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directly to variational approximations of the Rayleigh-
Ritz type.

~~A similar result holds when long-ranged Coulomb inter-
actions are present; see L. Rosenberg, Phys. Rev. D 8,
1833 (1973). In Sec. IV of this reference an effective-
potential theory for three-body charged-particle scat-
tering is worked out. This formalism can be extended
to the general multichannel case using the methods of
the present paper. We have ignored long-ranged
Coulomb effects here to simplify the discussion.

4We are chiefly motivated here by considerations of
unitarity-preserving approximations of the type de-
scribed by J. Carew and L. Rosenberg, Phys. Rev.

D 7, 1113 (1973). Construction of unitary variational
approximations based on the effective-potential formal-
ism is complicated by the appearance of such spurious
cuts.
See, e.g. , M. L. Goldberger and K. M. Watson, Col-
lision Theory (Wiley, New York, 1964), Chap. 8.

~ W. Zimmermann, Nuovo Cimento 21, 249 (1961).
TL. Rosenberg, Phys. Rev. D 1, 1019 (1970).
In this case one is led to linear integral equations for
the scattering matrix which, due to the appearance of
disconnected parts, require further analysis of the
type used by Faddeev for the three-body system.
We shall not take up this analysis here, however.
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We prove that in any "model" or "theory" in which (a) perturbation expansions have a finite
radius of convergence and (b) the cross sections for producing n hadrons, cr„(s, A), are polyno-
mially bounded, ~o„(s, X) ( —s, for all values of the coupling constant X inside the circle of con-
vergence, with Ã independent of n, the following bounds on the, average multiplicities hold for
large s: (n) ~ Clns and (n~) ~ C~(lns)~. In proving this result we also use the Jin-Martin lower
bound for physical A, o„t(s, A) —(const)xs, which follows rigorously from analyticity and uni-
tarity only. We discuss the possible validity of the above bounds in axiomatic field theory and
show that our bounds also follow from alternative conditions which, unlike (a), have a chance
of being true in field theory. It is also shown that the behavior (n) - s' necessarily leads to an
exponential behavior in s for Max„(o„(s, X)~ for some complex X whenever (a) holds.

I. INTRODUCTION

In addition to unitarity and analyticity, the main
input that leads to general asymptotic bounds, like
the Froissart bound, is polynomial boundedness. '
In the framework of the Wightman axioms, this
follows from the fact that the Wightman functions
and hence the Green's functions are taken to be
tempered distributions. Their Fourier transforms
are polynomially bounded in momentum space.

Thus far, to the best of our knowledge, there
exist no rigorous bounds on the average multi-
plicity (n), except for the trivial one: (n) ~ s'~'

for large s. Logunov and co-workers' have de-
rived interesting bounds that apply to certain
limited regions in phase space, but no bound of
the general nature of the Froissart bound exists
for the full (n). In fact, it has not been clear if
general properties such as analyticity and poly-
nomial boundedness control the growth of the
average multiplicity.

In this paper we first consider "theories" or
"models" in which the cross sections, o„(s), for

producing n hadrons in the final state have a con-
vergent power-series expansion in some coupling
constant. We prove that if these o„(s) are poly-
nomially bounded in s for all values of the coupling
constant, real or complex, inside the circle of
convergence, then a powerful bound on the average
multiplicity holds, namely (n) ~ C lns, and
(n ') ~ C~'In s. Thus, these two simple and gen-
eral conditions restrict (n) in a strong way.

The conditions we start with, convergence of
the perturbation series and extended tempered-
ness, are features of many models in the litera-
ture, especially those of the multiperipheral and
multi-Regge types. Our result points out the fact
that the behavior (n) c lns in these models is a
consequence of general properties, not dynamical
details. In the situation of axiomatic field theory,
the status of our two assumptions is quite differ-
ent. First, it is exceedingly unlikely that per-
turbation expansions are anything more than as-
ymptotic expansions in an actual field theory. '
Second, very little is known about temperedness
properties for complex values of the coupling con-



BOUNDS ON MULTIPLICITIES AND POLYNOMIAL. . . 1803

stant. However, some progress along this direc-
tion has been achieved recently by Glimm, Jaffe,
and Spencer4 for two-dimensional Euclidean field
theories. The following question arises: Are the
conditions we use necessary for our result, and
if not, will the alternative conditions be provable
within a general axiomatic frameworks The an-
swer to the first part of the question is negative.
The same bounds could follow from weaker con-
ditions. In Sec. IV we discuss this point and the
results of Ref. 4 briefly. We also point out sever-
Rl Rltex'nRtlve conditions which will leRd to the
same bounds and are weaker than the two used in
our main theorem. From the discussion of Sec. IV
it becomes clear that the important property one
needs is some extended form of temperedness,
and nothing need be assumed about the convergence
of perturbation theory.

The most interesting model that violates our
bound and gives a behavior for (n) increasing like
a power of s is that given recently by Cheng Rnd

Wu. ' We discuss a simplified form of that model
in Sec. III. The ansatz we use for o„(s) in that
case has a convergent expansion in the coupling
constant. However, one can see explicitly that
for complex values of the coupling the expression
for o„(s) can blow up exponentially in s and thus
violates our second condition. Unfortunately, the
Cheng-Wu model does not provide a counterex-
ample to the temperedness condition. It has al-
ready been shown by Cheng and Wu and others that
summing leading lns and restricting oneself to a
subset of diagrams can easily lead to answers that
violate unitarity bounds. It is quite possible in
this way to also violate some temperedness bounds
that might be established in a general framework.

Finally, we stress the fact that in this paper we
always use the lower bound o„,(s) ~ (const) x s ' for
large s as shown in general by Jin and Martin. 6

This lower bound follows from the cut-plane an-
alyticity of the forward amplitude and the posi-
tivity of its imaginary part. Thus it is not only a
consequence of axiomatic field theory, but must
also be a feature of any sane model. We use this
lower bound only for real physical values of the
coupling constant. We do not need it for complex
values of the coupling. The exact power s 6 is
not crucial for our results. We only need a lower
bound of the form e„,(s)~ (const)x s 8, where P is
any finite real positive number.

In some papers (n); is defined without including
eel, as (n)g(Jmeg =Q „~~na„. With 'this definition
of (n), we need to assume the lower bound o: ~(s)
& Cs 8 in order to get the results of this paper.
Even though this is a weak assumption, it has not
been proved rigorously in field theory like the
lower bound for (o) sThus in this .PaPer toe are

excluding models in which o,~{s)decrease faster
than any Large inverse pou er of s.

(2 I)

where for P' or Yukawa-type couplings A, should
be replaced by g'. We shall assume that the above
series is absolutely convergent for all A. such that

jx J(R, (2.2)

with 8 independent of s for large s. Later we
shall discuss the possibility of weakening this as-
sumption.

Since Im T, for real A, is proportional to o~,(s,A)

we can also write

a„,(s, X) = QX~n"~(s) .

This series we shall assume also has some radius
of convergence R. We now wxite the identity

Ws

o...(s, Z) = o„(s,Z), (2.4)
n-

where o „ is the cross section for producing n had-
rons in the final state. For physical A. , both otot

and o„obey the Froissart bound

o„(s,X) &o„,(s, X)~, ln's . (2.5)

Even if for some real values of A. unitarity is vio-
lated, we will still have, provided we maintain
temperedness and positivity,

o„(s, X) c o„,(s, X) c s" .
One can expand o„(s,X) also in power series in

A, , and get

a„(s, X)=—Q Z"a&~&(s) (2.7
k=n

lt is crucial to notice that in a $4-type theory the

II. BOUNDS ON &n~)

In this section we shall consider "theories" or
"models" which have a convergent perturbation
expansion, Rnd for which temperedness still holds
even for complex coupling constant A. as long as
~X( is inside the circle of convergence. We shall
argue in a later section that the important input is
the temperedness and that the results we get
might still be true even if perturbation theory is
only asymptotic.

-We start by defining the different quantities we
are going to use and explicitly stating our takeo

main Rssumptlons.
The forward scattering amplitude T'(s, A) is con-

sidered as a function of s Rnd some renormalized
coupling constant A.. One has the expansion
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lowest order in (2.7}is k=n. In Yukawa-type or
Q'-type theories we replace X by g'.

We are now in a position to state precisely our
two assumptions:

(a} The series in (2.7) for large s is absolutely
convergent for lX l & R, with R, independent of s
and n.

(b) For all lX l
& R„ the o„(s,A. ) defined by the

right-hand side of (2.7) are still tempered,

lo„(s, x)l &s", (2.8)

where N) 0 and is independent of n.
Our assumption (a) is clear even though it is al-

most certain to be not true in realistic field the-
ories while it is true in most models. We shall
later show that (a) may not be crucial for our re-
sults. Assumption (b) is motivated by the results
of Glimm, Jaffe, and Spencer and all we are as-
suming is that given some analyticity in A., we im-
pose the same temperedness assumption on the
0„'s for complex A. that we know holds for real A, .
For complex A. unitarity certainly will not hold
and lo„ l will not obey the Froissart bound, but if
vacuum expectation values of time-ordered pro-
ducts remain tempered for complex A, it is quite
possible that the 0„'s will also be tempered and
bounded by some possibly large power of s which
is independent of n. In Sec. III assumption (b) is
restated in terms of more physical quantities.

The average multiplicity is defined by

(n)o(., (s, Z) =- no„(s, Z) .
n-

We also need the higher moments,

(2.9)

( ')v...(s, x)=- gn' „(s,z) . (2.10)

It is clear that the assumption (b) by itself for real
A provides no restriction at all on (n). If o„(s,A)( sN for all n, this by itself does not tell us any-
thing about (n). However, we shall see below that
if lo„(s, x)l- s" for complex x, ix) &R„and if
perturbation theory converges, then remarkable
bounds on (n) and (n~) follow. Indeed we shall
prove the following theorem:

Theorem. In any "theory" or "model" in which
(a) and (b) hold, and in which a(„(s,X) (for real
physical X} satisfies the Jin-Martin lower bound,
the following bounds hold for large s:

From Eq. (2.7) it follows that 8„has the power-
series expansion

(2.14}

However, since 8„(s,X} is analytic for lXl &R, it
takes its maximum at the boundary, and hence

(2.16)

The bound (2.15) is, of course, also true for real
positive A. as long as A, & R&R,.

Hence for any positive real A, A, &R, we get

(r„(s, z)-(—) s (2.16)

This last bound means that the generating function
Q„z"o„(s,A) is tempered for z= 1+5. The situa-
tion is analogous to the starting point of the proof
of the Froissart bound where one has the fact that
for some positive t) 0, t inside the Lehmann-
Martin ellipse,

A(s, t) =g (2l+ 1)a,(s)P,(z(t))

is bounded by s~ for large s.'
The rest of our proof is almost identical to the

(y„(s, Z }-=Q Z'n'J'"'(s) . (2.13b}
f ~

This series obviously must also converge for lXl

&R, just as the one in Eq. (2.7) does. By d(.fini-
tion the first term of the series in Eq. (2.13b) is
a("'(s) =-(y„(s, 0), and e„(s, 0) has only contributions
from the tree diagrams shown in Fig. 1 with the
coupling at the vertices set at unity. This contri-
bution we are assuming to be finite.

From (a) it follows that o„(s,A. ) is analytic in A.

for all X such that lX l
& R& R,. By definition also

it is evident from Eq. (2.13b) that 0„(s,X) is also
analytic in the same region. From (b) we have for
R&R,

lo„s, Re'~
l

s"
Maxi&. (s, Re'~)I=Max ' "

(n) & Clns,

(n ) & C ln s, p fixed.

(2.11)

(2.12)

Proof. We start by defining "reduced" cross
sections 8„(s,A), where

(a) (b)

(2.13a)
FIG. 1. Diagrams that contribute to 5„(s,&) for X =0;

(a) Q coupling, (b) Q coupling, and n =4.
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o„(s,A) ~s~e "",
with

(2.17)

proof of the Froissart bound. First, it is evident
from (2.16) that for all n and real A. , A. & R, (n&a...(s, A) =- rex„(s, X)

n—

I
no„(s, A. )+ so„(s,x) . (2.26)

n- n&

y=-ln —&0 . (2.18)
Again the second term above can be made 0(l/s"),
and in the first sum n ~ L,; hence,

We also have the bound

(2.19)

, L
(n&o...~ I,~~ o„+O(1/s"), (2.2V)

(2.20)

such that the effective cutoff in Eq. (2.4) is at s
=I., where

I =Clns .
More precisely we can write Eq. (2.4) as

(2.21)

Actually, if the Froissart bound is respected we
should have (w/m „')ln's on the right in this last
inequality, but to include in our arguments models
like the multiperipheral model we use Eq. (2.19).
It is enough for 'our purposes.

The bound (2.1'l) tells us that for n» [(N/y) lns],
o„(s,A. ) will become smaller than a large inverse
power of s. Thus we can always find a positive
constant C,

and using Eqs. (2.25} and (2.24), we get

(n& ~ &=Clns . (2.28)

This completes the proof.
We conclude this section with a series of re-

marks:
(1) Condition (b) can be weakened to give us a

bound on (n& that depends on the maximum of
(o„(s,A) ) on the circle )A j

= R. For example, if in-
stead of (b) we define

Max)a„(s, Re'~)) =M(s), (2.30)

and restrict ourselves to cases where M(s) & s'
for any e &0, at least for some sequence of s val-
ues, this gives us an effective cutoff at n= L„with

Similarly, one can easily show, following identical
steps, that for fixed finite p

(2.29)

By choosing C large enough, we get

Ws

Qo„(s~ A. ) ~+ s e " dtl 4 ~
n &I ~Clas s

I.=CinM(s) .
The resulting bounds for A, &A are

(2.31)

(2.32)

where M &0, and M can be made as large as we
please by choosing C large enough. Therefore we
obtain for large s the estimate

(2.23)

We now use the Jin-Martin lower bound which
follows only from positivity and analyticity,

( )
const

s (2.24)

(2.25)

The role of the Jin-Martin lower bound is erueial
at this stage since if o~, e', Eq-. (2.25) does not
follow from Eq. (2.23) and the first 1.terms of Eq.
(2.4) will not give a good approximation to o„,.

The assertions of our theorem are now obvious:

This guarantees that by choosing M» 6, Eq. (2.23)
will always give us a good estimate of ot,t, i.e.,

As an example, consider a case where M(s}
=exp(lns), P&1. Such a value of M(s) is definitely
larger than any polynomial in s. From Eq. (2.32)
we get in this case the bounds

&n& ~ C(lns)8

(2.33)

This example shows that one still can get strong
bounds even if ~o„(s,a}) for some complex X grows
faster than any polynomial in s but not as fast as
e~' . The case where M(s) & (lns} is discussed
in Ref. 11.

(2) Conversely, given a power behavior for (n&,
~ 'l.e.,

(I& =s', —,'&a&0 (2.34)

for large s, then there must exist an e & 0 and a
sequence of points js~], s, -~ as j-~, such that

M(s~} & exp[~(s, )'], (2.35)
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for if no such sequence exists, then for any c &0,

1nM(s} &es' .
But from our previous remark, we obtain

(n) & ClnM & Ces' .

(2.36)

(2.37)

This contradicts Eq. (2.34) for e small enough and
we see that the power behavior for (n) necessarily
implies that the maximum of 0„ for some complex
A. must have an exponential behavior e ' . The
power of s in the exponent is the same as the pow-
er in (n). We are, of course, assuming that con-
dition (a} holds true and perturbation expansions
converge.

This is indeed the situation in the Cheng-Wu
model, ' which leads to (n) -s' as we shall discuss
in Sec. III.

(3) The validity of the Jin-Martin lower bound
is essential for the theorem. Without it one can
easily construct a counterexample. For example,
take for a„(s,X}the ansatz

k2 n

(2.38)
t

This form certainly satisfies conditions (a) and

(b) for (A.
~

& I/W2. However, the value of (n) is
given by (n) =A.s and increases like a power.
The total cross section resulting from the ansatz
of Eq. (2.38) is

a...(s, A. ) -=exp(Xs )e ' (2.39}

and decreases exponentially with s for large s and
~A ~

& I/W2 . It thus violates the Jin-Martin lower
bound which follows from analyticity and positivity.

One can use the expression given in (2.38) only
for certain values of n which are near n =O(As )

X2

and assume that contributions from other values
of n, which decrease like a power of s, lead to a
a;„(s)& s 8 satisfying the lower bound. But in that
case (n) will not be O(A. s" ), but will lie in the
latter interval where the o„'s are much larger.
To be more specific, suppose we have o„given by
Eq. (2.38) for all n except for an interval, n, & n
& n„where the a„'s are such that a„(s)& s "and

n, & (Ins)~. Then clearly the contributions to (n)
from the terms of the form (2.38) are exponentially
damped and (n) is bounded by n~ &{(n)}& n2

(4) Our result is essentially a weak coupling re-
sult. Even in the case of models we cannot say
anything about the behavior of (n) for values of X

outside the radius of convergence. '
(5) In the final section of this paper we shall

comment on the possibility of obtaining similar
bounds on (n~) with weaker assumptions than those
in (a) and (b). But while the assumptions (a) and
(b) are not demonstrated to be true in rigorous
field theory and (a) is almost certainly not true

for field theories, the assumptions are true in
many models. They certainly hold in many multi-
peripheral type models. The theorem we have
just proved shows that the fact that (n) does not
grow faster than lns in these models is not a dy-
namical detail of the models, but a general feature
controlled by temperedness and convergence prop-
erties.

One model that does not satisfy our bounds is the
nova model. ' But that model has no power-series
expansion in any effective coupling constant. So
condition (a) cannot be even formulated for it.

Another model which gives (n) -s', a&0, is that
of Cheng and Wu. ' There, as we shall see in Sec.
III, one effectively has an ansatz which violates
condition (b) and for which a„(s, X} grows exponen-
txaIly in s for complex values of A. .

III. REMARKS ON THE CHENG-WU MODEL

As mentioned previously, Cheng and Wu' have
recently proposed an extension of their impact
model that enables them to calculate the average
multiplicity. The result in this model is (n) -s,
where a is a function of the coupling constant. As
noted by the authors, this extension treats only a
special set of diagrams and "the basis of the con-
clusions reached is perhaps not as general as that
for the ones reached in previous papers. " For a
critical discussion of the results of this extension,
the reader is referred to a recent paper by
Mueller. "

In this section we shall consider an ansatz for
a„(s, A. ) which, for the problems discussed in this
paper, has all the main features of the Cheng and
Wu result. We show that the crucial property that
this ansatz does not satisfy is the assumption (b},
polynomial boundedness.

We write for a„(s, X)

a„(s, A.) =
(

exp(-Zs" ) .(zs~ )"
(3.1)

This simple ansatz is not the Cheng-Wu result,
but it does exhibit all the features of their model
that are relevant to the discussion of the questions
raised in this paper. For example all the lns fac-
tors that appear in the expression for 0„ in Ref. 5
are not significant for our discussion.

The average multiplicity given by (3.1) is

(n) =O(s") . (3.2)

Furthermore, the convergence of the power-series
expansion in A, is evident in this case. Also for
real A, the Jin-Martin lower bound is respected,

&r„,(s, A. ) & Max a „(s,A. ) & Cs (3.3)
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o„(s,Z) = Q X' a'„"(s)

(3.4)

e„(s,g) = gA'a&""&(s),

where a„(s) is the contribution from all the dia-
grams in our subset to order k for the production
process 2-n. By construction n~'~ is independent
of A. and is calculated from the diagrams by setting
the vertices equal to unity. For fixed finite n and
k, a~ ~(s) must be tempered for large s. The be-
havior of a„"&(s)for large s, when k and n also
grow, is not known. Nevertheless, if we are will-
ing to assume a uniform tempered bound on a~"(s),
then the same bound on (n) we obtained in Sec. II
holds for weak coupling, A. &1.

Indeed, let us assume for large s

(a'„"(s)~ ~ C(n, k)s ', (3 5)

where N' is independent of n and k. Namely, what
we are assuming is that the limit for large s and
k and n large is bounded in the same way as the
ease for large s and fixed k and n. Furthermore,
since we are dealing with a convergent subset of
diagrams, we shall assume that the C(s, k} in Eq.
(3.5) are such that g," „C(n, k}a converges abso-
lutely for values of X, ~A~ &8, and is tempered in
n, i.e., QC(n, k)(Xj ~n", a finite, n large. This
immediately leads us to condition (b) and the re-
sults of Sec. II, since

For real i, o„(s,X) as given in Eq. (3.1) is certain-
ly polynomially bounded. The increasing factor
(s" )" is always damped by the exponential factor
even for n=Xs, the maximum point. However,
as soon as A becomes complex this is no longer
necessarily true. For example, it is easy to
choose a phase for X such that jexp(-Xs )~ is ex-
ponentially increasing for some large values of
real s. Thus the ansatz (3.1) does not satisfy con-
dition (b). Indeed the quantity Max„& ~o„(s, Re'~)

~

=M(s) for this model behaves as predicted in re-
mark (2) of Sec. II and has an exponential growth.

At this stage one might remark that condition
(b) as stated is somewhat unphysical since it in-
volves the behavior for complex A. . However, one
can show, as we shall immediately proceed to do,
that having (s) -s' also implies restrictions on
the asymptotic behavior of the Feynman diagrams
contributing to o„(s,X) for real X and for some
high order and some large n.

Suppose for the moment we restrict ourselves to
a subset of Feynman diagrams for which perturba-
tion expansions converge. Then from Eq. (2.7)
and Eq. (2.13b) we have the convergent expansions

lo.(s, ~)l- P I&l'C(s, k) &"', n &Ms

for any A. real or complex inside the radius of con-
vergence defined by the C(n, k). Thus we see that
condition (b) can be stated in terms of the asymp-
totic behavior of Feynman diagrams with A. set
equal to unity.

Any model with a convergent perturbation ex-
pansion and a Sin-Martin lower bound, but with
(n) -s', must either violate Eq. (3.5) for large
values of n and/or k, or violate the convergence
and temperedness assumption on C(n, k).

We are certainly aware that the assumption (3.5)
is strong. For example, the bound in Eq. (3.5)
might hold, but only with coefficients C(n, k) for
which the series P,X'C(n, k) is divergent, even
though one starts with a model in which the series
in Eq. (3.4) have a finite radius of convergence.
The discussion we have just gone through is only
intended to show that assumption (b} can be re-
stated in terms of the asymptotic properties of
physical Feynman diagrams.

Finally we should stress again the importance
in assumption (b) of not just the temperedness in
s but the temperedness, in a sense, in n also.
Since n ~ Ws always, the temperedness in n can be
absorbed into the temperedness in s. It is not
enough for our results to just assume tempered-
ness in s for fixed finite n.

IV. DISCUSSION AND POSSIBLE GENERALIZATIONS

The main question that comes up at this stage
concerns the generalization of our results to
axiomatic field theory. As they stand, assump-
tions (a) and (b) are not known to be true in any
field theory. In fs,ct assumption (a), which in-
volves the convergence of perturbation theory, is
most probably not true. ' Thus if conditions (a)
and (b) turn out to be both necessary and sufficient
for our bounds, then the task for obtaining rigor-
ous bounds will become almost hopeless. This,
fortunately, is not the case.

The simplest way to see that assumption (a) is
not necessary is by constructing an example. One
can take a set o„(s, A), which is analytic only in a
semicircle of radius 8 and ReA, &0, with a finite
number of poles in the semicircle with RW &0. If
~o„(s, Re'~)

~
- s" on the circle, then our bounds

mill still hold for 0 «A, & R even though perturbation
expansions wiQ diverge for

~

X
~

equal to the modu-
lus of the nearest pole or larger. Thus, in this
example (a) does not hold while (b) is still true
(excluding the neighborhoods of the poles), and
the results are the same as in See. H. One can
construct more sophisticated examples with cuts
instead of poles in the left half A. plane. The cru-
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cial ingredient needed for our bounds is always
some form of temperedness.

Results both on analyticity in A. and tempered-
ness for complex values of X have recently been
obtained by Glimm, Jaffe, and Spencer. They
have shown that in ~(P), theories, the Euclidean
Schwinger Green's functions are analytic in a
small semicircle in the A. plane centered at the
origin with ReA. &0. Inside this domain the
Schwinger functions remain tempered even for
complex values of A. . This result has not yet been
continued to the case of real time and the physical
Wightman functions. After such a continuation the
physical values of A. , i.e., A. real and positive, will
most probably end up on the boundary of the re-
sulting domain of analyticity, but it will still be
interesting to see if temperedness survives in-
side the final domain. However, if the physical
values of A. end up on the boundary of the domain
of analyticity, then the information implied by
temperedness for complex values of A. will be es-
sentially useless for our purposes in this paper.

The situation at this stage does seem bleak.
However, in the case of weak coupling, A, &1, what
we need to get the bound (n) & Clns is quite mini-
mal. It does not involve either analyticity in A, ,
or polynomial boundedness for complex A. . We
only need to know if the reduced cross-sections
O„(s, A. ) as defined in Eq. (2.13a) are tempered or
not for physical real A. , A, &1. Indeed, one can
easily prove that the inequality

with a coupling constant of unity. Hence, here
again we have, at least when perturbation expan-
sions converge,

o'„(s, 0) &s"' . (4.3)

The question is then simply this: Can O„(s, X) be
tempered for A. ~ 1, and yet have exponential
growth for A, in between, 0&X&1? For, in fact,
if (n) = s' for A & 1, then following the argument
of remark (2) in Sec. II, we can show that there
must exist at least one value of n= n, such that
8„(s,X) behaves at least like e'~ for large s, on
some sequence of points (s,}, s&- ~ as j -~.

The ansatz considered in Sec. III does indeed
violate the bound (4.1}. However, it is perhaps
instructive to note that it satisfies the rigorous
bound (4.2) for A. ~ 1, and all n.

Finally, we see that for weak coupling the gen-
eral validity of the bounds (2.11) and (2.12) de-
pends on the simple question of whether the trivial
factor A.

" that must appear in o„(s, A. ) is an integral
part of the temperedness property, or whether the
expression for o„(s,X) is still tempered with the
A" factor taken out.

For fixed finite n, and even for X &1, we know
from the convergence of the dispersion relation
that o„(s,A. ) is tempered. The integral

f,"cr„,(s, A. )s 'ds must converge. Hence also the
integral 1"o„(s,X}s 'ds is convergent. Thus for
fixed n and A. we must have for large enough s, at
least on a sequence of s values,

8„(s,X) & s", X &1 (4.1) e„(s,~) & C(n, X)s, (4 4)

0'„(s, x) & s", x & 1 . (4.2}

This result is rigorous. Furthermore, in the
limit A, = 0, the only diagrams that contribute to
8„(s,a =0}are the tree diagrams" shown in Fig. 1.
These are essentially the multiperipheral model

leads to the bound (n) & Clns for X &1. All that is
needed is the definition o„(s, a) =-A."8„(s,X} and the
Jin-Martin lower bound. If we take A. &1, and y
=In(1/X), then it is easy to check from Eq. (4.1)
that (2.17) holds. The rest of the proof is identical
to that in Sec. II.

Of course we have no proof for Eq. (4.1). But
we have bounds on 8„(s,A. ), both for X ~ 1 and for
A. =0. In the first case, A. ~ 1, we know that o„(s,a}
- o„,(s, X) & S". Hence from positivity and tem-
peredness, without even using unitarity, "we have

where C(n, X) is a positive function of n and X. The
whole question hinges on how C(n, X) behaves for
large n for fixed X, A, & 1, with n always such that
n& Ps.

The alternative conditions we have just listed
are deceptively simple. While they do not involve
any analyticity assumptions, they are too close to
the final result to be considered as necessarily
weaker than (a) and (b).
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Sixth-order electron g factor: Mass-operator approach. I*
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A magnetic-moment contribution, due to the sixth-order process in which the lowest-order
radiative correction to the internal-electron propagator is twice iterated, is calculated
analytically, using an improved mass-operator method developed by Schwinger. Our result
confirms that of Levine and Roskies.

The next generation of experiments' to measure
the g factor of the electron or muon should be of
sufficient accuracy to discern with some precision
the order-ns electrodynamic correction' as well
as strong-interaction' and perhaps weak-interaction
effects. ' There have been a number of calcula-
;tions of sixth-order electrodynamic contribu-
tions' '; all such processes have been evaluated
numerically, "while a few have been computed
analytically. '" Insofar as there exist discrepan-
cies between various computations of perhaps
20%%d,

' there is room for improvement. Indeed, it
would be desirable to have a complete analytic
evaluation, although this would appear to be a
very formidable undertaking.

It is in part a question of efficient organization.
The usual diagrammatic expansion involves 40
distinct diagrams. ' Actually, the number of con-
tributing processes can be greatly reduced if in-
stead one employs the mass operator method s,s-xo

in, which one considers the propagation of an elec-
tron in a weak homogeneous magnetic field.
Schwinger" has recently developed an improved
version of this method in an efficient rederivation

of the n' moment, and the extension of his meth-
ods to an analytic evaluation of the n' effects does
not seem unreasonable.

In this paper we will first review certain aspects
of his calculation, those in which the internal-
electron propagation function undergoes radiative
corrections. Then we apply this method to a par-
ticular sixth-order process in which the lowest-
order radiative correction to this propagator is
twice iterated. " Although this result is not new,
we present this calculation in order to demonstrate
how such an analybc evaluation can be carried
out simply and quickly, and specifically, to check
the result of Levine and Roskies. ' Hopefully, re-
lated mass-operator methods should effect sim-
plifications in other sixth-order processes.

Consider an electron moving in a weak, homo-
geneous, magnetic field, described by the action
term

dx dx'g xyoMx, x' g x' .

Given M, we extract the magnetic moment by ap-
plying the mass-shell condition


