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We follow the work of some other authors in a study of chiral-s~~etry breaking based on the linear

cr model in the semiclassical appro»~~tion. By this procedure the m~ of the mesons are known in

terms of the s~~etry-bre&t~g parameters. Therefore, in those te?ms, we can analyze the system for

the possible occurrence of anomalous thresholds corresponding to the bound-state properties of the

scalar mesons. We find that when the critical paaLmeter in the syrrirrretric Lagran~en is such that a
Goldstone syrr1rrtetry»~it can occur, then the anomalous threshold does not m~»&est itself by emerging

to the physical sheet when m~m continuation is performed; instead, the anomalous singularity stays out

on the physical sheet and never disappears from it. Conversely, the system has an anomalous threshold

with f~rrii»ar emerging behavior when the critical paaLmeter admits only the normal symmetry»~it.

I. INTRODUCTION

Underlying the many applications of current al-
gebra is the assumed validity of an approximate
chiral symmetry of the hadrons. The convictions
are that the real world is not far removed from
one in which all the vector and axial-vector cur-
rents are conserved, and that the fully chiral-
symmetric situation is one in which there occur
massless Goldstone bosons rather than degenerate
chiral multiplets. This question of how the sym-
metry limit is realized can be studied in models,
and Olshansky' has examined the linear c model'

for this purpose. The same model has been em-
ployed by Carruthers and Haymaker' (CH) to study

a number of issues related to chiral-symmetry
breaking, including the one concerning how the

symmetry is realized.
These authors use a chiral-symmetric meson-

field Lagrangian whose parameters are thought of
as fixed and symmetry breakers whose parameters
can be varied to permit passage between the phys-
ical and the symmetrical configurations. They
solve the model in the semiclassical approxima-
tion to obtain relations among the masses of the
scalar and pseudoscalar mesons, the parameters
of the symmetric Lagrangian, and the symmetry-
breaking parameters. The results are quite re-
alistic for such a simplified treatment. ' Unfor-
tunately it is difficult to draw a firm conclusion
about the realization of the chira1-symznetry lim-
it"; the scalar-meson spectrum is not well-
enough established to fix the parameters which are
sensitive in distinguishing the different modes of
realizing the full symmetry. The authors of Ref.
5 identify a critical constant, related only to the
parameters of the symmetric part of the Lagran-
gian, whose value determines whether or not it
is possible for full symmetry to be realized in the
Goldstone fashion.

In this paper we shall explore a further issue re-
lated to the meson spectrum. We shall have noth-

ing to add which is decisive about the realization
of chiral symmetry. Rather we shall demonstrate
how the CH critical parameter plays an interesting
role in certain questions of compositeness among
the mesons.

We shall concentrate on the vertex in which a
scalar (S) particle is coupled to a pair of pseudo-
scalar (P) particles. The values of the masses

and s7p determine three regimes desc ribing
S-PP, as ms increases relative to m p:

bound - loosely bound- unbound .
The third regime obviously corresponds to insta-
bility, when m~' - 4m~'. The distinction between
the first two regimes also has a precise meaning.
To express it we shall consider the form factor
of the S particle: the S-to-S matrix element of
any local operator which can probe the S-particle
structure [see Fig. 1(a)]. The form factor is
analytic in t, the momentum transfer squared.
When we refer to S as bound, we mean that ms
and mp are such that the lowest-lying cut in the
t plane corresponds to the PP intermediate state'
[Fig. 1(b)]. The S-PP coupling provides a pole
term for the amplitude SS-PP [Fig. 1(c)]; corre-
sponding to this contribution there is a branch
point of the absorptive part of the form factor
which, until ms is increased, does not lie on the
yhysica1 sheet of the form factor itself. The loose-
ly bound configuration is reached as we increase
m~ until ms ) 2mp'. In this circumstance the
branch point for Fig. 1(c) emerges through the PP
cut onto the physical sheet [Fig. 1(d)]. Thus for
ngs') 2mp there is a form-factor branch point
(the anomalous threshold) which lies lower than
the PP threshold. The location of the anomalous
branch point can be found from a study' of the
analytic properties of diagram 1(c); it is given by
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~, =ms'(4 ~' ms')im, '

If we introduce a different variable,

v =t —4m~,

then the I'I' cut starts at the origin in the v plane
and the anomalous threshold occurs at

v, = —(m, ' —2m'')'/mp',

in this form the emergence of the anomalous
threshold with increasing m~ is apparent.

For small momentum transfer the anomalous
cut is dominant if it occurs. Long ago, Nambu9

showed how its effect is to be expected. For small
binding energy e, (1) becomes

~o = 16am

so that the reciprocal radius of the bound state can
be identified as =4(em~)'". This corresponds to
a bound-state wave function for the 8 particle
which, at large r (the PI' separation), is asymp-
totically r 'exp[ r(em-~)'"], as one expects from
nonrelativistic quantum mechanics. Thus the
anomalous threshold is a familiar property of
bound states and not at all anomalous.

The final point to review in preparation for the
investigation at hand relates to the analytic contin-
uation of the form factor when the anomalous

threshold makes its appearance. " For 8 bound,
but not loosely bound, we have a dispersion rela-
tion for the form factor:

1f A(t )dh'
(2)

this is represented by the contour integral in
Fig. 2(a), in which it is the absorptive part A(&)

which is integrated along the contour. The shaded
left cut is that of A, from Fig. 1(c). As 8 becomes
loosely bound, the singularity of A deforms the
contour as shown in Fig. 2(b). The final result of
the continuation for m~'& 2m~' is shown in Fig.
2(c), where formula (2) must be supplemented by
the anomalous contribution in which we integrate
the discontinuity of A(t) from t, to 4m~'.

All of the foregoing discussion, including Figs.
1 and 2, pertains to what can be called the famil-
iar behavior of an anomalous threshold, in which
the singularity emerges onto the physical sheet
when analytic continuation in the masses is per-
formed. Of course, for given fixed masses, the
question whether the triangle diagram, Fig. 1(c),
is singular on the physical sheet or not can be
answered unambiguously and without recourse to
mass continuation.

Questions of compositeness among the scalar
and pseudoscalar mesons can be studied as func-
tions of the chiral-symmetry breaking if we know
how the masses of the S and I' particles depend
on the parameters descxibing the breaking. Be-
cause of the stability criteria associated with the
different regimes of compositeness, we expect

(b)

(c)

(b)

t-plane
(c)

%op

FIG. 1. Anomalous threshold where 8 is a bound state
of PP. {a}8-particle form factor. (b) PP intermediate
state. (e) Triangle contribution arising from the coupling
S—PP, and (d) giving a singularity which comes out of
the PP cut onto the physical sheet as S becomes loosely
bound.

FIG. 2. Analytic continuation of the form factor. (a)
Contour representation for the form factor when ~2
&2m~ . The contour in Eq. (2) begins at the PP thresh-
old. {b) As mz 2m~, the singularity of the absorp-
tive part deforms the contour. (c} For m& & 2m&2, the
contour starting at the PP threshold has been deformed
to include an anomalous contribution.
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there to be peculiarities in these features when the
theory which predicts the masses admits a Gold-
stone symmetry limit. We shall use the results of
the CH investigation to provide expressions for
the masses and so we expect the CH critical pa-
rameter to play a role in the manifestations of
compositeness described by anomalous thresholds.
We shall find that anomalous threshold properties
are distinctly different above and below the criti-
cal value of the CH parameter.

(a) p & 0

II. SU(2) XSU{2)o MODEL

This model has for its Lagrangian (apart from
kinetic terms)

(3)

where (o; w) transform as (-'„-,') fields under

SU(2)xSU(2), and for which we define $=(0~a ~0).
The parameters p,

' and f are taken to be fixed
while we permit e and ( to vary for the analysis of
chiral-symmetry breaking. SU(2) x SU(2} invari-
ance of the Lagrangian is broken by the term pa-
rametrized by e. In addition there is chiral-sym-
metry breakin'g in the vacuum state for $ &0. If
$-0 as ~-0, we have a normal symmetry: The
solution exhibits the symmetry of and degener-
ate chiral multiplets result If $$. 0 as e-O, we

have a spontaneously broken symmetry and mass-
less pions occur in the symmetry limit. The
semiclassical solution of this model describes
these properties in a way which depends on wheth-

er the critical parameter p.
2 is positive or nega-

tive. '
We follow CH and use

(b) y &0 -X

FIG. 3. Anomalous singularity t 0 and xn' threshoM
as functions of x2 for (a) p2 & 0 and (b) p2 & 0. The scale
marked on the ordinate is the value of p2. The straight
line is the 7('~ threshold, 4m ~2; the anomalous curve has
a point of tangency with it only in case (b). The insets
show x(~) for each case; only in case (a) is there a
Goldstone symmetry limit.

The forms taken by Eq, (1) in the two cases are

t, = p'(3 —x')(1 —3x')/(1 —x') for p'& 0 (Va)

m, ' = p'(1 —3x') .
For p' & 0 we define $ = (-p, '/f )'" and obtain

X =x(x'+1),

m, ' = p'(1+x'}

m, ' = p, '(1+3x') .

(5b)

(6b)

x = ~/(]'y) .
For p, '&0 we define" (=(p,'/g)'". Then the semi-
classical solution relates x to X ($ to c):

x=x(x'-1)
and determines the masses:

m„=p, (1 —x )

t, = p, '(3 + x')(1+3x')/(1+ x'} for p,
' & 0; (Vb)

we have identified S = o and P = v in Eg. (1) and,
correspondingly, in Fig. 1.

Because of the substitution symmetry, (x, X) for
(-x, -X), we need only consider x& 0 and use x'
as the variable on which the locations of the
thresholds depend. In Fig. 3 we plot the mm thresh-
old, 4m, ', and t, vs x' for case (a): p'&0, and

case (b): p'& 0. The insets to the figure show

x(X) for each case. Only for p,
' & 0 is the Goldstone

symmetry limit possible: xg 0 as z- 0. Gn the
other hand, only for p.

' & 0 does the anomalous
threshold t, pass around the mm threshold onto the
physical sheet. The point of tangency between the
two curves at x =1 in Fig. 3(b) indicates this:
If we start with x' =0 and increase its value, the
anomalous singularity comes out of the mm cut as
in Fig. 1(d) and deforms the contour of the cr form
factor as shown in Fig. 2. A rather different phe-
nomenon takes place for p, '& 0. In this case there
is no tangency between the t, curve and the 4m '
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curve. Thus, either t, never appears on the phys-
ical sheet or never disappears from it. The latter
circumstance applies here, ~' as ean be seen by
choosing a convenient fixed configuration of m and
o masses, say, for x2&3.

We conclude that p. is critical for governing the
occurrence of not only the Goldstone symmetry
limit, but also the familiar sort of anomalous
threshold. These two phenomena are mutually
exclusive. When p' is such that the Goldstone
limit can occur, the anomalous singularity which
occurs is on the physical sheet but does not change
sheets.

Iles' = u' —4ko'(f&+ »f2) —who,

~~I' = ~'-4(o'(f1+ of.)+2r(o

Following CH, we define

x= 5o/4

(12)

III. SU(3) XSU(3) 0 MODEL

The Lagrangian is given by

g —Zx =-2@2TrMtM+f, (TrMTM)'

+fo TrMTMM M

+g (detM+ H.c.) —«ohio —«,o, .
M is (3~ 3) tl'allsfol'Illillg ulldel' SU(3) & SU(3) alld de-
scribes scalar and pseudoscalar fields, a nonet of
each:

M=+ (o»+ iQ» )A.» /W2

X =x[x(x-1)+-,'Tj . (13)

It suffices for us to consider the anomalous
threshold of Fig. 1 for S=S, and P=P8. For this
case

2= 2
V7p R2pa

f=4(fi+ »f2) ~

As in Sec. II, p, is a critical parameter; Car-
ruthers and Haymaker' choose to express the crit-
ical behavior in terms of 7, defined by

T = -4fV'/r'.

In terms of these quantities, Eq. (9) becomes

Chiral-symmetry breaking is parametrized by eo
and 68y and by

~, =(a~c,
~ 0)

= po (x —x+»T) q

1

2= 2
8 WS&

= P, o'(3x' —2x+ ,'T), -

(14)

ea =0,

(8 =0,

/«o=toI+I4ko (fi+ of-o)+&to~ &=28/ *

(9)

The scalar-particle masses, for octet and singlet,
are

TIIso =P 4&o (fz+fo)+&ho~

'P11»g =P, —4$o (3f~+f2) 2y)oq

the pseudoscalar masses, similarly, are

g, =(O~o, (0) .
The authors of Refs. j. and 3 have applied the

semiclassical approximation to determine the re-
lations among a11 the parameters and to solve for
the masses of all the particles. " We shall use
these results in Sec. IV, but for the present we
are primarily interested in the expressions which
hold for the special case of exact SU(3) symmetry.
Accordingly, we shall develop our observations
about compositeness in parallel with the CH treat-
ment given in Sec. III of Ref. 5. For this ease

Where po' =4il'/T =- y'/f. Then, frOm Eq. (1) We

get

, (x' —2x+-,'T)(3x' —2x+ —,'T)
to =@o (15)

The location of the anomalous singularity (15)
takes on a simpler appearance when we look at it
from the PI' threshold, as in Eq. (1'):

Vo= to- 4mp2

(15')

The zero of v, for ~2 =-.'~ is t e feature of paWicu-
lar interest to us. In the series of drawings,
Figs. 4(a) through 4(g), we plot the dependence on
x of the anomalous singularity, t~ and the PP
threshold, 4' . It is clear that, because of the
larger number of parameters in the model, there
are many distinct cases to consider, correspond-
ing to different regimes for the critical parameter

Carruthers and Haymaker' have already noted
v's significance with respect to the behavior of
x(A), Eq. (13); we have drawn x(X) as an inset in
each of Figs. 4(a)-4(g). The substitution sym-
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PIG. 4. Anomalous singularity t,o and PP threshold as functions of & for (a} 7 &0, (b} v =0, (c} 0 & 7 & 1, (d} v =1,
(e} 1«~& 4, (f} v= 4, and {g}~& 4. The scale marked on the ordinate is the value of p, 02. The parabola in each case
is the PP threshold, 4m+ . The anomalous curve has a tangency with it, corresponding to a sixgularity changing sheets,
only if 7 &1. The insets show x(&} for each case; only if 7 ~1 is there a Goldstone symmetry 1bnit.

metry, (x, X) for (-x,-X), found for SU(2)XSU(2),
does not obtain here. However, even though posi-
tive and negative x are distinguishable, we stiQ
need consider only one or the other; as it turns
out, x~ 0 spans the range of x between the normal
symmetry limit and the physical point, including
the possible intervening occurrence of a GoMstone
symmetry limit.

For orientation in reading Fig. 4, we make note
of several special values of x:

(1) The normal symmetry limit, x-0, when

X-O, occurs for every T.
(2) The Goldstone symmetry 11mtt, in which

x-x, when A. -O, occurs for 7&1:

x, =-,'[1+(1 —T)'"];
m~2 =0 at these points.

(3) The points of tangency between t, and 4m~*

arise where x=+2' and occur -for 7&0.
(4) Thd turning points in x(X) appear at x = x,

where dX/dx=0:

(5) The zeros of t„Eg. (15), are at x„X, 3x„
and Sx; to has singularities at x, and x .

The drawings may now be considered in turn to
see the development of the anomalous threshold.

A tangency of the to curve from below the 4m~'
curve is required for a singularity which changes
sheets. As implied by the discussion in Sec. I,
we must start increasing x from an initial value
for which the PP eut is the lowest threshold. In
general this means we start with xs 0 (the normal
symmetry limit), increase x toward its physical
value, '4 and see if t, defoxms the contour which
starts at the PP threshold.

Case (a) (v& 0). There is no tangency so to never
passes through the PP cut.

Case (5) (r =0). f, crosses the I'P threshold but
does not deform the contour.

Case (c) (0& 7& 1). When we increase x, start-
ing where x&, 0, we see that f;-~ (when x-x ).
When t, returns to the finite plane (for x & x&x, ),
it does not deform the contour below the PP
threshold.

Case (d) (& =l) tp does not deform the contour
as we proceed from x~ 0. %e note that this is the
crucial value of ~ above which the Goldstone sym-
metry limit no longer occurs.

Cases (e), (f), (g) (T&f). The t, curve has a
tangency, from below, with the 4m~' curve at
x = —,'v 7 . Correspondingly, the anomalous thresh-
old comes out of the PP cut and deforms the con-
tour.
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The conclusion we draw is as in Sec. II. The
critical parameter, referred to as 7 in this model,
controls the occurrence of the Goldstone sym-
metry limit and the emergence of the anomalous
threshold. Again, these two phenomena are mu-
tually exclusive. In cases (a) through (d), in
which ~ & 1 admits the Goldstone limit, there is an
anomalous singularity which never disappears
from the physical sheet as x is varied.

IV. CONCLUSIONS

The parameters p', f„ fs, and g of the chiral-
symmetric part of (8) are taken to be fixed, so
physical data ought to provide a determination of
them and particularly of the critical parameter ~.
We shall conclude this investigation with a physi-
cal fit to the SU(3) xSU(3) o model, and express
our version of the less-than-decisive results. "

As Olshansky' has done, we first determine the
quantity b in terms of the decay constant ratio:

F /F„=(1 ——,'b)/(1+b), b=t, /(v 2$,).
Then from the known pseudoscalar meson masses
we use m „', mz', and &(m~'+ m„, ') to fix the
quantities

m,' = p' —4f,),'(I + 2b'),

r=y~„

y, =4f, g/(3r).
(Rather than reproduce all the formulas from the
semiclassical approximation we refer the reader
to the other authors. ") The pseudoscalar mixing
angle is given by

in which a=~, /(v 2e,).
The scalar mixing angle is given by

tan28s=2msss'/(msM —msss )

=-2v 2b
1 —y, —3y, (2 —b)

3+2b+y, (1 —2bs)+3ysb(2-b) '

(18)

where y, =8f,(,'/I'. Because the evidence on the
isoscalar scalar mesons is not firm, we shall
treat 8 as a variable. Each choice of g leads to
a determination of the scalar masses m, and m. . .
and of f,)os, p', and r To.see the range over
which 8~ can vary, it is useful to observe that
because 8~=0 we have y, =-l/(2-b) and so

ms~' =W21'b(4- y, ),
msoo msss I [3 b +yg(I 2b )]

Then when we examine (18) we find that 8s lies in
the range

90 +g, & e, &180'+g„

where 8, =tan '(v 2b), a negative angle. A portion
of this range gives very realistic values for m,
end m, , In Fig. 5 we have plotted the results
m. .. and T as functions of 6)~.

We would like to be able to say that a physical
fit is possible which determines 7' and tells us
which of the circumstances drawn in Fig. 4 ac-
tually applies. We see from Fig. 5, however, that

l.5-
1+y, (2 —b)

3+2b —y b(2 —b)' (16)
- 2

The procedure to this point determines g~ and the
masses of the pseudoscalars g and g', and of the
scalars m~ and g.

e, =0.87',

m~ =0.550 GeV, m ~
=1.057 GeV,

m„=1.015 GeV, m„=1.026 GeV.

Also determined are

0
0 IO-

0.5-
--2

a = -0.911, b = -0.157,

m ' =0.351 GeV',

I'=0.319 GeV',

f, $ = -0.0914 GeV

eo /$0 = -0.181 GeV

/(4 2s)o) =0.165 GeV

(17)
I

I IO
I I

l30
S

I

l50

FIG. 5. Calculated masses (in GeV) of the isoscalar
scalar mesons ~ and e', and the critical parameter v vs
the scalar mixing angle ez (in degrees).
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6, =122;

m, =0.700 GeV,

p.
' =0.0190 GeV',

m, =1.162 GeV,

(19)

f,],' = -O.OV91 GeV',

T =0.329.

If we pursue this, and in addition determine the
physical value of $, from E„by means of

+.= (-')"'$~(1+&),

we get

$0=0.137 GeV,

f, = -4.23, f2
= -4.88, y = 2.33 GeV,

e, =-0.0248 GeV', ~, /v 2 =0.0226 GeV'.

This also fixes the parameters introduced in Sec.
III:

f =-23.44, $, =0.0995 GeV.

The physical point to which we referred in the
discussion of Fig. 4 therefore has coordinates

x = 1.373, X = 1.072.

This choice of physical fit, with ~ =0.329, would

we can conclude rather little. The simplified mod-
el has given values of m, and m, , which are re-
alistic over a range of 6)s, but over that range T

varies through all of the regimes considered in
Fig. 4. Were we to choose the ~ meson to be at
700 MeV, we would have

imply that Fig. 4(c) is applicable, for which
0& T & 1; unfortunately, r is too sensitive to the
choice of m, and the evidence for an observed e
meson is too tentative to permit us to give that
much credence to (19).

The physical fit has not given a definitive answer
within this model to the question of the realization
of chiral symmetry. Nor has it revealed which
case shown in Fig. 4 is really applicable. These
failings notwithstanding, the primary observations
of this study are still interesting. If the scalar
mesons can be thought of as composites of a pair
of pseudoscalar mesons, then a loosely bound con-
figuration ought to be possible as the masses are
varied. On the other hand, the stability criteria
for anomalous thresholds may have peculiar con-
sequences if the system possesses a Goldstone
symmetry with massless pseudoscalar mesons
occurring in the limit. The model makes a clean
distinction: The parameters of the symmetric
part of the Lagrangian can permit a Goldstone
symmetry limit or an anomalous threshold which
changes sheets, but these phenomena are mutually
exclusive. When the parameters admit a Gold-
stone limit, the anomalous singularity is one
which never leaves the physical sheet. The criti-
cal parameter controlling this distinction is p.

'
(equivalently, T). Carruthers and Haymaker'
have conjectured that p.

' behaves like a critical
temperature for a system near a phase transition.
The observations we have made in this study offer
further evidence of distinctly different behavior
above and below the critical point.
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