')f2
(4.11)

~o = — —(Sf2+g}
3 3

e, =0,

ei, =6)i, (24f, +14f2-g).

(4.14)

where

5 =-d/c.

For g c2f»

+(1+5)(1+25-25')g=o,

(4.12)

Since $8=0 necessarily entails F8=0, it is not
possible for the spontaneous-breakdown solution
to undergo a smooth transition for e8 c0. More-
over, even if we let F8 =0, there is still no solu-
tion" in the presence of nonvanishing E'0 and
inasmuch as 6f, +g=0, and 24f~+14fm-g=0, for
which spontaneous breakdown was possible.

Case 2.

did

~a =-,'~o'(Sf, +2fm+g) ~

e =0,

e,5 =0.
(4.15)

Again, there is no solution for e010, since
Sf, +2f, +g=0, even if we allow for e, =e» —-0.

Case 3.
- I/3

I/3
—,'e, = 8(1+3d')(f, A.')

+2(1+9d —Sd')(f, A, ) + (1+d) (1 —2d)(gX'),

f8=0, (4.16}

2
" =d[ 8(1+3d')( f,X')

FIG. 3. Allowed domains for an SU2@ SU2-symmetric
Lagrangian and an SU3-symmetric vacuum (1+a +5 =0,
c =0).

+2(3 —Sd+7d )(f2' ) —(1+d} (gX )] .

$8 =0 precludes e~ cO, whereas b = e»/v 3 eo is in-
determinable, as expected.
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Case 5.

2c[4(2 +3c')+ 6(1 —c+ c ')F —(1+c)G]
8(2+3c')+2(2+9c' —3c')+ (2 —3c' —c')G '

We know that in the symmetry limit they will take
on the form of 0/0. To obtain the limiting values
for a and b we apply l'Hospital's rule and find"

(4.1'?)

c '[2(3 —c)F + (1+c)G]
8(2+3c')+2(2+9c' —3c')F+(2 —3c' —c')G '

2
3

1
3

1
3

7
12

(4.18)

Case 6.
-6[4(1+26 )+2(1 —6+6 )F+6(1+6)G]

6(1+6)(1—26 )F+(1—6+46')G

-246 (1 + 262) + 2(1 —36 —146~)F —(1 + 6)(1 + 26 —262)G

6(1+6)(1—26)'F + (1-6 +46')G

(4.19)

2
9

1
9

50
27

100
27

(4.20)

where

Similarly, we obtain the following limiting values:
1
4

find that they lie outside the allowed domains. To
remedy this situation, we have to allow for vari-
able couplings, and consequently extra param-
eters have to be introduced. For instance, we can
follow Carruthers and Haymaker' by assuming a
linear variation of F and G with respect to the
vacuum expectation values as symmetry breaking
is turned on":

C. Variable couplings

(4.21) dF(g;) dG((g) =Py (4.22)

However, if we substitute the symmetry-limit
values obtained in Sec. IV B into Table III, we

where $, denote the symmetry-limit values.
This device enables us to get

Qc
2 + p —64+ 225p 64 —559p

12 —7p 384+ 75p 384 + 793p

12 —7p 384+ 75p 384+ 793p

(4.23)

for case 5; and

(2
—

3p)

1+3p

1+3p
2 —3p

1
2

3 32+ 9p

3 64-Qp

1 64 —9p

6400+4173p
20736 +19367p

1 153600 —12519p
2 20736+ 19367p

1 153600 —12519p
12 6400+ 4173p

(4.24)

for case 6.
As p-0 the previous limiting values are re-

gained. By adjusting p, we can now restore them
to the allowed regions. The goal of a smooth
transition is thus attained.

V. SUMMARY

We have studied an SU4 o model that incorporates
both operator PCAC and PCDC. The mechanism
of spontaneous breakdown is investigated in the
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"tree approximation. " In the symmetry limit, the
ratios of the coupling constants are found to as-
sume only certain definite values in order for the
spontaneous breakdown solutions to be possible.
However, these solutions, when explicit symme-
try-breaking interaction is turned on, lie outside
the allowed domains dictated by positivity, and
hence are unstable. To remedy this situation, we
allow for variable couplings, and an extra param-
eter is introduced. By adjusting this parameter,
the solutions can be restored to the allowed regions
to ensure a smooth transition in the wake of sym-
metry breaking.
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APPENDIX

The A. matrices are defined as follows:

i00 0
law

000 0

000 —i

OOO 0

Oio 0

0100

IO00 0

0000
0001
0010

0 —i 00 10 00 000 0 100 0

i 0 00
0 0 00
0 0 00

0 —100
00 00
00 00

010 0000 0

0 0 i 0 000 —3

1
000-i ' ~' W6 001 0

0010
0000
1000
0000

I00 —i 0

000 0

i 0 0 0

00 0 0

They satisfy the relations

Tr Ag %~=26'~,

[X&, x&] = 2i f; g~ A~,

{X(,X~) = 2d(~~ A~.

(A2)
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